
Distributed Fingerprint Enhancement on a Multicore Cluster

N.P. Khanyile1, J.-R. Tapamo2, and E. Dube2
1Council for Scientific and Industrial Research; University of KwaZulu-Natal, South Africa

2University of KwaZulu-Natal, South Africa / Council for Scientific and Industrial Research, South Africa

Abstract— Fingerprint enhancement is a crucial step in
fingerprint recognition. The accuracy of the recognition
algorithm directly depends on the accurate extraction of
features which is achieved through a series of image en-
hancement steps. Unfortunately, the fingerprint enhancement
process consists of a series of computationally expensive
image processing techniques. This results in slow recognition
algorithms. Researchers have examined ways of improv-
ing the performance of fingerprint enhancement algorithms
through parallel processing. The majority of such techniques
are architecture- or machine-specific and do not port well
other platforms. We propose a cheaper and portable al-
ternative through the utilization of mixed-mode distributed
and parallel algorithms that make use of multicore clusters
for processing strength. We tackle a few design concerns
encountered when distributing image processing operations.
One such concern is dealing with pixels along the borders
of the partitioning axis. The other is distributing data that
needs to be processed in blocks rather than pixel-wise.

Keywords: Fingerprint enhancement, SPMD, MPI, boundary
pixels, parallel I/O

1. Introduction
Fingerprint recognition is the most used biometric tech-

nique in the commercial industry and crime forensics. Fin-
gerprints are a highly universal and unique trait. A finger-
print pattern is made up of ridges and valleys. The chaotic
way in which these ridge and valley structures are formed
makes them unique to each individual, including identical
twins. Latent prints are easily and unintentionally left behind
on surface contact which makes them well adapted for
crime scene forensics. The fingerprint recognition process
can be fully automated by Automatic Fingerprint Iden-
tification Systems (AFIS). The process includes sensing
and acquisition; fingerprint enhancement; feature extraction;
matching and final reject/accept decision. Of these steps,
image enhancement is very crucial yet very computationally
expensive. Sensing devices rarely produce perfect ready for
use input images. Images are often corrupted by noise and
by variations in fingerprint impression conditions. Image
enhancement helps remove the effect of these corruptions
and makes minutiae more visible to facilitate the subsequent
feature extraction. The enhancement procedure takes in an
input image and divides it into two categories - recoverable

and unrecoverable region. The recoverable regions are well-
defined or slightly corrupted but visible and can be recovered
by using the neighbouring regions to predict their true
structure. Unrecoverable regions are corrupted to an extent
that the ridge structure is not visible and neighbouring
regions do not provide sufficient information to predict their
structure [1].

The rest of the paper is structured as follows: Section 2
gives a brief background to concepts discussed in this paper.
Section 3 discusses the data layout and memory distribution.
Section 4 gives the algorithms description, while Section 5
introduces ways to deal with boundary pixels. Section 6
presents the performance analysis and Section 7 is devoted
to conclusions and future works.

2. Background
2.1 Fingerprint Enhancement

Fingerprint enhancement improves the quality of recov-
erable regions and removes the unrecoverable regions. The
main stages in fingerprint enhancement include normaliza-
tion, mask region generation, ridge orientation estimation,
ridge frequency estimation and ridge filtering [1]-[6].

Normalization is a global operation that adjusts data to fit
a certain acceptable region. Subjects rarely present a trait in
exactly the same way. There often are variations in impres-
sion condition, including dryness of skin, uneven pressure
on the scanner surface, etc. Normalization standardizes the
intensity of each pixel to lie within a required range. This
process reduces the effects of variations that occur during
acquisition and reduces chances of false rejections. The mask
region generation process segments a normalized image into
recoverable and unrecoverable regions per processing block.
The mask is then used to separate the Region Of Interest
(ROI) from the rest of the image. Hong et al [1] use the
amplitude, frequency and variance of each block centered at
pixel (i, j) to characterize a sinusoidal-shape wave into the
two regions.

