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An Analytic Model for Predicting the Performance
of Distributed Applications on Multicore Clusters

Nontokozo P. Khanyile, Jules-Raymond Tapamo, and Erick Dube

Abstract—Computationally demanding applications can ben-
efit from distributed processing. Distributed processing offers
immerse computational power from collections of autonomous
systems which can provide up to thousands of processing cores.
Over the years, a considerable amount of research has been
put towards developing performance prediction models for dis-
tributed applications. Amdahl’s law states that the speedup of
any parallel program has an upper bound which is determined
by the amount of time spent on the sequential fraction of the
program, no matter how small and regardless of the number of
processing nodes used. This paper discusses some of the short
comings of this law in the current age. We propose a theoretical
model for predicting the behavior of a distributed algorithm
given the network restrictions of the cluster used. The paper
focuses on the impact of latency and bandwidth which affect
the cost of interprocessor communication and the number of
processing nodes used to predict the performance. The model
shows good accuracy in comparison to Amdahl’s law.

Index Terms—Latency, propagation delay, distributed pro-
gramming, bandwidth, performance.

I. INTRODUCTION

ISTRIBUTED systems are collections of autonomous

computing systems which are connected by some net-
work. These systems work together as one entity to solve
large problems by splitting them up into smaller subproblems
in a divide and conquer manner. The processing time of
algorithms running on distributed systems is calculated as the
total computation time plus the time spent on communication
among the processors. Performance is an important part
of software development. Clients often need to know the
expected performance so that they can make an informed
decision on whether or not to invest in a project. For
developers, performance prediction gives a good idea of how
the system may behave, allowing them to locate possible
bottlenecks from the system before development [1]. Per-
formance prediction methods in literature can be classified
into three categories; analytical [2]-[7], profile-based [8], [9]
and simulation-based [10]-[13]. Analytical methods work by
decomposing an application into an algebraic expression [5]
and model the performance mathematically. Simulators on
the other hand analyze the source code directly, which reliefs
users of the duty of having to analyze lengthy program-
matic features into mathematical models. They characterize
the code and the hardware it is running on and use the
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resulting models collectively to derive the predictive execu-
tion data. Although simulation-based approaches have high
accuracy, they have high computational cost [14]. Existing
simulations-based approaches include MPI-SIM [11], PACE
[15], WARPP [16] and SimOs [12]. Analytical solutions have
the advantage of efficiency over the rest of the prediction
methods, however, it is limited by the fact that many complex
systems are analytically intractable [17].

Amdahl came up with a law for predicting performance
of parallel systems, which has long after been disputed. The
skepticism surrounding Amdahl’s law is over the assertion
that parallel processing is unscalable [2]. Amdahl’s law
stipulates that even when the serial fraction of a problem, say
s, is considerably small, the maximum attainable speedup is
only % even for an infinite number of processing nodes [2].
If s is the time spent by [N processors executing the serial
fraction of the computation time of a program and p is the
time spent executing the parallel portion, then Amdahl’s law
states that the estimated speedup is given by:

Speedup = , with s = 1-p (D

(s + %)

Amdahl’s law assumes that the problem size remains fixed
after parallelization. This, however, is usually not the case. It
has been shown that in practise, parallel processing workload
scales up with the number of processers [2], [3]. Gustafson
[2] discussed the concept of scalable parallel processing
and introduced the scaled-sized model for speedup. When
it comes to parallel processing, Gustafson states that the
parallel portion of the program scales up with the problem
size, while the serial portion, comprised of program loading,
serial bottlenecks and I/O, stays fixed.

Figure 1 plots 5 curves using Amdahl’s law. From the
graph, the assumption that p is independent of N is implicit,
even though this is hardly ever the case [2]. Figure 2 plots
5 curves using Gustafson’s law under conditions identical to
those of Figure 1. The plot shows great scalability without
any upper bounds. Gustafson argued that the workload of
parallel problems scales up with the increase of processing
nodes making the speedup linearly dependent on the number
of processors V.

