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In this work we derive expressions for the orbital angular momentum (OAM) density of light, for both
symmetric and nonsymmetric optical fields, that allow a direct comparison between theory and experi-
ment. We present a simple method for measuring the OAM density in optical fields and test the approach
on superimposed nondiffracting higher-order Bessel beams. The measurement technique makes use of a
single spatial light modulator and a Fourier transforming lens to measure the OAM spectrum of the
optical field. Quantitative values for the OAM density as a function of the radial position in the optical
field are obtained for both symmetric and nonsymmetric superpositions, illustrating good agreement
with the theoretical prediction. © 2012 Optical Society of America
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1. Introduction

Since the discovery of optical fields carrying orbital
angular momentum (OAM) [1], many new avenues
in the field of classical and quantum optics have been
initiated, ranging from the transfer of OAM to parti-
cles in optical tweezers [2] to the entanglement of
OAM in parametric downconversion [3]. Fields that
carry OAM of I/ per photon, some of which include
Laguerre—Gaussian beams [4], Bessel-Gaussian
beams [5], and Airy beams [6], have an azimuthal an-
gular dependence of exp(il¢) [1 ,4], where [ is the
unbounded azimuthal mode index and ¢ is the azi-
muthal angle. Since these fields possessing OAM
offer an unbounded state space, they provide a larger
bandwidth for quantum cryptography [7-9], leading
to many publications being dedicated to the mea-
surement of OAM in order for higher-dimensional
quantum information processing to be a success.
Many techniques exist in the area of measur-
ing OAM, from computer generated holograms

1559-128X/12/070823-11$15.00/0
© 2012 Optical Society of America

090.1995, 120.4570, 070.6120, 070.3185, 050.4865.

[3,10-12] to interferometers [13-15]. Even though
the aforementioned techniques are efficient at sort-
ing modes (and even in some cases single photons)
carrying OAM, they do not allow one to obtain a
quantitative measurement for the OAM density
and instead only measure the global OAM—the aver-
age value across the entire field. In the last year,
more techniques that measure the global OAM
have appeared, from demultiplexing free-space
OAM-carrying beams [16] to studying the diffraction
patterns of helical beams [17]. Many publications de-
monstrate the transfer of local OAM to trapped par-
ticles [18-20] by illustrating that the rotation rates
of a particle trapped at different radial positions in
a multiringed beam are proportional to =2 [18], or
by illustrating that particles trapped at different ra-
dial positions in an optical field (produced by inter-
fering two vortex beams with unequal charges)
rotate in opposite directions [20]. The only attempts,
to the best of our knowledge, to make quantitative
measurements of the OAM carried in an optical field
have been made by merely measuring these rotation
rates [21,22]. Measuring OAM by demonstratmg ro-
tation within an optical tweezing system is not only
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an indirect measurement but also a difficult experi-
ment to conduct. The results of these findings only
illustrate that the rotation rates reveal that the
transferred angular momentum increases linearly
with laser power [21] and that the rotation rates
of low-index particles, which locate themselves in
the dark regions of optical fields, are not impeded
by beam imperfections [22]. Another, even more com-
plicated, technique makes use of Doppler shifts due
to a rotating detector [23,24], which allows for the re-
construction of the OAM spectrum of an optical field
and has been tested with Laguerre—Gaussian modes
of different azimuthal orders [23].

In this paper we present a technique for a simple
and direct measurement of the OAM density that re-
quires only a spatial light modulator (SLM) and a
lens. Having a tool to perform a quantitative mea-
surement of the OAM density will prove useful not
only in quantum information but also in determining
the loss in angular momentum as optical vortices
breakup during nonlinear propagation [25]. We for-
mulate the theoretical equation for the OAM density
for both symmetric and nonsymmetric fields and use
the Fresnel diffraction integral to formulate an ex-
perimental form for the OAM density, allowing for
the first time (to our knowledge) a quantitative mea-
surement of the OAM density of the field. We imple-
ment this simple experimental technique to obtain
quantitative measurements for the OAM density
for both symmetric and nonsymmetric superposi-
tions of nondiffracting higher-order Bessel beams.

