
Analysis of the Computational Requirements of a
Pulse-Doppler Radar Signal Processor

R. Broich∗† and H. Grobler∗
∗Department of Electrical, Electronic and Computer Engineering, University of Pretoria

†DPSS Radar and Electronic Warfare, CSIR, South Africa
Emails: RBroich@csir.co.za, Hans.Grobler@up.ac.za

Abstract— In an attempt to find an optimal processing ar-
chitecture for radar signal processing applications, the different
algorithms that are typically used in a pulse-Doppler radar
signal processor are investigated. Radar algorithms are broken
down into mathematical operations and the relative processing
requirements of each operation is determined. Implementation
alternatives for the operations with the highest relative processing
requirements are briefly discussed for an FPGA based soft-core
architecture.

I. INTRODUCTION

In pulse-Doppler radar systems, the amount of useful in-
formation that can be extracted from the received echo’s
directly depends on the computational performance the radar
signal processor (RSP) can deliver. Traditionally the design
methodology follows a bottom-up approach, in which existing
processing technologies are pieced together to form the RSP.
Radar algorithms are often simplified and modified to fit the
available processing architectures [1]. These simplifications
are often degrading to algorithmic performance and thus to
the entire radar system.

In this paper the different computational operations that are
used in pulse-Doppler radar signal processing are explored, in
order to find an optimal radar signal processing architecture.
The theoretical radar algorithms are broken down into signal
processing constructs and analysed from a computational and
data-flow perspective. The relative percentage usage for each
processing construct is discussed and a list of dominant
operations extracted. Potential mappings to an FPGA based
soft-core architecture are then investigated for these dominant
operations.

II. RADAR SIGNAL PROCESSOR FLOW OF OPERATIONS

To determine the processing requirements of each radar
algorithm, the simplified RSP in Fig. 1 will be used as a
test-case. Although this is just one of many implementation
variations, it represents a variety of mathematical operations
that are typically found in RSPs and many of the operations
also apply to the higher level data processing. This section
discusses each of the RSP algorithms from a computational
perspective. Rather than analysing the complexity or growth
rate of each algorithm (based on big O-notation for example)
a data-flow approach similar to that described by Kienhuis [2]
was used to extract approximate quantitative results. Quanti-
tative analysis is a well known technique for defining general

Antenna RF

Monopulse RX channels

∆φ∆θΣ

Receiver ADC

I/Q Demodulation

Channel Equalisation

Pulse Compression

Transmitter DAC

Pulse Generator

Timing Generator

I Q

I Q

I Q

Test Case:

N = 16384
P = 64
PRF = 3 KHz

FADC = 100 MHz
BW = 50 MHz (IQ)
T = 512 TX samples

CFAR Window:
R = 50 cells
(left/right = 5x5)

Pulse Number

R
an

ge

0 P

0
N

Doppler Processing

Envelope Calculation

CFAR Calculation

Target Report and Angle Calculations

To Data Processor

B
ur

st
pr

oc
es

si
ng

0.
1

H
z

to
10

0
kH

z

St
re

am
in

g
pr

oc
es

si
ng

10
0

kH
z

to
10

G
H

z

Fig. 1. Radar signal processor (RSP) flow of operations

purpose computer architectures [3]. An abstract machine, in
which only memory reads, writes, additions and multiplica-
tions are considered to be significant operations, is chosen for
the model of computation. For each algorithm, a pseudo-code
listing is used to find an expression for the required number
of additions/subtractions, multiplications/divisions, as well as
memory reads and writes. Based on the parameters of the test
case, the computational requirements (in millions of operations
per burst of data) are listed for comparison purposes.