To derive Gustafson’s law, consider using a serial proces-
sor to process the entire workload. It would take s + pN to
complete the task. From this the scaled speedup is calculated
as:

(s +pN)
(s+p) 2)
=s5+pN

Scaledgpeedup =

Hill & Marty [18] revised Amdahl’s law for multicore
architectures. In order to apply Amdahl’s law in a multicore

(Advance online publication: 28 August 2012)



TAENG International Journal of Computer Science, 39:3, [JCS 39 3 11

[ L |
1632 64 128

|
512

Number of processors

Fig. 1. Amdahl’s fixed-size speedup
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Fig. 2. Gustafson’s scaled-size speedup

environment, a cost model for performance of the cores
that the chip supports is required. Assume a symmetric
multicore architecture with each core having its own L1
cache, where the memory bound is the cumulated capacity of
the L1 caches. Variable perf(r) is defined as the sequential
performance of a powerful core with r Base Core Equivalents
(BCEs). “Under Admahl’s law, the speed up of symmetric
multicore chips depends on the software fraction that is
parallelizable (f), the total chip resources in the BCEs (n),
and the BCE resource (r) devoted to increasing each core’s
performance” [18]. The resulting speedup for the symmetric
multicore architectures is as follows:

1

Speedup(f, n, r) = 1—f (3)

per f(r

f.r
) T perfmm

Figure 3 is a plot of 6 curves at different f-values. Like
Amdahl’s law, Hill & Marty’s corollary lacks scalability.
Since the corollary applies Amdahl’s concepts, it made the
same inaccurate assumption that problem workload remains
fixed after parallelization. This assumption lead to the con-
clusion that multicore architectures’ scalability is question-

able, which was quickly challenged by Sun & Chen [3]. Sun
& Chen applied the scalable computing principals presented
by Gustafson’s law. The same hardware model architecture
proposed by Hill & Marty was used to demonstrate the
scalability of multicore architectures through a fixed-time
model (as opposed to fixed-size) [3]. Sun & Chen define
the fixed-time speedup as:

Sequential Time of Solving Scaled workload

Speed =
pecauprr Parallel Time of Solving Scaled workload
“)

Let w be the original workload and w’ be the scaled
workload. Supposing the time taken to process w sequentially
is the same as the time taken to process w’ in parallel using
M Processors.

Assuming that the scale of the workload is only on the
parallel portion; w’ becomes:

w' = (1- flu+mfw (5)
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the performance of parallel processing on multicore systems,
they do not cater for distributed multicore systems.
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Fig. 4. Sun & Chen’s fixed-time performance model

Therefore
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which gives Gustafson’s law [2]. The scaled-sized model

assumes that the scaling is only at the parallel portion.

Based on this assumption and following (3), Sun & Chen
constructed the fixed-time speedup model to be:

-fw, fo_ _(Q-pw,  fu

perf(r) — perf(r)  perf(r) — perf(r)m

If we let n = mr be the scaled number of cores, with

n = r being the initial point, then w’ = mw. The final
scaled speedup compared with n = r becomes:

(€))

Sequential Time of Solving w’

Speed =
peeduprr Sequential Time of Solving w
0 g (10)
_ perf(r) per f(r) — (1 _ f) + mf
per f(r)

Figure 4 shows 6 curves of the fixed-time performance
model at different f-values. The fixed-time speedup model
demonstrates the scalability of multicore systems. Like the
scaled-sized model, it is linearly dependent on the number
of processors m. Although Sun & Chen successfully model
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Fig. 5. Structure of a dual-core system (taken from [19])

Distributed computation differs from parallel computation
in the way in which memory is used. In parallel systems,
all processing elements use the same shared memory for
communication and I/O, whereas distributed systems are
autonomous systems with private memory connected by
a network which is used for communication between the
processing nodes. Fig. 5 shows an internal structure of a
parallel/shared memory system in the form of a dual-core
system, while Fig. 6 shows an example of a multicore
distributed system, where multicore machines are combined
by a network to function as one.
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Fig. 6. Example structure of a multicore cluster (adapted from [19])

Register file Register file
[=a —
ALU ALU
|

7>

Inter-connection

Multicore clusters allow for mixed-mode parallel and
distributed processing through multi-level parallelism. The
distributed processing makes up the coarse-grain parallelism
while the parallel (shared-memory) processing makes up
the fine-grain parallelism within each processing node. This
multi-level parallelism leverages the cluster architecture by
matching the hardware hierarchy. Figure 7 shows a graphical
view of the multi-level parallelism structure. Message pass-
ing paradigms such as MPI and PVM can be used for coarse-
grain parallelism with multiple threads running on each core
for fine-grain parallelism.