2. Concept of the OAM Density Measurement

In this section we investigate how the OAM density
of an optical field can be measured. An illustration
that will aid the theoretical description, as well as
the experimental measurement, of the OAM density
is given in Fig. 1(a). Figure 1(a), which denotes a
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schematic of the experimental setup for the OAM
density measurement, is separated into two parts:
(1) the generation of the optical field and (2) the mea-
surement of the OAM density, which is achieved by
performing a modal decomposition of the opti-
cal field.

A. Symmetric Superposition of Two Bessel Beams

In this paper, we use Bessel beams as a basis set for
OAM-carrying fields and classify the superpositions
of nondiffracting higher-order Bessel beams into
symmetric and nonsymmetric. In our derivation of
both the theoretical and experimental OAM densi-
ties, we will start with the symmetric case and later
develop the argument for the nonsymmetric case.
Consider the amplitude for a symmetric superposi-
tion of two Bessel beams, of opposite azimuthal order,
as given by

u(r,0,z) = Ag(J;(q1r) exp(iAkz) exp(il6)
+ agd _;(qar) exp(-iAkz) exp(-il9)), (1)

where J; and J_; denote the Bessel functions of order
[ and -, respectively, g; and g, denote the radial wa-
venumbers of the two fields, and Ak denotes the dif-
ference between the longitudinal wavenumbers. We
start with this special case, as the theoretical OAM
density is already known [26].

To experimentally create such a field, Durnin’s
ring slit [27] method is used; however the ring slit
is encoded digitally [28] onto an SLM. By dividing
the ring slit into two ring slits and encoding the azi-
muthal phase within the ring slits to vary azimuth-
ally in opposite directions, a superposition of two
oppositely handed Bessel beams can be generated.
For the example given in Fig. 1(c), the phase within
the inner ring slit varies three times in a clockwise
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SETUP 2: Decomposition

(Color online) (a) Schematic of the concept for generating the optical field and decomposing its OAM spectrum. (b) The Gaussian

beam used to illuminate (c) the digital ring slit hologram for the construction of (d) the optical field, mathematically defined by u(r, 9, z).
(e) The hologram, having a transmission function of #(r, 0), together with the lens Ly, performs the decomposition, which produces (f) the
inner product at plane P, mathematically defined by u”(0, ¢, z). SLM, spatial light modulator; O, objective—used to magnify the optical

field (d).
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direction (I = 3), and three times in a counterclock-
wise direction (/ = -3) in the outer ring slit, thus
transforming the initial Gaussian beam [Fig. 1(b)]
into a superposition of two Bessel beams, of orders
[ =3 and -3, denoted by the “petal” structure
[Fig. 1(d)].

The widths of the two ring slits can be adjusted,
consequently increasing or decreasing the energy
present in the two Bessel beams. The energy con-
tained within the first Bessel beam, J;, is denoted
by Ay in Eq. (1), and the energy contained within
the second Bessel beam, /_,, is denoted by apA, with
the constants determined as

Ay = \// exp(-2(r/w)?)rdr, (2)
ringl

Ao = \// exp(-2(r/w)*)rdr/ exp(-2(r/@)*)rdr,
ring2 ringl

where ring1 and ring2 denote the bounds of the inner
and outer radii for the inner and outer rings, respec-
tively, and w is the radius of the Gaussian beam illu-
minating the ring slit.

In determining a theoretical equation for the OAM
density, the Poynting vector for the optical field
[Eq. (1)] needs to be solved:

N

S =

Soa)C‘

(@(uVu* —uVu) + 2 klu|?2), (4)

where ¢, is the permittivity of free space, ¢ is the
speed of light, % is the wavenumber, and u is the am-
plitude of the field described in Eq. (1). The OAM
density, L,, can then be determined from the Poynt-
ing vector by the following relationship:

1 -~ =
=C_2(r XS)Z, (5)

resulting in [26]

2
L;I‘HEORY(,.) = % (le(qlr) + a%J%l(qu))» (6)

the theoretical description of the OAM density for the
symmetric superposition described in Eq. (1).