A. I/Q Demodulation

The IQ demodulation stage is most commonly digitally
implemented as either a Hilbert transform or an in-phase
and quadrature mixing operation. The mixing operations are
simply digital multiplications by sine and cosine as shown
below (where P is the number of pulses per burst, and N is
the number of range bins per pulse).
loop i=0 to P-1
loop j=0 to 2*N-1
input_re[i][j] = input[i][j]*sin(2*pi*fIF*j/fadc)
input_im[i][j] = input[i][j]*cos(2*pi*fIF*j/fadc)

Thus P×2×N×2 multiplications and memory writes as well
as P×2×N×3 memory read operations are required provided
that a lookup table is used for the trigonometric functions.
Digital low pass filters (typically real FIR filters) are used to
eliminate the negative frequency as well as DC components
of both I and Q after the mixing operation. The filter output
is then decimated by two to discard redundant data. The
filter requirements (length L) are therefore P×N×L×2 mul-
tiplications, additions, and memory reads as well as P×N×L
coefficient memory reads.
loop i=0 to P-1
loop j=0 to N-1
loop l=0 to L-1

iq_dem[i][j].RE += input_re[i][j*2-l]*lpf_coeff[l]
iq_dem[i][j].IM += input_im[i][j*2-l]*lpf_coeff[l]

When the ADC sampling frequency is 4 times as high as
the IF frequency, the above mixing operation simplifies to
multiplications by 1,0,-1,0 and 0,1,0,-1 for the I and Q chan-
nels respectively, reducing the computational requirements to
P×2×N memory reads and writes as well as P×N negations.
loop i=0 to P-1
loop j=0 to N-1
if (N=even)
input_re[i][j] = input[i][j*2]
input_im[i][j] = input[i][j*2+1]

else
input_re[i][j] = -input[i][j*2]
input_im[i][j] = -input[i][j*2+1]

In this case the filtering stage can also be simplified, since
only every second filter coefficient (even coefficients for I,
odd coefficients for Q) is needed [4]. The computational
requirements are thus reduced to P×N×L multiplications,
additions, and memory reads, as well as P×N×L coefficient
memory reads as shown below.
loop i=0 to P-1
loop j=0 to N-1
loop l=0 to L/2-1

iq_dem[i][j].RE += input_re[i][j-l*2]*lpf_coef[l*2]
iq_dem[i][j].IM += input_im[i][j-l*2-1]*lpf_coef[l*2+1]

Alternatively, a Hilbert transform can be used to extract the
Q-channel from the real sampled data [5]. Unlike the mixing
method however, the Hilbert transform method does not shift
the frequency band to baseband. The FIR implementation of a
Hilbert filter is essentially a wide band-pass filter (BPF) which
has a constant 90-degree phase shift.
loop i=0 to P-1
loop j=0 to N-1
iq_dem[i][j].RE = input[i][j*2]
loop l=0 to L-1
iq_dem[i][j].IM += input[i][2*j-l]*hil_coeff[l]

Thus P×N×(L+1) memory reads as well as P×N×L coef-
ficient reads, multiplications and additions are required.

The performance requirements for I/Q demodulation
strongly depend on the required resolution and acceptable filter
stop-band attenuation. Since most high frequency ADCs have
between 10 and 14-bit resolutions, a 16-bit filter of length 32
(order 31) is usually more than adequate. The computational
requirements (all figures are in millions) for the test-case are
summarized in Table I.

TABLE I
I/Q DEMODULATION COMPUTATIONAL REQUIREMENTS

Radar Algorithm Multi Add /
Subtr

Mem
Reads

Mem
Writes

Standard Mixing 71 67 107 6

Simplified Mixing 34 35 69 3

Hilbert filter 34 34 68 2

B. Channel Equalisation

In practice the transfer characteristics of RF front-end com-
ponents as well as ADC converters are not consistent across
the entire frequency band. Additionally the gains between the
different antenna channels are not matched. To compensate for
such imbalances in amplitude, both the I and the Q channels
are multiplied by a fractional scaling factor as shown below.
loop i=0 to P-1
loop j=0 to N-1
amp_comp[i][j].RE = iq_dem[i][j].RE*amp_coeff
amp_comp[i][j].IM = iq_dem[i][j].IM*amp_coeff

Frequency compensation typically involves a complex-
valued digital filter such as the FIR filter below.
loop i=0 to P-1
loop j=0 to N-1
loop l=0 to L-1
freq_comp[i][j] += amp_comp[i][j-l] * freq_coeff[l]

The complex multiplication in the above filter can be
accomplished with 4 real multiplications and an addition
as well as a subtraction. Since the input, coefficients and
output is complex, 2 memory accesses need to be performed
for each variable, resulting in P×N×L×4 memory reads,
multiplications and additions. The computational requirements
are summarised in Table II.