Parallel code often runs on the same system and thus has
no need for external communication. Distributed code, on the
other hand, can not work without external communication.
This communication, however, often consists of some over-
head which, in large amounts, can affect performance drasti-
cally. The performance prediction models discussed above
do not address the communication issue associated with
distributed processing. For this reason, this paper presents
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Fig. 7. Multi-layer parallelism architecture

a way of predicting performance for code distributed on
multicore clusters. The rest of the paper is organised in
the following manner: Section II discusses the factors which
influence the performance of a distributed system. Section III
gives the related works and background. Section IV discusses
the proposed performance model. Section V analyzes the
results and Section VI concludes the paper.

II. FACTORS AFFECTING PERFORMANCE IN
DISTRIBUTED SYSTEMS

The performance of a distributed algorithm is affected by
more than just the application efficiency and the number
of processing nodes used. Since clusters are connected by
networks, network factors like latency and bandwidth have
a considerable impact on the performance of a distributed
system. As such, it is necessary to take into account the
network influence when predicting the performance of these
systems.

Bandwidth and latency capture the volume and time di-
mensions of information processing, respectively. Latency
measures the time taken to complete a request, while band-
width measures the volume of information transmitted in
a time interval [20]. The next subsections go into greater
detail about the factors that impact information processing
performance.

A. Application Efficiency

Algorithm efficiency is the most crucial factor when it
comes to parallel algorithm performance. If an algorithm is
not efficient in how it utilizes resources, even the most pow-
erful machines can not improve its performance. Distributed
algorithms have to be optimized in two levels: per-processor
(i.e. each core of a machine) and across-processors (i.e.
communication across the cluster). Optimization techniques
include code modifications and compiler optimizations. Per-
processor optimizations include but no limited to [21]:

1) Loop optimization

a) Unrolling

b) Splitting
2) Memory optimization
a) Prefetching
b) Cache alignment and coherence
¢) Stride-one memory access

3) Floating point arithmetic
4) Use of optimized mathematical libraries

Across processors optimizations mainly deal with [21]:
1) Minimizing:

a) Communication overhead

b) Synchronization overhead

¢) Load imbalance

d) Memory consumption

e) Computation overhead

2) Latency hiding techniques such as overlapping compu-
tation and commucation

3) Efficient network interconnection

4) Avoiding master-only operations as they force the rest
of the processors to idle

Lastly, compilers like GNU come with optimization flags
such as -ffast-math which optimizes mathematical functions.

B. Application Latency

Application latency is defined by Shaffer [4] as the total
amount of time that an application has to wait for a response
after issuing a request for some data. The application delay
reflects the total wait time incurred by the system, including
all subsystems and kernel overhead as well as network
latency [4].

Network latency is the time spent waiting, from the
instantiation of an operation until the return of the desired
results [4]. A distinction can be made amongst the different
types/sources of network latency. Three types of network
latencies are discussed; the propagation delay, transmission
delay, and physical latency. Fig. 8 is a representation of these
two network latency sources as a single server open queueing
system.
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Fig. 8. Network latency presented as a propagation and transmission delay
server (adapted from [20])

1) Propagation Delay: Propagation delay is defined as the
time taken waiting for the last bit to arrive plus the overhead
that comes with the device [4]. The propagation delay can
not be eliminated or avoided because the speed of light
is inviolable [4]. Transmission speed can not be improved
beyond propagation delay. A propagation of a certain system
indicates the maximum transmission rate that the system can
achieve.
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2) Physical latency: Physical latency measures the pro-
cessing time on a device without waiting (i.e. the service
time). It varies according to device utilization or load [20].
The physical latency can be halved to double the bandwidth.
Ding [20] showed that halving the physical latency yields
better results than actually doubling the bandwidth. The
system is able to perform twice the amount of work without
saturation.

3) Transmission Delay: Transmission delay is the amount
of time taken to transmit all the packet’s bits into the link. In
most networks, transmission of packets occurs in a first come
first serve manner, which results in queueing for transmission
rates that are not high [22]. It is determined by the packet
size and the transmission rate of the network and not at all
affected by the distance.

