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BASICS OF SAMPLING SCHEMES

Sample - small subset of the population of interest.
Sample should represent the characteristics of the
population (parameters / distribution).
Draw inferences about a population based on
incomplete knowledge.
Distinguish between two general approaches

Design-based Methods
‘Ignore’ the spatial structure
Use some form of random sampling
Use feature space to design sample

Model-based Methods
Explicitly model the spatial structure
Selection of sample based on optimisation criterion
Use geographic space to design sample
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IMPORTANCE OF OPTIMAL SAMPLING
SCHEMES

Environmental studies:
where to sample?
what to sample?
and how many samples to obtain?

Remote sensing as ancillary information in the design
of optimal sampling schemes.
Advantages of using remote sensing images:

Provides a synoptic overview of a large area
Wealth of information over the entire area
In these methods sampling avoids subjective judgement
Reduces costs and saves time on the field (fewer
samples)
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OVERVIEW OF HYPERSPECTRAL REMOTE
SENSING

Hyperspectral sensors
record the reflectance in many narrow contiguous
bands
various parts of the electromagnetic spectrum (visible -
near infrared - short wave infrared)
at each part of the electromagnetic spectrum results in
an image

Introduction to Hyperspectral Image Analysis

Peg Shippert, Ph.D.
 Earth Science Applications Specialist

Research Systems, Inc.

Background

The most significant recent breakthrough in remote sensing has been the development of
hyperspectral sensors and software to analyze the resulting image data.  Fifteen years ago
only spectral remote sensing experts had access to hyperspectral images or software tools
to take advantage of such images.  Over the past decade hyperspectral image analysis has
matured into one of the most powerful and fastest growing technologies in the field of
remote sensing.

The “hyper” in hyperspectral means “over” as in “too many” and refers to the large
number of measured wavelength bands.  Hyperspectral images are spectrally
overdetermined, which means that they provide ample spectral information to identify
and distinguish spectrally unique materials.  Hyperspectral imagery provides the potential
for more accurate and detailed information extraction than possible with any other type of
remotely sensed data.

This paper will review some relevant spectral concepts, discuss the definition of
hyperspectral versus multispectral, review some recent applications of hyperspectral
image analysis, and summarize image-processing techniques commonly applied to
hyperspectral imagery.

Spectral Image Basics

To understand the advantages of hyperspectral imagery, it may help to first review some
basic spectral remote sensing concepts.  You may recall that each photon of light has a
wavelength determined by its energy level.  Light and other forms of electromagnetic
radiation are commonly described in terms of their wavelengths.  For example, visible
light has wavelengths between 0.4 and 0.7 microns, while radio waves have wavelengths
greater than about 30 cm (Fig. 1).

Figure 1.  The electromagnetic spectrumFigure: Spectral Range
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OVERVIEW OF HYPERSPECTRAL REMOTE
SENSING (cont. . . )

ITC Journal 1998-1

Imaging spectrometry for monitoring tree damage caused
by volcanic activity in the Long Valley caldera, California

Steven M de Jong1

1

ABSTRACT

Developments in detector technology have triggered a new remote sens-
ing technology: imaging spectrometry.  Imaging spectrometers measure
reflected solar radiance on a pixel-by-pixel basis in many narrow spectral
bands, allowing the identification of materials or their properties by diag-
nostic absorption features.  To date, only airborne imaging spectrometers
are available, but several imaging spectrometers are planned for the next
generation of space platforms.  The abundance of information available
in the continuous spectral coverage makes it possible to address ques-
tions in numerous environmental disciplines.  This paper describes a
study in the Sierra Nevada, using multitemporal images acquired by the
Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) for monitor-
ing tree damage by volcanic activity.  Diffuse volcanic gas emanations
deprive the roots of oxygen, resulting in trees that are under stress and
ultimately die.  Imaging spectrometry yields important information on
tree conditions and on the presence of dead vegetative material.  The
spatial and temporal extent of the dead and stressed tree areas were
mapped using AVIRIS data.  The use of imaging spectrometry to map
the diffuse volcanic gas emissions was less successful.  Although the
images yield noisy spatial patterns of carbon dioxide, it is difficult to
separate atmospheric gases from the diffuse soil emanations.