C. Pulse Compression

The process of pulse compression involves correlating the
transmitted pulse against the received signal. This matched fil-
ter can be realised as a digital correlation or a fast convolution.

TABLE II
CHANNEL EQUALISATION COMPUTATIONAL REQUIREMENTS

Radar Algorithm Multi Add /
Subtr

Float
/ Div

Mem
Reads

Mem
Writes

Amplitude 0 0 2 2 2

Frequency 134 134 0 134 2

The most straightforward implementation, as derived from the
correlation integral, is shown below.
loop i=0 to P-1
loop j=0 to N-1
loop t=0 to T-1

pc[i][j] += freq_comp[t+j] * tx_pulse*[t]

Similar to the FIR filter for the frequency compensation,
P×N×T×4 memory reads, multiplications and additions are
required. However, since the transmit pulse length is usually
longer than the above used filter lengths, the processing
requirements are much more demanding.

The fast convolution method on the other hand, converts
the input sequence to the frequency domain with an FFT,
performs a complex multiplication by the frequency spectrum
of the time-reversed complex conjugated transmitted pulse,
and converts the result back to the time domain using the
inverse FFT.
loop i=0 to P-1
in_freq[i] = FFT(freq_comp[i])
loop j=0 to N-1
fil_freq[i][j] = in_freq[i][j] * FFT(tx_pulse*[-t])[j]

pc[i] = IFFT(fil_freq[i])

An FFT of length N has log2N stages, each consisting of
N/2 butterflies. The decimation in frequency FFT butterfly can
be described algorithmically as:

A’[m] = A[m] + B[n]*W[p]
B’[m] = A[m] - B[n]*W[p]

Each butterfly thus requires one complex multiplication,
addition and subtraction. Thus the total computational require-
ments for an FFT are P×N/2×log2N×4 real multiplications
and memory writes as well as P×N/2×log2N×6 real additions
and memory reads. Bit inverted addressing is required for
either memory reads or writes, depending on the selected
DIT or DIF algorithm type. The multiplication stage requires
P×N×4 multiplications and memory reads, as well as P×N×2
additions and memory writes, provided the inverted and con-
jugated spectrum of the transmitted pulse is precomputed. The
IFFT processing requirements are similar to those of the FFT,
except for an added stage that divides all output values by N
and swaps real and imaginary parts of input and output [5].

TABLE III
PULSE COMPRESSION COMPUTATIONAL REQUIREMENTS

Radar Algorithm Multi Add /
Subtr

Float
/ Div

Mem
Reads

Mem
Writes

Digital Correlation 2 147 2 147 0 2 147 2

Fast Correlation 63 90 2 92 61

D. Doppler Processing
Doppler processing can be divided into two major classes:

pulse Doppler processing and moving target indication (MTI).

When only target detection is of concern, the MTI filter is
usually adequate. MTI filters are often low order; even a
first or second order FIR high-pass filter (such as 2 or 3
pulse MTI cancellers) can be used to filter out the stationary
clutter. Higher order filter types are typically not used as they
only provide modest performance improvements over the pulse
cancellers [6].

loop i=0 to N-1
loop j=0 to P-1
mti[i][j] = pc[j][i] - temp
temp = pc[j][i]

The processing requirements for the two pulse canceller are
thus N×P×2 memory reads, subtractions and memory writes,
while the 3-pulse canceller requires an additional N×P×2
multiplications and additions.

loop i=0 to N-1
loop j=0 to P-1
mti[i][j] = pc[j][i] - 2*temp1 + temp2
temp2 = temp1
temp1 = pc[j][i]