C. Bandwidth

Bandwidth determines how much information can be pro-
cessed within a certain time interval. It has a direct impact on
the response time of data acquisition [20]. Low bandwidth
can result in extremely slow systems. If an application must
be able to transmit at a certain rate in order to be effective,
then that application must transmit and receive at that rate.
If that amount of bandwidth is not available, the application
is most likely to give up [22]. Bandwidth may be increased
to improve performance of a certain system and compensate
for the propagation delay. However, increasing the bandwidth
does not automatically guarantee performance gain. In order
to benefit from high bandwidth, software often needs to
be modified in order to leverage the high bandwidth. For
example, applications developed for 32-bit systems may run
slower on 64-bit systems [20].

III. PERFORMANCE MODEL

Efficiency of a parallel algorithm is measured by the
speedup attained. If 7 is the execution time for the serial
implementation, the speedup can be computed as %, where
Ty is the execution time attained when using N processors.
Efficiency is then calculated as:

Tn

En = N 1D

An efficient algorithm attains a speedup close to N for
every Ty, (i.e. Eny = 1). It has been established in the
literature that for distributed systems, this is not always the
case. As the number of processors increases, speedup of the
distributed systems starts to decline. This is usually because
of the increased interprocessor communication, known as
message passing. Adding computation nodes increases the
networks communication links which ultimately increases
propagation delay.

This research focuses on the performance of multicore
clusters using an analytical approach based on Sun & Chen’s
[3] and Shaffer’s [4] works. Multicore clusters are ideal
for hybrid programming, (i.e. a mixture of distributed and
parallel processing). While multicore systems are scalable
and provide high performance, they have their limits. Writing
thread-safe programs is not easy, especially as the number of
threads increases. Enrico Clementi, a former IBM fellow and
pioneer in computational techniques for quantum chemistry
and Molecular dynamics, once said “I know how to make

4 horses pull a cart - I don’t know how to make 1024”.
Introducing clustered systems relieves the strain of using too
many threads on one machine.

A. Computational Cost

In distributed processing, an application can only run as
fast as the slowest processor. Thus, following Sun & Chen’s
fixed-time model, we redefine per f(r) to be:

per f(r') = max(per f(r;)) (12)

where per f(r;) is the sequential performance of a pow-
erful core of a processing node 7 with » BCEs. Using (10)
and the assertion that w’ = mw we get the following,

(1—fHw fw
(A=pow, S G s
per () | pref(rym S

(13)
This gives us the expected speedup [23].

B. Communication Cost

The communication overhead associated with message
passing can be quite large. Shaffer [4] proposed a theoretical
predictive measure of communication cost in wide area
distributed systems to be:

Comm_Time = m X [g +d x 7.67x 1075 + ¢

where m is the frequency of messages needed during the
task, b is the bandwidth in bits/second, € is the overhead
incurred per message and s and d represent the size of the
message and the length of the communication channel in
miles, respectively.

Propagation delay is normally calculated as the reciprocal
of the speed of light which is currently 299792.458 km/s.
However, Shaffer stated that this value is not the same for all
types of cables. Different types of cables transmit at different
speeds, which is less than the actual speed of light. This
speed is known as the normal velocity of propagation (NVP).
Optical fiber has an NVP close to 0.7 [4].

We define the cost of sending an L bit message between
two processors as:

(14)

L
Tcomm (L) <—+ (Umax X dZSt) + €L (15)
T

where 7 is the upper bound of the network bandwidth,
Omaz 18 the maximum delay incurred by the system, dist is
the physical distance between the network points and €(L)
is the overhead associated with each message of size L bits,
i.e. the send and receive overhead [23].

IV. EXPERIMENTS

The total estimated running time is calculated as:

TEST(m) = Tcomp(m) + Tcomm (m7 L) (16)

where Teomp(m) is the computation time as defined in
Section IV(a) and T,omm(m, L) is the total time spent by
m nodes communicating messages of sizes L.

Tcomp(m) = Tseq/speedupFT (17)
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Tcomm(myL) = ZTcomm(L) (18)

Tseq is sequential time and Speeduppr is defined in (13)
[23].

The performance model was tested on two different applica-
tions; one communication intensive and one computationally
intensive. The experiments were performed on a cluster with
the specifications given in table 1.