In the last decennia, a new remote sensing technique was
developed through significant advances in detector tech-
nology: imaging spectrometry.  An imaging spectrometer
collects narrow spectral bands on a pixel-by-pixel basis,
aiming to identify surface materials by using diagnostic
absorption features [12, 23, 37].  Figure 1 shows the
concept of imaging spectrometry.  Conventional broad-
band sensors such as Spot-XS, Landsat MSS and
Landsat TM are not very suitable for mapping minerals
or soil properties because their bandwidth of 70 to 240
nm cannot resolve diagnostic spectral features of terres-
trial materials.  Often, absorption features of interest
have bandwidths of only 20 nm or less.  Since the con-
struction of the first spectrometer, the technique and the
sensors have been further developed and refined, and
software especially designed to analyze the large data
volumes generated by imaging spectrometers have
become available [31, 39].  These developments have
led to the successful applications of imaging spectrome-
try in several environmental disciplines, such as atmos-
pheric science [6], ecology [36, 38, 44, 46, 47], geology
[29, 30, 31,37, 45], soil science [11, 15, 16], hydrology
and oceanography [5, 25, 35].  The importance of these
types of instrument may be indicated by the fact that
several proposals for launching spaceborne spectrome-
ters in the near future have been approved.  This paper
presents a practical application of imaging spectrometry
for vegetation survey in the Long Valley caldera in the
Sierra Nevada, California.  This area suffers from vol-

canic activity, which causes significant damage to the
pine and fir species.  Multitemporal images acquired by
AVIRIS were used to survey damage to pine and fir
trees, and to map the spatial extent of diffuse volcanic
gas emissions.  AVIRIS acquires images at an altitude of
20 km in the spectral range of 400 to 2500 nm, with a
pixel size of 20 x 20 m.  It has 224 spectral bands with
a nominal bandwidth of 10 nm (Figure 1).

STUDY AREA

The research area is situated around Mammoth
Mountain.  Mammoth Mountain is a volcanic cone rising
up to 3300 m; it forms the western rim of the Long
Valley caldera in the Sierra Nevada, California (Figure
2).  The Long Valley caldera measures approximately 17
x 32 km, and was formed by a large eruption about
760,000 years ago [34].  After a period of rest (the last
signs of activity from Mammoth Mountain occurred
roughly 500 years ago), the area has since 1980 been
suffering from frequent earthquakes, hydrothermal activ-
ity and gas emissions [22, 26, 32].  Furthermore, the
resurgent dome in the center of the Long Valley caldera
is inflating; the U.S. Geological Survey has measured an
uplift of approximately 60 cm since 1980.

In 1990, areas of dying forests were found on the
flanks of Mammoth Mountain [22].  At first, the cause
of tree die-off was sought in the persisting drought of
the preceding years.  However, trees died regardless of
age or species, as shown in Figure 3.  Research [22]
revealed that high concentrations of carbon dioxide (30

1 Department of Physical Geography, Utrecht University, PO Box 80
115, 3508 TC Utrecht, The Netherlands
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FIGURE 1 The concept of imaging spectrometry
Figure: Hyperspectral cube
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OVERVIEW OF HYPERSPECTRAL REMOTE
SENSING (cont. . . )

Figure 3.  The concept of hyperspectral imagery.  Image measurements are made at
many narrow contiguous wavelength bands, resulting in a complete spectrum for each
pixel.

Hyperspectral Data

Most multispectral imagers (e.g., Landsat, SPOT, AVHRR) measure radiation reflected
from a surface at a few wide, separated wavelength bands (Fig. 4).  Most hyperspectral
imagers (Table 1), on the other hand, measure reflected radiation at a series of narrow
and contiguous wavelength bands.  When we look at a spectrum for one pixel in a
hyperspectral image, it looks very much like a spectrum that would be measured in a
spectroscopy laboratory (Fig. 5).  This type of detailed pixel spectrum can provide much
more information about the surface than a multispectral pixel spectrum.