Pulse Doppler processing is computationally more demand-
ing, but improves SNR performance and provides target ve-
locity information. In the pulse-Doppler processing, spectral
analysis is performed over the “slow-time” pulse to pulse
samples representing a discrete range bin. Thus N independent
FFTs over all P samples are required, each of which is
preceded by a windowing function as shown below.

loop i=0 to N-1
loop j=0 to P-1
win[i][j].RE = pc[j][i].RE * w[j]
win[i][j].IM = pc[j][i].IM * w[j]

loop i=0 to N-1
dop[i] = FFT(win[i])

The processing requirements for the FFT stage are thus
N×P/2×log2P×4 real multiplications and memory writes as
well as N×P/2×log2P×6 real additions and memory reads. As
before, bit-inverted addressing on either the input or output as
well as twiddle-factor coefficients are required. The window
function requires N×P×2 multiplications and memory writes
as well as N×P×3 memory reads.

TABLE IV
DOPPLER PROCESSING COMPUTATIONAL REQUIREMENTS

Radar Algorithm Multi Add /
Subtr

Float
/ Div

Mem
Reads

Mem
Writes

2-pulse Canceller 0 2 0 2 2

3-pulse Canceller 2 4 0 2 2

Pulse Doppler 15 19 0 22 15

E. Envelope Calculation

The envelope calculation extracts the magnitude information
from the complex signal. The linear magnitude takes the
square root of the sum of the squares of real and imaginary
parts, requiring N×P×2 multiplications and memory reads as
well as N×P additions, square roots, and memory writes as

shown below.
loop j=0 to N-1
loop i=0 to P-1
env[j][i] = SQRT(dop[j][i].REˆ2 + dop[j][i].IMˆ2)

Depending on the processing architecture, the square root
operation may have a significant impact on performance.
To simplify these computational requirements, the squared
magnitude operation does not make use of the square root.
Another variation takes the (linear) magnitude and scales the
output logarithmically. In such a case the square root operation
simplifies to a multiplication by 2 after the log operation. The
computational requirements are summarized in Table V.

TABLE V
ENVELOPE CALCULATION COMPUTATIONAL REQUIREMENTS

Radar Algorithm Multi Add /
Subtr

Float
/ Div

Mem
Reads

Mem
Writes

Linear Magnitude 2 1 1 2 1

Square Magnitude 2 1 0 2 1

Log Magnitude 3 1 1 2 1

F. Constant False Alarm Rate

The CFAR detection process greatly improves the simple
threshold detection performance by estimating the current
interference level rather than just assuming a constant level.
The simplest of the CFAR classes is the cell averaging (CA-)
CFAR, which averages the returns from numerous reference
cells (the CFAR window: R = 2×WIN R×WIN D cells)
around the cell under test, and then uses this average in the
detection process.
loop j=0 to N-1
loop i=0 to P-1
sum_left = 0, sum_right = 0
loop l=0 to WIN_R-1
loop k=-WIN_D/2 to WIN_D/2
sum_left += env[j+GUARD+l][i+k]

loop l=0 to WIN_R-1
loop k=-WIN_D/2 to WIN_D/2
sum_right += env[j-GUARD-l][i+k]

if (env[j][i] > alpha * (sum_right+sum_left))
target.RANGE = j
target.VELOCITY = i

Thus N×P×(R+1) additions, N×P×(R+1) memory reads,
as well as N×P fractional multiplications, and comparisons
are required. The number of memory writes depends on the
expected number of targets. Sliding window techniques, where
previously summed columns are stored in registers and reused
in the next iteration, further reduce the number of memory
reads and additions to N×R + N×(P-1)×WIN R×2 + N×P
and N×R + N×(P-1)×(WIN R×2+2) respectively.