TABLE I
SYSTEM CONFIGURATION

Model SuperMicro
Filesystem GPFS
Network Gigabit Infiniband
Number of nodes 5
CPU Cores 80
CPU Cores per Node 16
CPU Model Intel Xeon
CPU Speed 2.4 GHz
Peak Performance 16 TFlops

A. Application 1: Distributed Fingerprint Enhancement Ap-
plication

The fingerprint enhancement application consists of a
series of computationally intensive image processing op-
erations [24], [25]. The enhancement algorithm has been
parallelized and distributed using MPI and OpenMP on an
earlier publication [24]. Image processing operations require
intensive communication with neighbouring processors in
order to access neighbouring pixels along the boundaries.

B. Application 2: Large Array Application

This application takes in two large array of numbers in
two 1 MB files, then performs a series of mathematical
functions (matrix multiplication, covariance matrix, trans-
pose and eigenvectors) and finally writes back the results
to a 4 GB file. The application has minimal interprocessor
communication. Only the file names are broadcasted.

SOl 1120504 150031515 0/ T e 1818382 05 0LOS0LLETE 041 T 1 N1 SIS H 1 MO i1 1 1020 A1 HOS0]
0000110111111 000011011100110111311100001100001
T ST ST OSOEUEUES TS 0S LT ST B 1 R0S L1511 L0, LE1S0) sttt ] i IS0 0 0RO 15 15051

0L 4101 0/1 00 L0 LT 1001 11111111000 04150 111004400
Recv Send

011101010011001101111110000110100110111001100
111111111100001101111101110011011111100001101
1011110011111111113100001101111111111000011011
000011011111100001101110011011111100001100001

Send
T1001101111130000110110331100110311111100001-01

011201010010 4111001 1131111115100 0013011150 0:13110.0
0000110111111 00001101110011011111100001100001
101111001111112111110013100411011111100001101011

Fig. 9. Halo exchange between three processes

The algorithm [24] proposes three ways of dealing with
boundary pixels: files locking, halo exchange and process-
rank ordering.

1) Halo exchange: To access the boundary pixels, pro-
cessors establish communication with their neighbour-
ing processors. Each process is allocated ghost cells
along the boundaries to hold the data received from
neighbours. Processors then send/receive the boundary

PY Pl

ol

Fig. 10. Data overlapped along processor boundaries. Each overlap portion
is of size W x M in order to ensure that the overall sub-image sizes are
in multiples of processing block sizes

pixels using message passing. Figure 9 shows three
processors engaging in a row-wise halo exchange. Halo
exchange is an expensive operation and unless system
architecture is optimized for it in its design, often
incurs large overhead which need to be minimized.

2) File locking: To avoid large communication overhead,
an alternative is to overlap data between processors
along the boundaries. Figure 9 shows a fileview con-
sisting of overlapped regions. This eliminates the need
for communication but introduces a new problem of
data consistency. When more than one processor access
and operate on the data on the same file region, it
often results in data racing and since processors arrive
in any arbitrary order, it is impossible to determine
beforehand which processor will write/read. For this
reason, operational atomicity is required. File locking
is perhaps the most intuitive solution to this process.
It enforces explicit file locks on the overlapped re-
gions to grant processors exclusive access. These locks
can be achieved through the use of mutual exclusion
synchronization. When a processor is operating on a
specific file region, no other processor can operate on
that region.

3) Process-rank ordering: Process-rank ordering also
uses overlapped boundary file regions but instead of
locking the file region, a higher ranking processor is
granted exclusive access whenever an overlap is en-
countered. Lower ranking processor must then modify
its request by subtracting the overlaps. This effectively
removes all the overlaps and achieve atomicity [24].
Figure 10 shows modified access patterns based on
process-rank ordering.

g — i g [ — ] =

Fig. 11.
[26])

Overlapped data access using process-rack ordering (adapted from

Hence, the application has a lot of message passing making
it a bit harder to scale with respect to processing nodes.
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C. Results Analysis

The system used for testing has an NVP of 0.67, hence
the expected propagation delay per km is

1

400

350

300

——Amdahl

—s— Predicted

—&—8un-Chen

—+—Hil-Marty

——Gustafson

—+-Observed:Row-wise
¢ Observed:Cok-wise

= 0.0049ms

propagation_delay =

299792.458 x 0.67
- (19)