Once the optical field is generated, a quantitative
measurement of the OAM density, given theoreti-
cally in Eq. (6), can be made by measuring the
weighting of each azimuthal mode present in the op-
tical field, which is done by performing the following
inner product [depicted in the decomposition section
of Fig. 1(a)]:

a,(r,z) = \/12_71 [} 2 (0. 2)t(r. 0)d0. 7)

a, is the weighting of the azimuthal mode of order n
present in the optical field u(r,0,z), described by
Eq. (1), and ¢(r, 6), which is the transmission function
of SLM 2 in Fig. 1(a) and is termed the match filter, is
given by the azimuthal mode, exp(-in6), within the
bounds Ry < r < R,. The concept of using a match fil-
ter to detect predetermined signals within a noisy
background was first demonstrated nearly 50 years
ago [29]. This involved implementing complex spa-
tial filters recorded onto film to identify geometric
shapes, letters, and signals within random noise.
The inner product is executed experimentally by di-
recting the optical field, u(r, 9,z), onto a match filter
[encoded on an SLM and denoted in Fig. 1(e)] and
viewing the Fourier transform [depicted in Fig. 1()].
The match filter, an example of which is given in
Fig. 1(e), consists of a ring slit placed at a particular
radial position (R), which allows one to select the ra-
dial position within the optical field. The azimuthal
phase within the ring slit varies as exp(-in6). For
this particular example [Fig. 1(e)], the weighting of
the azimuthal mode, n = 3 (i.e., a3), is being mea-
sured. By adjusting the azimuthal phase within the
ring slit and the radius of the ring slit, various azi-
muthal weightings at different radial positions in the
optical field can be measured. This technique is not
restricted to superpositions of Bessel beams but can
be used on any OAM-carrying optical field.

To relate the weighting of the azimuthal mode to a
quantitative laboratory measurement, we require
the inner product of u and ¢ to be determined. The
inner product [located at plane P in Fig. 1(a) and de-
fined as uf(0,¢,2)] is determined by making use of
the Fresnel diffraction integral to propagate the field
from SLM 2 [the initial field, u(r, 0,z), multiplied by
the transmission function, #(r, 8), of the match filter]
to plane P (the plane of the inner product):

= exp(z2kf)/ / t(r,u(r,0,z)

x exp(—i ?rp cos(6 — ¢))rdrdd, 8)

uP(ﬂ? ¢7

where f is the focal length of the lens used in the de-
composition

If Eq. (8) is evaluated at the origin, p = 0, then we
return the desired inner product between the field
u(r,0,z) and the match filter ¢(r,0). We also know
that when the match filter consists of the complex
conjugate of one of the azimuthal modes present in
the initial field, the weighting of the azimuthal mode,
a,, lor the on-axis intensity of the inner product,
I(p = 0)] will be nonzero; therefore, we need only con-
sider the cases when the azimuthal mode of the
match filter is either [ or -/ (i.e.,n = [ and -[). By sub-
stituting Eq. (1) into Eq. (8), and considering the sig-
nal at the origin, uf(0,¢,z), for cases when the
azimuthal mode index of the match filter is either
[ or -, we find, respectively,
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o =0,2) = ZREH) o4 / Ji(q1r)
uf 9)
x exp(iAkz)rdr,
WPy(p = 0,2) = T2 9. / J 1(qar)
iAf
x exp(—iAkz)rdr. (10)

R and R, are the inner and outer radii of the ring slit
representing the match filter [Fig. 1(e)]. Since the
ring slit in the match filter can be made arbitrarily
thin, Egs. (9) and (10) can be simplified by noting
that the ring slit may be assumed to be at a radial
position R = R; = R, and of width 2AR, resulting in

exp(12kf)
IAf
-RJ;(q1R) exp(iAkz), (11)

uW(p=0,z2,r=R) = 27A(2AR

exp(i2kf)
iXf
-RJ_;(qoR) exp(-iAkz). (12)

ubl(p=0,z,r=R) = 27Ay0g2AR

The Bessel function is evaluated at R, which is the
radius of the ring slit, represented in the match filter.