To minimize target masking effects, SOCA-CFAR uses the
smaller of the two (left and right) windows. Similarly GOCA-
CFAR uses the greater of the two windows to suppress false
alarms at clutter edges. Computationally these two CFAR
classes are similar to the CA-CFAR with the exception of one
less addition and one extra comparison for each N×P loop.
The sliding window approach to SOCA and GOCA requires 2
more additions (as well as 1 extra comparison) per cell in order
to keep the two window sums separate. Another variation of

CFAR determines the mean of both the left and right CFAR
windows, and depending on their difference, makes a logical
decision whether CA, GOCA, SOCA is to be used.

Heterogeneous environments may bias the threshold esti-
mate. The censored (CS-) CFAR discards the M largest (both
largest and smallest in the case of trimmed mean (TM-) CFAR)
samples in the window, making it much more suitable for such
environments than the CA-CFAR. The interference power is
then estimated from the remaining cells as in the cell averaging
case. For the typically small values of M (between 1 and 3),
a selection algorithm as shown below is well suited.

loop m=0 to M-1
min = 0, max = 0
loop d=1 to R-1
if x[min] > x[d] min=d
if x[max] < x[d] max=d

delete x[min]
delete x[max]

This selection algorithm thus requires M×(R-1)×2 compar-
isons, M×R memory reads and M×2 memory invalidations
per cell in the range-Doppler map.

Similar to CS and TM-CFAR, order statistic (OS-) CFAR
also requires the samples in the window to be numerically
sorted. Rather than discarding samples however, OS-CFAR
selects the K-th sample from the sorted list as the interference
statistic. This value is then multiplied by a fractional and
used in the comparison against the current cell under test.
Although a selection algorithm could be used, well established
sorting algorithms such as merge-sort can sort R samples with
R×log2R comparisons, memory writes and memory reads.
Since the reference window has to be sorted for each cell in
the range-Doppler map, the sorting stage is computationally
demanding.

Adaptive CFAR algorithms iteratively split the window
(including the test cell) at all possible points and then calculate
the mean of the left and right windows. The most likely
splitting point Mt that maximises the log-likelihood function
based on the calculated mean values is then chosen. The final
step performs the standard CA-CFAR algorithm on the data in
which the test cell is located. In such a case, a sum area table
(SAT) of all reference cells can be formed as shown below.

sum = 0
loop r=0 to R-1

sum = sum + x[r]
sum_area[r] = sum;

The sum of all cells in the windows to the left of the
transition point Mt is now simply sum area[Mt], while the
sum of the right window is sum area[R] - sum area[Mt]. The
log-likelihood function then requires 3 additions, 2 divisions,
multiplications and logarithm calculations, as well as 1 mem-
ory read and write per transition point as shown below.

loop mt=1 to R-1
L[mt] = (R-mt) * ln((sum_area[R]-sum_area[mt])/(R-mt)) -

mt * ln(sum_area[mt] / mt)

An iteration over the (R-1) possible transition points is
required to select Mt such that L[Mt] is maximised. If Mt is
smaller than R/2, the left window (otherwise the right window)

is selected as the CFAR statistic. The processing requirements
are summarized in Table VI.

TABLE VI
CFAR COMPUTATIONAL REQUIREMENTS

Radar Algorithm Mul Add /
Subtr

Float
/ Div

Mem
Reads

Mem
Writes

CA-CFAR 0 55 1 53 0

CA-CFAR (SW) 0 14 1 12 0

SOCA/GOCA 0 55 1 53 0

SOCA/GOCA (SW) 0 17 1 12 0

CS-CFAR (M=2) 0 255 1 154 4

OS-CFAR 0 297 1 298 296

Adaptive CFAR 103 260 156 157 104

It is clear that the CA algorithms require the least amount of
processing of the CFAR classes, especially when implemented
with the sliding window optimisation. Although OS-CFAR
typically performs better in the presence of interferers [7],
the processing requirements are more than 33 times as high.
The requirements in the previous tables are each in millions
of instructions required for burst processing (one burst is 22
ms in the test-case). Fig. 2 compares the number of operations
required per second in a streaming RSP for the different CFAR
implementations.