Figure: Pixels in hyperspectral image



Optimal
Sampling

Schemes for
Vegetation

and
Geological
Field Visits

Debba

Introduction

Classification

Optimized
sampling
schemes case
studies
Optimized field
sampling for
improved estimates
of vegetation indices

Optimized field
sampling
representing the
overall distribution of
a particular mineral

OVERVIEW OF HYPERSPECTRAL REMOTE
SENSING (cont. . . )
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Figure: Example of 3 different spectral signatures
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UNSUPERVISED CLASSIFICATION

No previous knowledge assumed about data.
Tries to spectrally separate the pixels.
User has controls over:

Number of classes
Number of iterations
Convergence thresholds

Two main algorithms: Isodata and k-means
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K-MEANS CLUSTERING

A set number of cluster centres are positioned
randomly through the spectral space.
Pixels are assigned to their nearest cluster.
The mean location is re-calculated for each cluster.
Repeat 2 and 3 until movement of cluster centres is
below threshold.
Assign class types to spectral clusters.
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K-MEANS CLUSTERING (cont. . . )

(a) 1st iteration. Clus-
ter centres are set at
random. Pixels as-
signed to the nearest
centre.

(b) 2nd iteration.
Centres move to the
mean-centre of all
pixels in this cluster.

(c) N-th iteration.
Centres have sta-
bilised.
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ISODATA

Extends k-means. Also calculate standard deviation for
clusters.
After stage 3 we can either:

Combine clusters if centres are close.
Split clusters with large standard deviation in any
dimension.
Delete clusters that are to small.

Then reclassify each pixel and repeat.
Stop on max iterations or convergence limit.
Assign class types to spectral clusters.
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ISODATA (cont. . . )

(d) Data is clustered
but blue cluster is very
stretched in band 1.

(e) Cyan and green
clusters only have 2
or less pixels. So they
will be removed.

(f) Either assign out-
liers to nearest clus-
ter, or mark as unclas-
sified.
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SUPERVISED CLASSIFICATION

Start with knowledge of class types.
Classes are chosen at start.
Training regions are created for each class.
Ground truth used to verify the training regions.
Quite a few algorithms. Here we will look at:

Parallelepiped
Maximum likelihood
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DATA

Training classes plotted in spectral space. In this example
using 2 bands.
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PARALLELEPIPED

For each training region determine the range of values
observed in each band.
These ranges form a spectral box (or parallelepiped)
which is used to classify this class type.
Assign new image pixels to the parallelepiped which it
fits into best.
Pixels outside all boxes can be unclassified or assigned
to the closest one.
Problems with classes that exhibit high correlation
between bands. This creates long ‘diagonal’ data-sets
that do not fit well into a box.



Optimal
Sampling

Schemes for
Vegetation

and
Geological
Field Visits

Debba

Introduction

Classification

Optimized
sampling
schemes case
studies
Optimized field
sampling for
improved estimates
of vegetation indices

Optimized field
sampling
representing the
overall distribution of
a particular mineral

PARALLELEPIPED (cont. . . )
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MAXIMUM LIKELIHOOD

For each training class the spectral variance and
covariance is calculated.
The class can then be statistically modelled with a
mean vector and covariance matrix.
This assumes the class is normally distributed. Which
is generally okay for natural surfaces.
Unidentified pixels can then be given a probability of
being in any one class.
Assign the new pixel to the class with the highest
probability — or unclassified if all probabilities low.
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MAXIMUM LIKELIHOOD (cont. . . )
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OBJECTIVE OF STUDY

The design of the optimal prospective sampling
scheme for field visits in an agricultural study, using a
segmented hyperspectral image.
The optimal prospective sampling scheme will be
representative of the whole study area for various
parameters embedded by the segmentation and bands
selected for the segmentation.
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STUDY SITE

Study site – Tedej – Hungary.
Crops: barely, maize, sugar beet, sunflower, alfalfa.
Digital Imaging Spectrometer – DAIS-7915 –
79 channel hyperspectral image.
Spectral range from visible (0.4 µm) to thermal infrared
(12.3 µm).
Spatial resolution 3–20 m depending on the carrier
aircraft altitude.
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STUDY SITE (cont. . . )

Figure: Study area in Tedej, Hajdu-Bihar area, Hungary.