Since the intensity of an optical field is defined
as I, = goc(wuf), the following relationships be-
tween the measured intensity at the origin of the in-
ner product, I(0) (for the two cases where the
azimuthal mode index of the match filter is either
[ or —[), and the theoretical Bessel functions can be
formed:

0 A 2

if,c) (47;A}}; 'RAO) =J?(q1R), (13)
1,400 ) 2

elo(c) (4,;A1}; 'RAO) = agJ?(q2R). (14)

Substituting the above two equations, Egs. (13) and
(14), for the Bessel functions, J/; and J_;, into the the-
oretical result for the OAM dens1ty, Eq. (6), results in
the following equation:

P =y (L) o -1, as)
n

Ring

which is used to calculate quantitative measure-
ments of the OAM density. 5 is a factor for the optical
efficiency of the experimental setup, and Sy, is the
area (4zAR ‘- R) of the ring slit in the match filter and
is a function of its radial position, R.
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B. Generalized Symmetric Superposition

The optical field for which we wish to measure the
OAM density, as described in Eq. (1), can be extended
to a generalized form:

N

> adi(qir) exp(iAk;z) exp(ilo)
I=-N

+ a_J_;(q_r) exp(-iAk_;z) exp(-il0),
(16)

u(r,0,z) = A

where o; and a_; denote the energy contained in each
of the ring slits with respect to the energy contained
in the innermost ring slit. Because of the fact that
the ¢-component of the Poynting vector, S,, is a
linear operator (the proof is contained in detail in
Appendix A), the OAM density for the generalized
field described in Eq. (16) can be described both
theoretically and experimentally by extending the
results given in Egs. (6) and (15) as, respectively,

eowA2 X
LTHEORY () _ T0 Z la2J%(qir) - lo®,J?(q ),
I=N
(17)

EXP %
LE¥®) = 2 (Sng) l;vzaz(m L,0). (8)

C. Nonsymmetric Superposition of Two Bessel Beams
The other case that is investigated in this paper is
that of nonsymmetric superpositions of Bessel
beams, and in the following equations we will outline
the theoretical analysis for obtaining the OAM den-
sity. The amplitude of a nonsymmetric superposition
of two Bessel beams can be described as

u(r,0,z) = Ay(J;(q1r) exp(iAkz) exp(il0)

+ apd,, (gor) exp(—iAkz) exp(im0)), (19)

where the azimuthal indices are of different orders,
[ £ m. Following the same procedure in determining
the Poynting vector and consequently the OAM den-
sity previously described for the symmetric case
[Egs. (4) and (5)], the OAM density is determined the-
oretically by

2
g9wA}
LTHEORY (1. % ) —

(lJ?(CIﬂ”) + ma%J%@(%’“)

+ ({ + m)ag cos((I —m)¢
+ 2Ak2)J1(q17) m(ga2r))- (20

Since the above equation is a function of the
azimuthal angle, ¢, in the plane of the inner product,
it is evaluated by summing the OAM density va-
lues for a range of angles varying from 0 to 2x.



Equation (20), unlike the OAM density for the sym-
metric case, is a function of Akz, and given that its
effect on the optical field is only a constant phase
shift (a rotation in the intensity profile of the optical
field), it can be ignored.

To relate a quantifiable measurement to the theo-
retical OAM density [Eq. (20)], the same procedure
as described in Egs. (8)—(14) is followed, and the final
results, which relate the on-axis intensity in the in-
ner product plane P to the theoretical Bessel func-
tions, are

1;(0) fa o
£oC (471'AR . RAO) =Ji(q1R), (21
1,,(0) fa 2 L
&oC (47[AR . RAO) - aOJm(QZR)- (22)

Here in the theoretical analysis of the nonsymmetric
case, the azimuthal mode index, n, of the match filter
is set to both / and m.

Substituting the above two equations, Egs. (21)
and (22), into Eq. (20), the form for obtaining an ex-
perimental measurement of the OAM density is

i( f )2(111(0) +ml, (0)

EXP —
LZ (R7¢7Z) - 20’7 Sng

+ ({+m)cos((l —m)¢

+ 2Ak2)/T,(0) ,/Im(O)) .

(23)

This result is also a function of the angle, ¢, in the
plane of the inner product, and since only a single
measurement of the on-axis intensity in the inner
product plane can be made, no measurement for
the angle ¢ can be obtained. To resolve this issue, the
experimental equation for the OAM density is inte-
grated over ¢, resulting in the average OAM density

LEP(R) = 2 (i)zall(m +mL,0),  (24)
2cn SRing

where the term Akz can be neglected. Since the
above experimental measurement, Eq. (24), has no
angular dependence on the optical field, the mea-
surement does not pertain to a specific radial direc-
tion but is in fact merely an average measurement
across the field.