Fingerprint patterns are regarded as oriented texture pat-
terns [1], [4]. An orientation image is made up of directional
vectors estimated from a normalized image which represent
the orientation of local ridges [2]. Numerous techniques
exist which can be used to estimate the local orientation of
an image [1]-[5], [7]-[9]. The method of averaging square
gradients of the gradient covariance matrix seems to be
the most widely used approach [1], [2], [7], [8], [10],



[11]. Hong et al use this approach to compute gradients
of the normalized image. These gradients are then used in
the least mean square orientation estimation algorithm. An
image is divided into W ×W non-overlapping blocks then
gradients are computed for each block using a Sobel or Marr-
Hildreth operator. For each block, an orientation vector is
derived by averaging all vectors orthogonal to the x and
y gradients. These orientation vectors may not always be
accurate due to corruptions and noise. To account for these
corruptions, a low-pass filter is used to tune incorrect local
ridge orientations on a continuous vector field equivalent to
the orientation field [1].

Frequency estimation is a block-wise operation which
determines the local frequency of ridges along a direction
normal to the local ridge orientation [1]. The frequency
estimation procedure requires a normalized image which
is divided into W × W blocks. A frequency estimation
algorithm used by Hong et al [1] computes oriented windows
of size L × W for each block. These oriented windows
are used to compute x-signatures, defined in [2] as the
projection of gray-level values from the oriented window
to the ridge orientation along an orthogonal direction. The
x-signatures of windows without singularities and minutiae
form sinusoidal-shape waves with the same frequency as the
ridges in the oriented window. Thus the frequency of ridges
can be directly estimated from consecutive x-signatures by
calculating the distance between their wavelengths[1].

Gabor filters are bandpass filters that have frequency-
selective and orientation-selective properties. Thus the suc-
cess of the filtering stage of fingerprint enhancement relies
on the accurate construction of the orientation field and ridge
frequency from the previous stages for parameter tuning.
As mentioned earlier, fingerprint patterns are essentially
oriented texture patterns. This property together with the
ability to estimate local ridge frequency makes Gabor filters
ideal for fingerprint filtering as the orientation and frequency
parameters of Gabor filters can be tuned to match the local
ridge orientation and frequency [2].

Some of the techniques discussed above can be com-
putationally expensive. Researchers are continually looking
for ways to improve the processing of the enhancement
algorithms [12], [3], [13]. This paper has distributed the
process of fingerprint enhancement using a Single Program
Multiple Data (SPMD) parallel programming model. Images
are split up and assigned to different processing elements
which then perform the enhancement techniques on their
respective regions of an image.

2.2 Distributed and Parallel Processing
Most traditional software has been written for serial com-

putation. These algorithms work by executing a serial stream
of instructions. No two instructions may execute at the
same time. As one might deduce, this style of programming

produces slow software. When execution time is key in a
software, a parallel implementation is preferred.

Parallel programming is a form of programming in which
many computations are carried out simultaneously. A large
problem is divided into smaller subproblems which are
solved concurrently. Parallel computers are classified accord-
ing to the level at which their hardware supports parallelism.
Multi-core systems are single stand alone machines which
comprise of multiple processing elements. Clusters, MPPs
and grids use multiple computers to complete a task.

Distributed Programming divides a task into several sub-
tasks which are executed concurrently by different process-
ing nodes. A distributed system is made up of a collection of
autonomous computers that communicate through a network.
The main difference between parallel and distributed systems
lies in the memory usage. Parallel systems are usually
referred to as shared memory systems. All processors access
shared memory for their I/O operations. The shared memory
can be used to pass information between processors.

Distributed systems on the other hand use local memory.
Each processor reads and writes to its own private memory.
Information is passed between processors using a technique
known as message passing. Message passing provides a way
for computing nodes to share information. A few message
passing paradigms exist, including PVM and MPI. In this
paper, implementations were performed using MPI. This
paper uses a mixed-mode distributed and parallel processing
model. MPI is used for coarse-grain across processor par-
allelism with OpenMP threads for fine-grain intra-processor
parallelism.

2.3 MPI
MPI is a message-passing paradigm used to primarily ad-

dress the message-passing in parallel programming models.
It allows for efficient communication between processors by
avoiding memory-to-memory copying, allowing overlaps in
computation and communication [14]. This research uses
Open MPI 1.4.2 which is an open source MPI-2 implementa-
tion. MPI provides hardware abstraction, hence code written
in MPI is portable and can be run on heterogeneous systems.
Processors can only read and write to their local memory.
Communication between processes, although crucial is an
expensive operation, as such it must be kept at a minimum
[14].