Optimal
Sampling

Schemes for
Vegetation

and
Geological
Field Visits

Debba

Introduction

Classification

Optimized
sampling
schemes case
studies
Optimized field
sampling for
improved estimates
of vegetation indices

Optimized field
sampling
representing the
overall distribution of
a particular mineral

STUDY SITE (cont. . . )

Figure: Hyperspectral image of study area in Tedej, Hajdu-Bihar
area, Hungary. Reflectance values for bands 29 (0.988µm), 39
(1.727µm) and 1 (0.496µm).
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METHODS: ITERATED CONDITIONAL
MODES (ICM) ALGORITHM

Adequate image segmentation takes into account both
spectral features and spatial information.
Markov Random Fields (MRF) have been useful in this
respect.
For each category k = 1,2, . . . ,K , let

C(α)
k denote the set of pixels which belongs to the k th

category and C(α) =
⋃K

k=1 C(α)
k the segmented image at

the αth iteration, α = 0,1,2, . . . ,
N(α)

k denote the number of elements in C(α)
k , i.e. the

number of pixels in the k th category at the αth iteration,
µ
(α)
k =

∑
(i,j)∈C(α)

k

fij/N
(α)
k be the m-dimensional mean

vector of the k th category at the αth iteration.
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METHODS: ITERATED CONDITIONAL
MODES (ICM) ALGORITHM (cont. . . )

arg min
k

{(
fij − µ

(α)
k

)T (
fij − µ

(α)
k

)
− βν(α)N(α)

ij (k)

}
(1)

ν(α) =
1
N

K∑∑∑
k=1

∑∑∑
(i,j)∈C(α)

k

(
fij − µ

(α)
k

)T (
fij − µ

(α)
k

)
. (2)
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METHODS (cont. . . ): SECOND ORDER MRF
FOR ICM

A second order MRF was applied in which the neighbors of
each pixel consists of its eight adjacencies, with border
pixels adjusted appropriately.

Figure: Calculation of N(α)
ij (k) for an arbitrary interior pixel (i , j)

belonging to category k .
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METHODS (cont. . . ): SAMPLE SIZE PER
CATEGORY

For a pre-specified number of n samples, the sample size
for category k equals

nk = n(0) +
(
n − K · n(0)

)
·

N(r)
k

√
ν
(r)
k

K∑
t=1

N(r)
t

√
ν
(r)
t

, (3)

where ν(r)k =
1

N(r)
k

∑∑∑
(i,j)∈C(r)

k

(
fij − µ

(r)
k

)T (
fij − µ

(r)
k

)
.
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METHODS (cont. . . ): SIMULATED
ANNEALING

Simulated annealing — optimization method to find the
global optimum of an objective function in the presence of
local optima. A fitness function φ(S) has to be minimized. A
probabilistic acceptance criterion decides whether Si+1 is
accepted or not:

Pc(Si → Si+1) =

 1 , if φ(Si+1) ≤ φ(Si)

exp
(
φ(Si)− φ(Si+1)

c

)
, if φ(Si+1) > φ(Si)

(4)
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METHODS (cont. . . ): FITNESS FUNCTION
PER CATEGORY

The initial sampling scheme for the k th category S(0)
k is a

random selection of nk [see Equation 3] points from
category k . For Sk , the fitness function equals

φMMSD(Sk ) =
1

N(r)
k

∑
(i,j)∈C(r)

k

∣∣∣∣ck(ij) −WSk (ck(ij))
∣∣∣∣ , (5)

where ck(ij) ∈ C(r)
k is a location vector denoting the (i , j)th

pixel belonging to category k and WSk (ck(ij)) denotes the
location vector of the nearest sampling point in Sk .
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RESULTS: GENERATED SEGMENTED
IMAGE