D. Generalized Nonsymmetric Superposition

Similarly, as in the symmetric case, the amplitude of
the nonsymmetric superposition can be extended to
consist of many Bessel beams, as in the following
form:

N N
u(r,0,z) = A, Z Z a;J;(qr) exp(iAk;z) exp(il0)
I=-N m=-N

+ apd 1, (q,7) exp(iAk,,z) exp(im6). (25)
Even though the ¢-component of the Poynting vector,
S;, is a linear operator and the theoretical and ex-
perimental OAM densities can be extracted by ex-
tending the simple form in Egs. (20) and (23), the
equations become very cumbersome and have thus
been neglected in this paper. However, if the reader
wishes to calculate the OAM density for such fields,
this can be easily achieved by substituting the ampli-
tude of the field into Eq. (4) to determine the
Poynting vector for calculating the theoretical
OAM density.

In this paper we experimentally test the results gi-
ven above by measuring the OAM density for six se-
parate optical fields. The first three fields consist of a
superposition of two Bessel beams, of orders 3 and
-3, where (1) the energy in the two ring slits (used to
generate the optical fields) is equal, (2) that in the
outer ring slit is heavily weighted, and (3) that in
the inner ring slit is heavily weighted. The theoreti-
cal and experimental OAM densities are calculated
through the use of Eqgs. (6) and (15). The fourth op-
tical field is a nonsymmetric superposition of two
Bessel beams, where [/ = 3 and m = -4, and the re-
quired results are obtained through the use of
Eqgs. (20) and (24). The fifth involves a superposition
of three Bessel beams, and even though the OAM
density is not explicitly given in the paper, it is easily
calculated by substituting the amplitude of the opti-
cal field into Egs. (4) and (5). This is also the case
with the last optical field, a nonsymmetric superpo-
sition of four Bessel beams.

The experimental setup for measuring the OAM
density of the optical fields, discussed above, is given
in the following section, accompanied with the theo-
retical and experimental results.

3. Experimental Methodology and Results

The experimental setup for the measurement of the
OAM spectrum at specific radial positions for the co-
herent superposition of Bessel beams is denoted in
Fig. 2. To generate the various superimposed Bessel
beams, for which we intend to calculate the OAM
density, a HeNe laser (1~ 633 nm) was expanded
through a 6x telescope and directed onto the liquid-
crystal display (LCD) of an SLM labeled LCD;. The
fields consisting of superpositions of higher-order
Bessel beams were generated in a similar approach
to Durnin’s ring slit [27] method, except the ring slits
were implemented digitally [28] onto LCD; (Ho-
loEye, PLUTO-VIS, with 1920 x 1080 pixels of pitch
8 um and calibrated for a 2z phase shift at ~633 nm).

Some of the digital ring slit holograms pro-
grammed onto LCD; for the creation of superim-
posed Bessel beams are given in the first column
of Fig. 3. To create an amplitude ring slit digitally
on a phase-only SLM, the area surrounding the ring
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Fig. 2.

CCD; 7N
0, =
Y CCD,
,\X"‘"*O O '.
€----= >
fo [ f 0

(Color online) Schematic of the experimental setup for measuring the OAM density of symmetric and nonsymmetric superposi-

tions of Bessel beams as a function of the radial position, R. L, lens (f; = 25 mm, f = 150 mm, 3 = 200 mm, and f, = 200 mm); M,
mirror; LCD, liquid-crystal display; O, objective; PM, pop-up mirror; CCD, CCD camera. The objective, Oy, was placed at the focus
(or Fourier plane) of lens L,. The corresponding optical fields or holograms are represented at the appropriate planes.

slit, which we do not want to transmit any light, is
encoded with a “checkerboard” pattern. By assigning
alternating sets of pixels on LCD; with phase values
that are out of phase by =, the light reflected from the
LCD is scattered from its initial propagation axis
[30-32].