2.4 OpenMP
OpenMP is an open specification for multiprocessing. It

is a shared memory programming model which is normally
used for fine-grain parallelism. OpenMP does not provide
message passing capability which makes it inappropriate
for distributed processing on clusters. The parallelism on
OpenMP is explicit, allowing the user control over the
parallelization. OpenMP threads share the same address



space, however, each thread has its own private memory,
but sees the global memory.

3. Distributed Memory Model and Data
Layout

Most fingerprint enhancement techniques operate in a
block-wise manner as opposed to pixel-wise. This makes
distributing the data a slightly more complex. There is a
need to ensure that all partitions are in multiples of the
processing block size. Let I be an N ×M gray scale image
and np be the number of processors. Let us show how the
data is distributed when a processing block of size W ×W
is used.

The remainder theorem states that if r, d ε N with d > 0,
then ∀a ∈ R, ∃q ε N such that:

a = qd+ r (1)

where 0 ≤ r < d. Let N ′ be the number of columns on each
processor. We can express ( Nnp )/W in terms of equation (2):

N

np
= qW + r (2)

The difference between the integer r and window size W
represents the number columns that each processor needs to
add to N

np in order to have local columns that are a multiple
of W . Hence:

N ′ =
N

np
+ (W − r) (3)

This ensures that the partitions are in multiples of W so
that no pixels are left unprocessed. The image is split into
np sub-images of size N ′ × M , each operated on by its
respective processor. MPI offers parallel I/O, where each
processor is responsible for its own I/O operations. Parallel
I/O allows computations and I/O operations to overlap.
This increases performance as it reduces chances of idle
processors which are waiting on I/O operations in order
to continue processing. Idle processors can cause massive
overheads. Fig. 1 illustrates parallel I/O. The image is split
up and assigned to different processors. Each processor
works on its own region of the file and writes back the
results to a corresponding region on the output image.Using
parallel I/O leverages performance of a distributed algorithm.
Algorithms with serial I/O where only the master node is
responsible for I/O operations suffer from overhead caused
by idle processors, because while the master is performing
I/O, the rest of the processors are not doing anything. The
enhancement algorithm presented here makes use of parallel
I/O.

Distributed image processing often requires excessive
inter-processor communication in order to access neighbour
information to process boundary pixels for pixel-wise oper-
ations. Communication (message passing) is associated with
large amounts of overhead, and should be kept at minimum.

Fig. 1: Parallel input/output diagram showing how I/O is
performed by the algorithm.

4. Image Enhancement Algorithm De-
scription

The fingerprint enhancement algorithm takes in a raw
gray-scale digital image as input, applies a series of steps
then finally outputs a thinned binary image ready for feature
extraction. This algorithm follows a sequence: Normaliza-
tion; Mask region estimation; Orientation field estimation;
Ridge frequency estimation; Ridge filtering; Binarization;
Ridge thinning. All these operations are block-wise op-
erations with an exception of normalization, binarization
and thinning which are pixel-wise operations. In order to
facilitate thinning which is a pixel-wise operation depending
on neighbour data, two solutions overlap the data across
processors, while the third solution depends on message
passing. Since the block-wise operation require the sub-
images to be in multiples of processing windows, we have
to overlap the window containing the boundary pixels for
all processors. This facilitates the two overlapping solutions
discussed in sections 5.2 and 5.3.

Fig. 2: Data overlapped along processor boundaries. Each
overlap portion is of size W ×M in order to ensure that the
overall sub-image sizes are in multiples of processing block
sizes

We thus modify the initial sub-image size of N ′ ×M to
add ghost cells of size W ×M which gives new sub-image
size of (N ′ + W ) ×M . For notation simplicity we assign
N ′ = N ′+W . Fig. 2 shows the decomposition graphically.