Zalo-exchange == Comm

;‘ﬂe-loc]dnngrocesses-rank ordering

BN Comp

Milliseconds
-
Ln
[=]

Number of Processors

Fig. 12. Results of the predicted performance for the fingerprint enhance-
ment application

The fingerprint enhancement algorithm was tested on
60 CASIA fingerprint database. Fig. 12 shows the results
obtained using the prediction model separated into commu-
nication and computation time. From the graph, a drastic
increase in the communication time with the increase of
processing nodes can be observed on the halo exchange
predictions. This is mainly due to the frequency of message
passing during the prefetching of boundaries cells as well as
the size of the messages.
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Fig. 14. Experimental results from file locking experiments plotted against
the 5 prediction models

Fig. 14 shows the results obtained of using file locking on
both row- and column-wise partitions plotted with the predic-
tions made by the 5 models. The performance observed from
this experiment shows a good example of poor optimization
techniques and bad design choices. When using column-wise
partition, file locking is the worst design choice one can
make. Column-wise partition causes noncontiguous access
patterns. What this mean is if each processor is assigned
M x N’ subarray of an image, then the distance between 2
consecutive rows is N > N’. It is not possible for a processor
to access all its data in a single read/write operation.
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Fig. 13. Experimental results from the halo exchange experiments plotted
against the 5 prediction models

A total of 3 sets of experiments were performed using the
algorithm. Fig. 13 shows results obtained from using halo
exchange on both row- and column-wise partitions of the
data plotted with the predictions from the 5 models. From
experiment its clear to see that Gustafson’s and Sun & Chen’s
models over estimates the speedup, whereas Hill & Marty’s
and Amdahl’s models under estimates. Gustafson’s and Sun
& Chen’s models do not consider the effects of communi-
cation associated with distributed systems. Our model does
not give the exact estimates, it over estimates the speedup
but the error margins are better than those experienced by
other models.

Fig. 15.
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Fig. 16. Experimental results from the process-rank ordering experiments
plotted against the 5 prediction models

For processor PO in Fig. 15 to write to the first element
of R1 after writing to the first element of RO, it needs to
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traverse all the way to the end of the row (i.e. N columns)
before returning to R1. Hence, locking an overlapped region
ultimately locks the entire file, rendering I/O parallelism
useless. Row-wise partition is better in this manner as it does
not lock the entire the entire file.

Fig. 16 plots the results obtained using process-rank
ordering on row- and column-wise partitions. Process-rank
ordering maintains full I/O parallelism for both column-wise
and row-wise partitions and hence is expected to out-perform
the file locking strategy. Row-wise partition requires less
effort to construct, while column-wise partition requires a
little more effort due to the noncontiguous access patterns.
This would explain the slight variation the performance. Our
model, Gustafson’s and Sun & Chen’s models estimations
produces better error margins than those produced by Hill &
Marty and Amdahl’s models.

Fig. 17 shows the prediction results vs. the observed per-
formance of application 2. A comparison between Amdahl’s
law and our model is made. Amdahl’s predictions show
unscalability, performance does not improve beyond the 114
seconds mark. Our model shows great scalability and the
error margins are better than those experienced by Amdahl’s
law. In comparison to computation, communication time is
insignificant hence the model becomes almost identical to
that of Sun & and Chen’s. Also note that Hill & Marty and
Gustafson’s model give results identical to Amdahl’s and Sun
& Chen’s models, respectively.

V. CONCLUSIONS

When communication is insignificant in comparison to
the computation, our model gives the same performance as
that of Gustafson’s and Sun & Chen’s models. But when
there is extensive communication, our model strives. While
Gustafson’s and Sun & Chen’s models over estimate the
speedup, Hill & Marty’s and Amdahl’s models under esti-
mate it. Our model considers both the computation capability
of multicore systems as well as the limitations of the network.
The experiments show the importance of choosing the right
design strategies. The choice of data partition can have a
huge impact on the performance of an algorithm, this evident
on the column-wise file locking experiment. Optimizations
are also crucial in distributed applications, as unoptimized
code fails to scale upwards.
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Fig. 17. Results of the predicted performance for the big array application. (a) Performance of the application using only one node. (b) Performance
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