A. Symmetric Superposition of Two Bessel Beams

The first three digital holograms, represented in the
first column of Fig. 3, consist of a ring slit separated
into two ring slits possessing azimuthal phases of
equal order but opposite handedness (i.e., /jpper = 3
and /e, = —3). However, the widths of the two ring
slits differ in Figs. 3(d) and 3(g). This allowed us to
control the weighting of the two Bessel beams and
subsequently set the values of Ay and ¢ in Eq. (1).
The dimensions (in pixels) of the ring slits in
Fig. 3 are (a) r; =173, ro = 188, Ar;, Ary = 15;

d r=173, ry,=188, Ari=7, Ary=23;
(g)r; = 173,ry = 188, Ar; = 23, Ary = 7. In the case
that LCD; was encoded with two ring slits where the
orders of the two azimuthal phases were of equal but
opposite handedness, a “petal” structure was pro-
duced, where the number of “petals” is denoted by
2|l| [Figs. 3(b) and 3(c)], as expected from theory
[28]. In the following two cases [Figs. 3(d) and 3(g)],
the two ring slits had slightly different areas, result-
ing in the energy contained in the two Bessel beams
being of slightly different weightings. In Figs. 3(e)
and 3(f), the [ = -3 order Bessel beam is heavily
weighted by increasing the area of the outer ring slit,
giving rise to a “smearing” of the “petals” as the [ =
-3 order Bessel beam dominants the optical field. Si-
milarly, this is also evident in the case of Figs. 3(h)
and 3(i), where the ! = 3 order Bessel beam is heavily
weighted by increasing the area of the inner ring slit.

Fig. 3.

(Color online) Digital ring slits [first column—(a), (d), (g)] and the corresponding experimentally produced fields in the Fourier

plane [second column—(b), (e), (h)] accompanied by theoretically calculated fields [third column—(c), (f), (i)]. The ten white dots in (c)
denote the radial positions of each of the ten ring slits used in the match filters.
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The resulting superposition field, formed at the fo-
cal plane of L, was magnified with a 10x objective,
04, and directed to the LCD of the second SLM,
LCD,. A pop-up mirror, PM;, was used to direct the
field at the plane of LCDy so as to be recorded on
CCD; (Spiricon, LBA-FW-SCOR-7350115), so that
the radial positions within the optical field could
be quantitatively measured. LCD,, programmed
with a match filter, exp(-in6), together with lens Ly,
was used to perform the inner product of the incom-
ing field with the match filter given in Eq. (7). The
match filter, also programmed as a digital hologram,
consists of a single ring slit which also makes use of
the “checkerboard” pattern. Since the match filter is
programmed digitally, the radius of the ring slit, as
well as the azimuthal phase within the ring slit, can
be easily varied. This dynamical aspect of the SLM
allows us to radially locate where in the optical field
we wish to make a measurement of the OAM density.
In this paper, the match filters consist of ring slits
having 10 different radii [r; = 75, ro = 110, r3 =
145, ry = 180, r5 = 215, rg = 250, ry = 285, rg =
320, rg = 355, and rig = 390 (given in pixels), each
consisting of a width of 20 pixels], where the phase
within the rings, n, varied as the complex conjugate
of the azimuthal modes present in the incoming op-
tical field. The location of the ten radial positions in
the optical field is illustrated in Fig. 3(c). Because
LCD, was orientated as the mirror image of LCD,
in our experimental setup, the complex conjugate
of the azimuthal mode index, n, on LCD; is equiva-
lent to n on LCD,. If the reader wishes to orientate
the experimental setup differently, such that the two
SLMs have the same orientation (i.e., are not mirror
images of each other), the complex conjugate of the
azimuthal mode index, n, on LCD; is then equivalent
to —n on LCDy. The OAM density for a particular ra-
dial position can then be measured directly from
Egs. (15) and (24) by measuring the on-axis intensity
of the inner product.

In determining the OAM density for the first three
optical fields, denoted experimentally in the second
column of Fig. 3, the intensity at the origin of the re-
sulting field at the Fourier plane of L, was measured
with a CCD camera, CCD,, for each of the match fil-
ters and substituted into Eq. (15) or (24). The mea-
sured OAM densities as a function of the radial
position for the first three optical fields are given
in Fig. 4.