4.1 Normalization
We employ the technique used by Hong et al [1] to

perform normalization. For a gray-scale partial image Ip,
we denote Mp as the estimated mean and V ARp as the



estimated variance. A normalized pixel is computed as
follows:

Np(i, j) =

 M0 +
√

V AR0(Ip(i,j)−Mp)2

V ARp
if Ip(i, j) > Mp

M0 −
√

V AR0(Ip(i,j)−Mp)2

V ARp
otherwise

(4)
where M0 and V AR0 represent the desired mean and

variance, respectively. M0 and V AR0 have values 0 and
1, respectively. The reason we give the mean and variance
these values is because we use a Gaussian function that has
a standardized normal distribution.

4.2 Mask Region Estimation
Masking is a type of segmentation that assigns a block

to either recoverable or unrecoverable region. Segmentation
is an image processing technique which separates strong
correlated parts of the image into regions [15]. We use
thresholding to segment the image into the two regions.
Thresholding transforms an input gray-scale image to a
binary image with intensity value 1 representing recoverable
regions and intensity value 0 representing unrecoverable
regions. We make use of only the standard deviations of the
normalized image to estimate the mask. Standard deviations
are computed for each block, and if they fall below a given
threshold the block is assigned to unrecoverable region,
otherwise it is assigned to recoverable. From the mask
image, the ROI can be constructed by removing all the
unrecoverable regions in the mask from the normalized
image.

4.3 Ridge Orientation Estimation
We estimate the local orientation of pixels per block.

Fig. 3 shows an example of a ridge orientation at pixel
(i, j). The orientation estimation is a prerequisite step for
fingerprint filtering, as Gabor filtering relies on accurate local
orientation to work correctly.

Fig. 3: Orientation of a ridge at pixel (i, j)

Each processor divides its sub-image into W ×W blocks.
Then each block computes the x and y directional gradients
Gpx(i, j) and Gpy(i, j). To compute these gradients, we use
first order derivative of a gaussian function. The gradient
sub-image is given by the vector:

5Gp(i, j) = [Gpx(i, j), Gpy(i, j)]T (5)

The gradient vectors are estimated using Cartesian coor-
dinates. After which they are converted to polar coordinates
in order to obtain double angles and squared lengths[

Gpρ

Gpφ

]
=

[√
(Gpx)2 + (Gpy)2

tan−1 Gpy
Gpx

]
(6)

with − 1
2π ≤ Gpφ ≤

1
2π. When these are obtained, the

gradient vectors are squared and expressed in terms of the
double angles. Using trigonometric identities, the vectors are
expressed as follows:[

(Gpρ)2 cos 2Gpφ)

(Gpρ)2 sin 2Gpφ)

]
=

[
(Gpρ)2(cos2 Gpφ − sin2 Gpφ)

(Gpρ)2(2 sinGpφ cosGpφ)

]
=
[

(Gpx)2 − (Gpy)2

2GpxG
p
y

]
(7)

The square gradients are then averaged to obtain:[∑
W [(Gpx)2 − (Gpy)2]∑

W 2GpxG
p
y

]
=

[
Gpxx −Gpyy

2Gpxy

]
(8)

This gives the variances and crosscovariance of Gpx and
Gpy averaged over a block of size W ×W . To obtain the
orientation field we divide the average square gradients by
the absolute values of the squared gradients.∣∣∣∣∣∑

W

((Gpx)2, (Gpy)2)

∣∣∣∣∣ =
√

(Gpxx −G2
yy)2 + (2Gpxy)2 (9)

The detailed derivations of some of these equations can be
obtained from [8]. The local orientation of the block centered
at pixel (i, j) can then be estimated by (Φpx(i, j),Φpy(i, j))
in the following manner:

Φpx(i, j) =
Gpxx −Gpyy√

(2Gpxy)2 + (Gpxx −Gpyy)2
(10)

Φpy(i, j) =
2Gpxy√

(2Gpxy)2 + (Gpxx −Gpyy)2
(11)

The orientation field is smoothed using a low-pass Gaus-
sian filter to reduce possible effects of noise. The field is
filtered as follows:

Φ′px (i, j) =

wΦ
2∑

u=−wΦ
2

wΦ
2∑

u=−wΦ
2

=(u, v)Φpx(i− uw)(j − vw)

(12)

Φ′py (i, j) =

wΦ
2∑

u=−wΦ
2

wΦ
2∑

u=−wΦ
2

=(u, v)Φpy(i− uw)(j − vw)