C
el

l
A

v-
er

ag
in

g

G
/S

O
C

A

C
A

(S
W

)

G
/S

O
C

A
(S

W
)

O
rd

er
St

at
is

tic

C
en

so
re

d

A
da

pt
iv

e

0

10

20

30

40

R
eq

ui
re

d
op

er
at

io
ns

pe
r

se
c

(G
O

PS
)

Sort
Sum
SAT
LogL
Other

Fig. 2. CFAR processing requirements

III. COMPUTATIONAL BREAKDOWN INTO MATHEMATICAL
OPERATIONS

Based on the previously discussed algorithmic requirements,
the applicable mathematical and signal processing operations
are established in this section. The relative importance and
normalised percentage usage of these reoccurring operations
are also investigated.

Fig. 2 already gives a hint at how the different CFAR
algorithms are broken down into mathematical operations; the
most obvious being numerical sorting as well as block/vector
summation. Although functions such as the SAT and the log-
likelihood function (LogL) are used mainly in the adaptive
CFAR implementation, they could be used for other algorithm

classes.
The remaining RSP algorithms follow a fairly natural

breakdown into common mathematical / signal processing
operations as shown in Fig. 3. The number to the right of

Linear Magnitude

Log Magnitude

Squared Magnitude

Interleaving data

Envelope Calculation Matrix Multiplication
(Elementwise)

IQ Demodulation FIR

Channel Equalisation FFT / IFFT

Pulse Compression Matrix Multiplication
(Scalar)

Doppler Processing Block Summation

CFAR Comparison

Sum Area Table

Log-Likelihood
function

Register Summation

Sorting

1

1

1

2

3

7

3

8

5

7

1

1

2

3

Fig. 3. Radar signal processor algorithmic breakdown

each of the mathematical operations indicates the number
of algorithms that make use of that particular operation.
For example, the FIR filter structure is used in all three of
the discussed IQ demodulation algorithms, in two Doppler
algorithms, in channel equalisation and in one of the pulse
compression algorithms.

The most important of these mathematical operations need
to be selected for optimisation, without giving too much im-
portance to one specific implementation alternative. Logically
only mathematical operations making up a fair amount of
processing time should be optimised. To find the normalised
percentage usage, the different implementation options for
each algorithm are thus weighted according to their com-
putational requirements. Algorithms with low computational
requirements should be favoured over those with high require-
ments. For example, pulse compression can be implemented
with the fast correlation or as a FIR filter structure. The
FIR filter structure has a substantially larger computational
requirement in terms of operations per second, but may be
better suited for streaming hardware implementations, and
thus cannot be neglected. Within radar algorithm groups, each
implementation is assigned a percentage of total computational
requirements for that group. This number is then subtracted
from 100% and normalised such that the added weights of each
group add up to unity. Table VII shows the normalised pro-
cessing requirements for each mathematical operation across
the different implementations that were discussed.

TABLE VII
RSP NORMALISED PERCENTAGE USAGE

Mathematical Operation %
FIR 56.63

FFT / IFFT 22.50

Sorting 9.57

Block Sum 3.53

Log-Likelihood 3.36

Sum Area Table 1.53

Matrix Multiplication (Elementwise) 1.51

Matrix Multiplication (Scalar) 0.49

Interleaving data 0.18

Log Magnitude 0.17

Comparison 0.17

Linear Magnitude 0.16

Squared Magnitude 0.15

Register Sum 0.07

It comes as no surprise that the FIR filter and FFT operations
have the highest usage. Although only used in 3 of the 7
discussed CFAR algorithms, the computational requirement of
the sorting operation indicates it’s importance for optimisation
purposes. Figure 4 graphically confirms the above results for 5
different RSP implementation alternatives. All five alternatives
make use of amplitude and frequency compensation, the
3 pulse canceller, pulse-Doppler processing and the linear
magnitude envelope calculation. The large ‘other’ block in
option 3 primarily consists of the log-likelihood function. It
is interesting to note that the summation operation does not
require much resources compared to the FIR filter, FFT and
sorting operations.