Figure: Generated segmented image.
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RESULTS (cont. . . ): OPTIMIZED SAMPLING
SCHEME

Figure: Optimized sampling scheme.
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RESULTS (cont. . . ): ORIGINAL
HYPERSPECTRAL IMAGE

Figure: Original hyperspectral image. Reflectance values for
bands 29 (0.988µm), 39 (1.727µm) and 1 (0.496µm).
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RESULTS (cont. . . ): SEGMENTED IMAGE – 8
CATEGORIES

Figure: ICM Segmented image with eight categories.
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RESULTS (cont. . . ): SEGMENTED IMAGE – 4
ROI CATEGORIES

Figure: Segmented image confining sampling regions to the four
categories.
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RESULTS (cont. . . ): OPTIMIZED SAMPLING
SCHEME

Figure: Optimized sampling locations of 50 points distributed over
4 categories.
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RESULTS (cont. . . ): DIFFERENT
VEGETATION INDICES

Normalized Difference Vegetation Index (NDVI)

NDVI =
R0.886 − R0.675

R0.886 + R0.675
(6)

Renormalized Difference Vegetation Index (RDVI)

RDVI =
R0.886 − R0.675√
R0.886 + R0.675

(7)

Modified Simple Ratio (MSR)

MSR =

(
R0.886

R0.675
− 1
)/√

R0.886

R0.675
+ 1 (8)

Soil-Adjusted Vegetation Index (MSAVI)

MSAVI =
1
2

[
(2R0.886 + 1)2 − 8(R0.886 − R0.675)

]
(9)
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RESULTS (cont. . . ): COMPARISON OF
SAMPLING SCHEMES

Mean
NDVI RDVI MSR MSAVI

Image 0.59 8.8 1.34 1.24

Optimized sampling scheme 0.58 8.6 1.32 1.22

Random sampling scheme 1 0.49 7.9 1.18 1.09
2 0.38 6.1 0.94 0.89
3 0.45 7.0 1.11 1.06

Grid sampling scheme 1 0.49 7.8 1.14 1.13
2 0.53 8.2 1.25 1.13
3 0.53 8.3 1.26 1.15
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2 Classification

3 Optimized sampling schemes case studies
Optimized field sampling for improved estimates of
vegetation indices
Optimized field sampling representing the overall
distribution of a particular mineral
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OBJECTIVE OF STUDY

Using a hyperspectral image, to guide field sampling
collection to those pixels with the highest likelihood for
occurrence of a particular mineral, for example alunite, while
representing the overall distribution of alunite.

Usefulness: To create a mineral alteration map
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SPECTRAL ANGLE MAPPER
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SPECTRAL ANGLE MAPPER (cont. . . )
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CONTINUUM REMOVAL

for vegetation [13, 27, 46].  The
convex hull transform is a method
of normalizing spectra [16, 41].
The convex hull technique is anal-
ogous to fitting a rubber band over
a spectrum to form a continuum.
Figure 5 shows the concept of the
convex hull transform.  The differ-
ence between the hull and the orig-
inal spectrum is subtracted from a
constant to obtain a hull difference.
Such a normalization of the spectra
allows the application of quantita-
tive absorption feature characteri-
zation in terms of feature depth,
surface area and asymmetry.

Figure 6 shows some examples
of the collected field spectra for
dead, stressed and healthy lodge-
pole pines.  Figure 7 shows the
first derivative of the spectra in
Figure 6.  The derivative computa-
tion tends to enhance not only the
absorption features but also the
noise [16].  Both figures clearly
show the presence/absence of
chlorophyll absorption near 680
nm in the healthy and dead lodge-
pole pine spectra, respectively.
Although the red edge [13, 16], the
steep spectral transition zone
between chlorophyll absorption at
680 nm and the high near-infrared
reflectance at 720 nm, is not very
pronounced, it is visible in the orig-
inal and derivative spectra.  Figure
6 also illustrates the effect of
increasing brightness between 1400 and 1700 nm with
respect to the reduced water content of healthy pines as
compared with dead pines.  Within the same spectral
range (about 1720 nm), absorption features associated
with lignin and cellulose can be seen for the dead pines
and litter spectra [36, 44, 48].  These features are not
visible in the case of the healthy spectrum because the

green canopy obscures the presence of woody material.
Furthermore, a convex hull transform was computed
from the field spectra and the feature-finding algorithm
[16, 24] was applied.  The results are presented in Table
1; water is the most dominant absorption feature (1900
and 1400 nm) identified by the algorithm.  Compared
with the healthy lodgepole pine, the stressed tree shows