(13)
where = denotes a Gaussian low-pass filter of size wΦ ×

wΦ. The final orientation sub-image image is given by:

Op(i, j) =
π + tan−1(

Φ′px (i,j)

Φ′py (i,j)
)

2
(14)



4.4 Frequency Estimation
We use the approach given by Hong et al to perform

local ridge frequency estimation. The x-signature signals
form discrete sinusoidal-shape waves which consists of the
same frequencies as ridges in the oriented window. This can
be used to directly estimate the local ridge frequencies by
averaging the number of pixels between the wavelengths,
denoted as τ(i, j). The ridge frequency Fp for a block
centered at pixel (i, j) is thus computed as:

Fp(i, j) =
1

τ(i, j)
(15)

Corrupted blocks and ones that contain singularities and
minutiae do not form well-defined sinusoidal-shape waves.
For such blocks, an estimation for Fp is interpolated from
neighbouring blocks [1].

4.5 Ridge Filtering
Gabor filters are used to remove noise and preserve the

true ridge structure. The following is an even-symmetric
Gabor filter given by a cosine wave modulated by Gaussian
[2]:

H(x, y; θ, f) = exp

{
−1

2

[
x2
θ

σ2
x

+
y2
θ

σ2
y

]}
, (16)

xθ = x cos θ + y sin θ, (17)

yθ = −x sin θ + y cos θ (18)

where θ is the orientation of a Gabor filter, f is the
frequency cosine wave, σx and σy are standard deviations of
the Gaussian envelope along the x and y axes, respectively.
In order for a Gabor filter to convolute a pixel (i, j) belong-
ing to processor p, it requires the corresponding orientation
pixel Op(i, j) and frequency pixel Fp(i, j) of that pixel. The
enhanced pixel, Ep(i, j), is computed as follows:

Ep(i, j) =

wx
2∑

u=−wx
2

wy
2∑

v=−
wy
2

G(u, v;Op(i, j), Fp(i, j))(Np(i− u, j − v))

(19)

where G denotes a Gabor filter and Np denotes the normal-
ized fingerprint sub-image of processor p, and wx and wy are
the width and height of the Gabor mask, respectively. Hong
et al fixes both σx and σy to 4.0. This becomes problematic
when there are variations in the value of a ridge frequency.
It can lead to non-uniform enhancement [2]. Raymond [2]
used the values σx and σy such that they are dependent on
the ridge frequency parameter.

σx = kxFp(i, j), (20)

σy = kyFp(i, j), (21)

where kx and ky are some constant variables. In order
to accommodate Gabor waveforms of different sized band-
widths, [2] set the filter size to depend on standard deviations
parameters

wx = 6σx, (22)

wy = 6σy (23)

where wx and wy are the width and height of the Gabor
filter mask, and σx and σy are the standard deviations of the
Gaussian envelope along the x and y axis, respectively.

4.6 Binarization
Binarization is a pixel-wise operation which converts a

gray-scale fingerprint image into a binary image with 1-
valued pixels representing ridges and 0-valued pixels rep-
resenting the valleys. The gabor filters used to enhance the
fingerprint images have DC-balanced waveforms resulting in
filtered images with zero mean pixel values [2]. Binarization
is achieved through the thresholding technique described in
earlier sections. The mean value of 0 is used as the global
threshold to transform the sub-image Ep into binarized sub-
image Bp as follows:

Bp(i, j) =

{
1 if Ep(i, j) > 0
0 otherwise (24)

where Bp is the binary sub-image of processor p and Ep
is the filtered sub-image.

4.7 Thinning
Thinning reduces the binarized images to unit width skele-

tons. This reduces the amount of data the minutiae extractor
has to process and helps to make critical features such as
bifurcations, lakes and ridge endings more visible and easier
to extract. Thinning is a pixel-wise operation which requires
neighbouring pixel values to make a decision about the
deletion of a particular pixel. The thinning algorithm used
in this paper is based on work presented on [16].