1 2 3 4 5
0

100

200

300

Option 5: Simpl. mix, fast corr., CA-CFAR (SW)
Option 4: Hilbert, fast corr., CS-CFAR
Option 3: Std. mix, fast corr., adaptive-CFAR
Option 2: Std. mix, fast corr., OS-CFAR
Option 1: Simpl. mix, digital corr., OS-CFAR

Option number

R
eq

ui
re

d
op

er
at

io
ns

pe
r

se
c

(G
O

PS
)

FIR FFT Sort
Sum Other

Fig. 4. Complete RSP computational requirements

IV. IMPLEMENTATION OPTIONS FOR THESE OPERATIONS

From an implementation perspective, the direct form FIR
filter structure maps well to a hardware implementation (such
as the FPGAs logic blocks), capable of producing an output
sample every clock cycle. Purely sequential implementations
(such as DSPs or general purpose CPUs), on the other hand,
require numerous iterations over the array for a single output

sample. By merging the architectures of both the sequential
processor and the hardware implementation, flexibility and
performance can be balanced in such a custom soft-core
processor. Coefficients could be preloaded into a memory
block, and input samples can be shifted into the hardware
based FIR filter structure directly from the custom processor.
This structure can then be used for numerous mathematical
operations such as FIR filters, block summation (when the
coefficients are preloaded to 1), the sum area table (with 0
initial conditions), CA-CFAR windows (guard cells can be
excluded by setting their coefficients to 0), pulse cancellers,
digital correlation, and digital convolution.

The other dominant operation, the FFT, dictates require-
ments for both small length FFTs of 128 or less for pulse-
Doppler processing, as well as extremely large sizes across
the entire range line for pulse compression or fast filtering.
FFT co-processors however typically only support a limited
range of lengths. For purely sequential implementations, DSP
manufacturers often include radix-2 butterfly instructions to
speed up the implementation. Since decimation in time or
frequency algorithms permit FFTs of length N to be computed
with two FFTs of length N/2, a hybrid soft-core implemen-
tation consisting of several smaller memory mapped FFT-
coprocessors could be software coordinated to achieve larger
lengthed FFTs. Optimisations such as these can improve the
performance as well as simplify the programming model from
a hardware descriptive language (HDL) design to a library
based software environment, permitting quick evaluation of
new radar algorithms during field-tests.

V. CONCLUSION

This paper presents an overview of the computational re-
sources required for a pulse-Doppler radar signal processor.
Radar algorithms are broken down into signal processing
constructs, and ranked according to their importance and
computational requirements. Although FIR filters and FFTs
are by far the most important operations, sorting and block
summation constructs make up a substantial share of the total
processing requirements. Based on the results of this study and
in particular having identified the operations that dominate,
one can now define an architecture that maximises perfor-
mance for the given algorithms whilst providing flexibility.

REFERENCES

[1] D. R. Martinez, R. A. Bond, and M. M. Vai, High Performance Embedded
Computing Handbook. CRC Press, 2008.

[2] B. Kienhuis, E. Deprettere, K. Vissers, and P. Van Der Wolf, “An approach
for quantitative analysis of application-specific dataflow architectures,”
in Application-Specific Systems, Architectures and Processors, IEEE Int.
Conf., July 1997, pp. 338 –349.

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantita-
tive Approach, 3rd ed. Morgan Kaufmann, 2002.

[4] K. Teitelbaum, “A flexible processor for a digital adaptive array radar,”
Aerosp. and Electron. Syst, IEEE, vol. 6, no. 5, pp. 18–22, May 1991.

[5] R. G. Lyons, Understanding Digital Signal Processing, 2nd ed. Prentice
Hall, Mar. 2004.

[6] M. A. Richards, Principles of Modern Radar: Basic Principles, 1st ed.
North Carolina: SciTech Publishing, 2010.

[7] ——, Fundamentals of Radar Signal Processing, 1st ed. New York:
McGraw-Hill, 2005.

