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e Optimized sampling schemes case studies
@ Optimized field sampling for improved estimates of
vegetation indices
@ Optimized field sampling representing the overall
distribution of a particular mineral



CS|R BASICS OF SAMPLING SCHEMES

Optimal
Sampling

Schemes for @ Sample - small subset of the population of interest.

Vegetation
and

Geological @ Sample should represent the characteristics of the
Field Visits . . . .
population (parameters / distribution).

@ Draw inferences about a population based on
incomplete knowledge.
@ Distinguish between two general approaches
e Design-based Methods

@ ‘Ignore’ the spatial structure
@ Use some form of random sampling
@ Use feature space to design sample
o Model-based Methods
o Explicitly model the spatial structure
@ Selection of sample based on optimisation criterion
@ Use geographic space to design sample
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IMPORTANCE OF OPTIMAL SAMPLING
SCHEMES
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and @ Environmental studies:

Geological

Field Visits e where to sample?
Debba e what to sample?
e and how many samples to obtain?

@ Remote sensing as ancillary information in the design
of optimal sampling schemes.
@ Advantages of using remote sensing images:

e Provides a synoptic overview of a large area

Wealth of information over the entire area

In these methods sampling avoids subjective judgement
Reduces costs and saves time on the field (fewer
samples)

Introduction



OVERVIEW OF HYPERSPECTRAL REMOTE

SENSING
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Sampling Hyperspectral sensors

Schemes for @ record the reflectance in many narrow contiguous

Vegetation

Gec:ggical bands
Field Visits @ various parts of the electromagnetic spectrum (visible -
Debba near infrared - short wave infrared)
Introduction @ at each part of the electromagnetic spectrum results in
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Figure: Spectral Range



OVERVIEW OF HYPERSPECTRAL REMOTE

QIR SENSING (cont.. .)
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Figure: Pixels in hyperspectral image
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et @ No previous knowledge assumed about data.
@ Tries to spectrally separate the pixels.

Classification @ User has controls over:

@ Number of classes
o Number of iterations
e Convergence thresholds

@ Two main algorithms: Isodata and k-means



CS|R K-MEANS CLUSTERING
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@ A set number of cluster centres are positioned
randomly through the spectral space.

@ Pixels are assigned to their nearest cluster.
@ The mean location is re-calculated for each cluster.

@ Repeat 2 and 3 until movement of cluster centres is
below threshold.

@ Assign class types to spectral clusters.
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CSIR  K-MEANS CLUSTERING (cont.. . )
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Classification

B’amﬂ Qz?antﬂ ~—
(a) 1stiteration. Clus- (b) 2nd iteration. (c) N-th iteration.
ter centres are set at Centres move to the Centres have sta-
random. Pixels as- mean-centre of all bilised.

signed to the nearest
centre.

pixels in this cluster.



CSIR ISODATA
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Geological @ Extends k-means. Also calculate standard deviation for
Field Visits CIUSterS.
@ After stage 3 we can either:

e Combine clusters if centres are close.

e Split clusters with large standard deviation in any
dimension.

e Delete clusters that are to small.

@ Then reclassify each pixel and repeat.
@ Stop on max iterations or convergence limit.
@ Assign class types to spectral clusters.
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. @ Start with knowledge of class types.
@ Classes are chosen at start.
Classification @ Training regions are created for each class.

@ Ground truth used to verify the training regions.

@ Quite a few algorithms. Here we will look at:

o Parallelepiped
o Maximum likelihood




CSIR DATA

Ontimal - . .
SEiE) Training classes plotted in spectral space. In this example

SOl using 2 bands.
Vegetation
and
Geological
Field Visits
Debba
*
o
®e
Classification g
h
Built up ! .
S "o
Water [} § o8
Intertidal & e
Forest o= .
...: ) \.‘. =
Rice-crop o ofiar il
- - L]
.
Pond-culture ()
Band 1 --->




[R PARALLELEPIPED
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@ These ranges form a spectral box (or parallelepiped)
which is used to classify this class type.