I/O occurs only twice in the algorithm presented on this
paper; when the raw image is first read, and at the end
of thinning. Since thinning is a pixel-wise operation which
relies on neighbour data, extra care has to be taken when
performing thinning and I/O. Pixels along the partitioning
axis do not have access to their neighbouring pixels and
hence can not be correctly processed. There are two ways
around this:

1) Inter-processor communication to exchange boundary
pixels (known as halo exchange)

2) Overlapping processor data along the boundaries



5. Dealing With Boundary Pixels
Distributed image processing algorithms are required to

provide a way in which the boundary pixels can access
their neighbouring processors boundary data, as it becomes
impossible to process a pixel without knowledge of its
neighbouring pixels.

Fig. 4: (a) Boundary pixels between P1 and P2 (b) Example
of an image processed disregarding neighbour data

Fig. 4 shows an example of a connected component being
partitioned. Boundary pixel p according to processor P1 has
a total value of one 1-valued neighbours, which by definition
of the thinning algorithm on Section 4.7 entails that p is
a ridge ending pixel. This means p will be treated as an
endpoint and preserved even though when we look at P2
we see it is in fact not a ridge ending. Kwok [17] defined
different contour configurations at the borders of the sections
by using chain code representations for border pixels. The
configurations help preserve connectivity of components
along the borders. In order to access neighbouring processor
boundary data, a communication channel may need to be
established between the processors which is often expensive.
As an alternative, processors may be allowed overlapping
access to boundary data. The image is partitioned into subar-
rays which are then assigned to different processing nodes.
In order for boundary pixels to access their neighbouring
pixels, processors need to overlap data along boundaries or
use message passing to share data. The overlapped areas of
subarrays are usually referred to as ghost cells.

Whenever more than one processor access the same file
region for a read and write operation, we often run into nasty
racing conditions. Data race occurs when a processor writes
to a file region that has not yet been read by all processors
that are required to read before any write, or when processors
interleave their write operations. This can lead to disastrous
results. It is for this reason that MPI requires a developer
to enforce operational atomicity. Consider a scenario where
column-wise overlapping data is being written to a file. If
the write operation is not atomic, it might be interleaved
and since processors arrive at their write operations in any
arbitrary order, it is impossible to know before hand which
processor will write after which. This could result in a

final solution that does not reflect the actual computation
configuration.

The next three subsections present some solutions to
dealing with boundary pixels.

5.1 Halo Exchange
In order to process boundary pixels, neighbouring pro-

cessors establish communication along the boundaries. A
processor is allocated extra memory along the boundaries
known as ghost cells. These are used to store data from
neighbouring processors, which is used only for computa-
tional purposes.

Performing a halo exchange consists of processing nodes
sharing their data with their neighbouring processors through
message passing. A halo exchange is quite an expensive
operation which is unscalable. Increasing the number of
processors increases the number of communication nodes.
Communication often incurs a large overhead which needs
to be minimized. Direct memory access is easier to use than
message passing. With message passing, processors must
agree to communicate. Each processor must first send its
buffers and then wait for the corresponding buffers to arrive
from neighbouring processors [18].

Fig. 5: Halo exchange between three processes

Fig. 5 shows a diagram of 3 processors engaging in a
halo exchange. Each processor maintains a ghost cell which
will accommodate its neighbours’ boundary subarrays. The
ghost cells are updated using MPI send/recv prior to any
processing.

5.2 File locking
The most naive way to dealing with overlaps is enforcing

explicit file locks in order to grant processors exclusive
access to overlaps. This can be achieved though the use
of mutual exclusion synchronization. When a processor
is operating on its region of the file, no other processor
can operate on that region. Partitioning data in a column-
wise manner leads to noncontiguous data access patterns,
making file locking very inefficient. Locking a file region
while using this type of partition ultimately locks the entire
file, resulting in completely serialized I/O operations which
renders MPI parallel I/O useless. Idle processors cause quite



a large overhead while waiting on the operating processor to
complete its write operation. The solution presented in the
next subsection discusses a way around this.

5.3 Process-Rank Ordering
This third approach to dealing with boundary pixels is

based on a strategy termed by Liao et al [19] as process-
rank ordering. The processors are granted priority levels
to be used to give them exclusive access to overlapped
data. The higher ranked processor wins when an overlap
is encountered. Lower ranked processors then must modify
their requests by subtracting the overlaps. Data resulting in
overlaps will only be written by the processor with the higher
rank. This effectively eliminates all overlaps and achieves
atomicity. The overhead in rank ordering is the cost of re-
generating access regions for all processors [19].