ITC Journal 1998-1Imaging spectrometry for monitoring tree damage
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FIGURE 4 AVIRIS image cube of Mammoth Mountain (acquired on 23 August 1994
and covering an area of approximately 12 x 12 km).  X and Y axes show the geo-
graphic position in the scene; the Z axis shows the spectral bands (224).  Snow-
covered Mammoth Mountain is visible in the center of the image; Horseshoe Lake
and the largest dying tree areas are just south of Mammoth Mountain

FIGURE 5 Concept of the convex hull transform; (A) a hull fitted over the original spectrum; (B) the transformed spectrum. The
example shows a laboratory spectrum of a weathered limestone rock with absorption features for iron near 900 nm, for water
near 1400 and 1900 nm, for clay minerals near 2200 nm and for calcite near 2350 nm [16]

BA

Figure: Concept of the convex hull transform; (A) a hull fitted over
the original spectrum; (B) the transformed spectrum.
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METHODS (cont. . . ): SFF Rule Image for
Alunite

Figure: SFF fit image for alunite. Lighter areas indicate better fit
values between pixel reflectance spectra and the alunite
reference spectrum.
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METHODS: Fitness Function

Combination of SAM and SFF scaled to [0,1] is defined as

w(θ(
−→x ), τF (

−→x )) =


κ1w1(θ(

−→x )) + κ2w2(τF (
−→x )) ,

if θ(
−→x ) ≤ θt and τF (

−→x ) ≥ τ t
F

0 , if otherwise
(10)

φWMSD(Sn) =
1
N

∑
−→x ∈I

w(
−→x )
∣∣∣∣−→x −WSn (

−→x )
∣∣∣∣ , (11)
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METHODS (cont. . . ): Fitness Function

Figure: Fitness function with different weights for N = 15.
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RESULTS (cont. . . ): OPTIMIZED SAMPLING
SCHEME

Figure: Optimized sampling scheme.
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RESULTS (cont. . . ): Distribution of 40 highest
values
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Figure: Sampling scheme: 40 highest values
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RESULTS (cont. . . ): Distribution of 40
optimized sampling scheme
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Figure: Distribution of 40 optimized sampling scheme



Optimal
Sampling

Schemes for
Vegetation

and
Geological
Field Visits

Debba

Introduction

Classification

Optimized
sampling
schemes case
studies
Optimized field
sampling for
improved estimates
of vegetation indices

Optimized field
sampling
representing the
overall distribution of
a particular mineral

OPTIMIZED SPATIAL SAMPLING SCHEMES

This is a numerical measure of the quality of the sampling
design. The most common are:

Minimise the maximum kriging variance
Minimise the average kriging variance
Maximise the information in a sample variogram

Kriging variance does not depend on the observed values,
but only on the spatial structure and the location of the
sample points i.e. the only factors influencing the kriging
variance are therefore the variogram, the number of
observations and the location of the prediction point. This
means that it is possible to calculate the kriging variance
before actual sampling takes place, provided the variogram
is known or can be assumed. This feature is used to
optimise spatial sampling schemes for minimal kriging
variance.
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OPTIMIZED SPATIAL SAMPLING SCHEMES

Example

φOK(S) =
1
N

N∑
j=1

σ2
OK
(
xj |S

)
, (12)

or

φMAX(S) = max
(
σ2

OK
(
xj |S

))
, (13)

where

σ2
OK (x0) =

N∑
i=1

λi · γ (xi − x0) + Φ , (14)

where λi denotes the weight of the i th observation and Φ a
Lagrange multiplier.
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