In Fig. 4(a), since the incoming optical field con-
sists of an equal weighting of /i ., = 3 and [ ey =
-3 order Bessel beams [Fig. 3(b)], the OAM density
represented in the x—y plane consists of evenly sized
concentric rings of positive and negative OAM. This
is also evident in the radial cross-sectional profile of
the OAM density in Fig. 4(b). The OAM density os-
cillates evenly around a value of zero. In the follow-
ing two cases, where [ ., =—-3(+3) is heavily
weighted, the OAM is predominantly negative (posi-
tive) and is evident in Fig. 4(d) [(f)]. This is also evi-
dent in Fig. 4(c) [(e)], where the OAM density exists

predominantly in the negative (positive) quadrant of
the graph.

A theoretical error band for the OAM density was
obtained by determining the minimum and maxi-
mum values for the OAM density when the inner
and outer radii of the ring slit in the match filters
were displaced by half the width of the ring slit
(i.e., 10 pixels). The error is so small that the error
bands lie on top of one another and are not evident
in the graphs. The experimental x error bar is given
by a displacement of the ring slit in the match filter
by half of its width, and so the absolute x error is
80 um (10 pixels x 8 um). We narrowed the error in
experimentally measuring the on-axis intensity of
the inner product to three factors: (1) human error
in selecting the on-axis intensity of the inner product
on CCDy, (2) the positioning of CCDy in the Fourier
pane of Ly, and (3) an adjustment of the ring slit (by
half of its width) in the match filter on LCDy. An
aperture having a diameter of 10 pixels was posi-
tioned around the on-axis intensity on CCDy, and
the percentage error for the total energy within the
aperture when it was moved 7 pixels from the center
was included in the experimental error for the OAM
density. The second error measurement involved
measuring the percentage error for the on-axis inten-
sity when CCD, was positioned 1 mm before and
1 mm after the Fourier plane of L,. Finally, the last
error measurement in the OAM density involved
measuring the percentage error in the measured in-
tensity when the radius of the ring slit on LCD, was
either decreased or increased by half of the ring slit
width. All of these aforementioned errors were mea-
sured and included in all the measurements.

B. Nonsymmetric Superposition of Two Bessel Beams

The fourth digital ring slit [Fig. 5(a)] consists of two
ring slits having azimuthal phases /., = 3 and
louter = —4, which is an example of a nonsymmetric
superposition [described mathematically in Eq. (19)].
The dimensions (in pixels) of the ring slits in Fig. 5(a)
arer; = 173, ro = 188, Ary, and Ary = 15. The field
produced [Fig. 5(b)] is in good agreement with the
theoretically calculated field [Fig. 5(c)] and consists
of a “petal” structure, where the number of “petals”
is given by |linner| + llouter (1-€., 7 petals, for this case).
The field has a global OAM of -1% (3A + —-4#), and
therefore the OAM density is mostly negative ra-
dially across the field, as is evident in both Figs. 5(d)
and 5(e). In a nonsymmetric superposition, the OAM
density is not symmetric in the optical field, as is
evident in Fig. 5(e). Since the OAM density is not
uniform in all radial directions of the optical field,
the OAM density plotted in Fig. 5(d) is not for a par-
ticular angular point in the optical field, but instead
an average over all angular positions.

C. Nonsymmetric Superposition of Three Bessel Beams

The fifth digital hologram [Fig. 6(a)] is divided
into three ring slits having the following azimuthal
phase variations: lipner = =3, Imiddle = 2, louter = 1,
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producing a nonsymmetric superposition. The di-  Ars = 10. Even though one cannot intuitively predict
mensions (in pixels) of the ring slits in Fig. 6(a) how the field will manifest in the Fourier plane,
are r; =170, ro = 180, r3 =190, Ar;, Ary, and our experimental field [Fig. 6(b)] is in very good

6.0 (d)

40 -P {4
2.0 - F
A

0.0 1 1 1 1 ! I

iy
(e)/ RN N\

6.0+ / \

N\~

g

1
(=
-2.0

-4.0 4

OAM density (x 10 Ns/m?)