Fig. 6: Overlapped data access using process-rack ordering
(adapted from [19])

Fig. 6 shows a graphical view of the file views resulting
from process-rank ordering. A file view for processor Pi (0 <
i < j), is an M ×N ′ subarray and the file view for P0 and
Pj are M×(N ′−W ) and M×(N ′+W ), respectively. Since
each processor surrenders its write to the rightmost column,
all overlaps are removed and MPI atomicity is maintained.

6. Experimental Results
6.1 System Configuration

The system used for experiments has the following spec-
ifications:
—————————————
-Model: SuperMicro
-Filesystem : GPFS
-Network : Gigabit Infiniband
-CPU Cores : 80
-CPU Model : Intel Xeon
-CPU Speed : 2.4 GHz
-Peak Performance : 16 TFlops
—————————————

6.2 Data Set and Performance Analysis
Fig. 7 shows the outputs of the enhancement algo-

rithm.[Note: I/O is only performed twice, these output
images are only for experimental purposes]. Here the image
has been normalized, masked, segmented, oriented, filtered

Fig. 7: (a) Original image (b)Normalized image (c) Ori-
entation field (d) Filtered binarized image (e) Final output
thinned image (f) Minutiae extracted from the thinned image

Fig. 8: Expected results vs. actual execution time

and thinned. From here the image is ready for minutiae
extraction. The CASIA fingerprint database version 5.0 was
used for testing.

Fig. 8 shows the averaged performance of the algorithm
tested on 60 images. The expected performance according
to Amdahl’s law and Sun-Chen’s [20] fixed-time model
is plotted against the actual observed performance. While
Amdahl’s model under-estimates the performance gain with
an average error of 19.33, Sun-Chen’s model over-estimates
it with an error of 35.73. The reason behind this is that Sun-
Chen’s model is for non-distributed multicore systems and
thus does not take into account the cost of message passing.
While Amdahl’s law on the under hand works under the
assumption that parallel processing is unscalable [21].



Fig. 9 shows the total execution time separated into actual
computation plus communication time. Total communication
is affected by network factors along with the frequency and
size of messages. We chose to model the halo exchange
communication model as it consists of the largest frequency
of communication and hence represents the upper extreme
of the experiment. It can be seen from the diagram that
the communication cost increases with the increase in the
number of computation nodes. This is one of the main
limitations of distributed processing. While it can provide
great scalability and performance gain, if communication is
not optimized, the total performance is affected.

The distributed algorithm shows promising results, achiev-
ing up to as much as 4.5x speedup. The original Hong et
al algorithm in [1] was executed on a Pentuim 200MHz PC
and achieved a running time of 2.49s on the MSU fingerprint
database. While the hardware implementation given in [22]
achieved a running time of up to 0.742s.

Fig. 9: Experimental results: Total execution time (compu-
tation + communication).

7. Conclusions and Future Works
This research shows a promising cheaper way to im-

prove the scalability of image processing applications and
successfully shows a great improvement of the fingerprint
enhancement algorithm. It shows how boundary pixels on
distributed image processing algorithms can be processed
in order to ensure accurate results without compromising
the performance. The algorithm performs better than the
Amdahl’s law predicted it would, but does not reach the
expectations of Sun-Chen’s model, mainly because of the
rigorous communication that is associated with the algo-
rithm. All processors aside from first and last are required
to send to and receive two arrays from each of their
neighbours. Communication causes large overheads due to
network latency. The more computation nodes one adds, the
more communication needed to complete the halo exchange
process. For future work we plan to manipulate the net-
work latency*bandwidth product in order the increase the

transmission speed and hence improve the communication
performance of the system.

References
[1] L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement:

Algorithm and performance evaluation,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 20, no. 08, pp. 777–789, Aug 1998.

[2] R. Thai, “Fingerprint image enhancement and minutiae extraction,”
Honours Thesis, University of Western Australia, 2003.