T T T T T T 1

T T
-05 00 05 1.0 15 20 25 30 35 40
r(mm)

Fig. 5. (Color online) (a) Digital hologram used to generate (b) the experimental field; (c) the theoretical field. A magnification of the ring
slitis given as an inset in (a). (d) The theoretical (blue curve) and experimentally measured (red points) OAM density. (e) A plot of the OAM
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agreement with the theoretically calculated field
[Fig. 6(c)]. Since the ring slits are equally weighted
and the azimuthal mode indices of the ring slits
[Fig. 6(a)] sum to zero, the global OAM is zero, giving
rise to the OAM density existing equally in both the
negative and positive quadrants for the OAM density
across the radial direction of the field, as is evident in
Figs. 6(d) and 6(e). The OAM density is not uniform
in all radial directions of the optical field [evident in
Fig. 6(e)], and so the OAM density plotted in Fig. 6(d)
is an average over all angular positions.

D. Nonsymmetric Superposition of Four Bessel Beams

A similar behavior is noted in the last optical field,
whose digital hologram is depicted in Fig. 7(a).
The ring slits have the following azimuthal mode in-
dices: linper = =2, Imiddle = =1, Imiddie2 = 2, louter = 1,
which too sum to zero, and the physical dimensions
(in pixels) are r; = 169, ry = 176, r3 = 183, r, = 190,
Ary, Ary, Ars, and Ary = 7. Since the global OAM is
zero, the OAM density exists equally in both the
negative and positive quadrants, as is evident in

Figs. 7(d) and 7(e). Once again, the OAM density is
not uniform in all radial directions of the optical field
[evident in Fig. 7(e)], and so the OAM density plotted
in Fig. 7(d) is an average over all angular positions.

For the six cases presented above, the on-axis in-
tensity recorded at CCD, for each of the match filters
(varying in ring slit radius and azimuthal order) was
measured and analyzed using the results obtained
from Egs. (4) and (5). From all six plots, it is evident
that there is very good agreement between the ex-
perimentally measured OAM density values and
those calculated theoretically. For the first time, to
the best of our knowledge, the OAM density has been
measured as a quantitative value and represented as
the angular momentum per unit volume, Ns/m?, by
implementing an extremely simple measurement
technique.

4. Conclusion

We have derived expressions for the OAM density for
symmetric and nonsymmetric optical fields theoreti-
cally and made a direct comparison experimentally.
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A simple technique for making such measurements
of the OAM density in optical fields is tested on
superimposed nondiffracting higher-order Bessel
beams. However, the presented measurement techni-
que can be used on any optical field carrying OAM.
We obtain quantitative measurements, expressed as
the angular momentum per unit volume, Ns/m?, for
the OAM density as a function of the radial position
in both symmetric and nonsymmetric optical fields,
illustrating good agreement with the theoretical pre-
diction. We find that the OAM density can be made to
oscillate from positive to negative by appropriately
adjusting the widths of the ring slits or the azimuthal
orders within the ring slits, making it an ideal tool in
the field of optical trapping and tweezing. Measuring
the OAM spectrum of fields has direct relevance in
the optical control of flow in microfluidic devices
and in constructing optically driven micromachines
and parallel molecular or cell assays.

Appendix A

The following proof illustrates that the ¢-component
of the Poynting vector, S, is a linear operator. We
start with the equation for S ,:

gowc?i
T4

S, wVu* —-u*Vu), (A1)

where u is the optical field described in Eq. (1).
u* can be written in terms of u as follows:
u+u* =Ay(J; exp(iAkz) exp(il)

+ agd_; exp(—iAkz) exp(-ild))
+ Ay (J; exp(—iAkz) exp(-ild)
+ agd_; exp(iAkz) exp(il0))
u+u* = Agd; + Agagd_;)2 cos(Akz + 16)
2A(J; + agd ;) cos(Akz + 16)
X

- u*

(A2)

_u’

where for convenience we have left the terms not
involving u as X.
Substituting u* into Eq. (Al) results in

S, xuVu* —u*Vu xuVX -u) - (X -u)Vu
xuVX -uVu-XVu +uVu xuVX -XVu,
(A3)

which is a linear operator, ie., Sy(u;+up) =
S;(uq) +S,(uz). Thus, the linear momentum (in
the azimuthal coordinate) from the Poynting vector
of a sum of fields is equal to the sum of the linear
momentums of each individual field.
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