[3] T. Nakamura, M. Hirooka, H. Fujiwara, and K. Sumi, “Fingerprint
image enhancement using a parallel ridge filter,” IEEE Proc. Int’l Conf.
Pattern Recognition, vol. 01, no. 08, pp. 536–539, Aug 2004.

[4] N. Ratha and S. C. A. Jain, “Adaptive folw orientation based feature
extraction in fingerprint images,” Pattern Recognition, vol. 28, no. 11,
pp. 1657–1672, 1995.

[5] S. Chikkerur, C. Wu, and V. Govindaraju, “A sys-
tematic approach for feature extraction in fingerprint
images,” Biometric Authentication, 2004. [Online]. Available:
http://www.springerlink.com/index/7a63a3q9qf1p9ttt.pdf

[6] L. Hong, A. Jain, S. Pankanti, and R. Bolle, “Fingerprint enhancement,”
IEEE Workshop on Applications of Computer Vision, pp. 202–207,
1996.

[7] X. Jiang, “On orientation and anisostropy estimation for online finger-
print authentication,” IEEE Trans. Signal Processing, vol. 53, no. 10,
pp. 4038–4049, Oct 2005.

[8] A. Bazen and S. Gerez, “Systematic method for the computation of
the directional fields and singular points of fingerprints,” IEEE Trans.
Pattern Analysis And Mechine Intelligence, vol. 24, no. 07, pp. 905–
919, July 2002.

[9] M. Kass and A. Wikkin, “Analyzing oriented patterns,” Proc. Int’l.
Joint Conf. Artificial Intell., 1985.

[10] A. Almansa and T. Linderberg, “Fingerprint enhancement by shape
adaptation scale-space operator with automatic scale selection,” IEEE
Trans. Image Process., vol. 09, no. 12, pp. 2027–2042, Dec 2000.

[11] A. Jain, D. Prabhakar, and L. Hong, “Filterbank-based fingerprint
matching,” IEEE Trans. Image Process., vol. 09, no. 05, pp. 846–859,
May 2000.

[12] D. Bader, J. JaJa, D. Harwood, and L. Davis, “Parallel algorithm
for image enhancement and segmentation by region growing with an
experimental study,” Proc. 10th Int’l Parallel Processing Symposium,
pp. 414–423, Apr 1996.

[13] N. Ikeda, M. Nakanish, K. Fujii, and T. Hatano, “Fingerprint image
enhancement by pixel-parallel processing,” IEEE Proc. Int’l. Pattern
Recognition. Machine Intell., vol. 03, pp. 752–755, Dec 2002.

[14] M. P. I. Forum, MPI-2.2: A Message Passing Interface Standard, Sep
2009. [Online]. Available: http://www.mpi-forum.org.docs/docs.html

[15] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and
Machine Vision, Interantional Student Edition, 3rd ed. Thompson
Learning.

[16] Z. Guo and R. Hall, “Parallel thinning with two-subiteration algo-
rithms,” Communications of the ACM, vol. 32, pp. 359–373, Mar 1989.

[17] P. Kwok, “Thinning in a distributed environment,” Proc. 6th Euromi-
cro Workshop. Parallel and Distributed processing, pp. 257–263, Jan
1998.

[18] A. Wallcraft, P. Pacheco, and I. Foster. (Last accessed on 23 Aug
2011) Co-array fortran vs MPI. Internet draft. [Online]. Available:
http://www.co-array.org/cafvsmpi.htm

[19] W.-K. Liao, K. Coloma, A. Choudhary, L. Ward, E. Russell, and
N. Pundit, “Scalable design and implementations for MPI parallel over-
lapping I/O,” IEEE Trans. Parallel and Distributed Systems, vol. 17,
no. 11, pp. 1264–1276, Nov 2006.

[20] X.-H. Sun and Y. Chen, “Reevaluating amdahl’s law in the multicore
era,” J. of Parallel and Distributed Computing, vol. 70, pp. 183–188,
2010.

[21] J. Gustafson, “Reevaluating amdahl’s law,” Communications of the
ACM, vol. 31, pp. 532–533, May 1988.

[22] M. Qin, “A fast and low cost simd architecture fingerprint image
enhancement,” MSc Thesis, Technische Universiteit Delft, 2005.