Classification @ Assign new image pixels to the parallelepiped which it
fits into best.

@ Pixels outside all boxes can be unclassified or assigned
to the closest one.

@ Problems with classes that exhibit high correlation

between bands. This creates long ‘diagonal’ data-sets
that do not fit well into a box.
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CSlR MAXIMUM LIKELIHOOD
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Gomocal @ For each training class the spectral variance and
Field Visits covariance is calculated.

@ The class can then be statistically modelled with a
mean vector and covariance matrix.

@ This assumes the class is normally distributed. Which
is generally okay for natural surfaces.

@ Unidentified pixels can then be given a probability of
being in any one class.

@ Assign the new pixel to the class with the highest
probability — or unclassified if all probabilities low.
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e Optimized sampling schemes case studies
@ Optimized field sampling for improved estimates of
sampingior vegetation indices

improved estimates
of vegetation indices



CS|R OBJECTIVE OF STUDY
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Debba @ The design of the optimal prospective sampling
scheme for field visits in an agricultural study, using a
segmented hyperspectral image.

@ The optimal prospective sampling scheme will be
representative of the whole study area for various
parameters embedded by the segmentation and bands
selected for the segmentation.




R STUDY SITE
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Field Visits @ Study site — Tedej — Hungary.
e @ Crops: barely, maize, sugar beet, sunflower, alfalfa.

@ Digital Imaging Spectrometer — DAIS-7915 —
79 channel hyperspectral image.

@ Spectral range from visible (0.4 xm) to thermal infrared
(12.3 um).

@ Spatial resolution 3—20 m depending on the carrier
aircraft altitude.
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Figure: Study area in Tedej, Hajdu-Bihar area, Hungary.



CSiR  STUDY SITE (cont...)

Optimal
Sampling
Schemes for
Vegetation
and
Geological
Field Visits

Optimized field
sampling for
improved estimates
of vegetation indices

Map Scale 1:200,000

Figure: Hyperspectral image of study area in Tedej, Hajdu-Bihar
area, Hungary. Reflectance values for bands 29 (0.988 um), 39
(1.727 um) and 1 (0.496 um).




. METHODS: ITERATED CONDITIONAL

MODES (ICM) ALGORITHM
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Vegetation @ Adequate image segmentation takes into account both

and

Geologica spectral features and spatial information.
F"ED'ZIZ)':[S @ Markov Random Fields (MRF) have been useful in this
respect.

@ Foreach category k=1,2,... K, let
° Cf(") denote the set of pixels which belongs to the kth
category and C(® = [JK_, €\ the segmented image at
the ath iteration, « = 0,1,2,...,
o N denote the number of elements in C\*, i.e. the
number of pixels in the kth category at the ath iteration,

o i’ = Y f;/N be the m-dimensional mean
(ij)ect™
vector of the kth category at the ath iteration.



METHODS: ITERATED CONDITIONAL
MODES (ICM) ALGORITHM (cont. . .)
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argmkin{(n-,-—u& ) (= 1) - eI )(k)} (1)



CS|R METHODS (cont...): SECOND ORDER MRF

FOR ICM

s A second order MRF was applied in which the neighbors of
Schemes for

[t each pixel consists of its eight adjacencies, with border
S pixels adjusted appropriately.

Field Visits
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Figure: Calculation of N,;a)(k) for an arbitrary interior pixel (/, )
belonging to category k.



METHODS (cont...): SAMPLE SIZE PER
CATEGORY
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where 1) = N1(') > (fij - Mﬁ”) ' (fij - MEP)-
k- (ijecy

N = ney + (n— K- ny) -




METHODS (cont. . .): SIMULATED
ANNEALING
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Soniel  Simulated annealing — optimization method to find the
Pere global optimum of an objective function in the presence of
local optima. A fitness function ¢(S) has to be minimized. A

probabilistic acceptance criterion decides whether S;, ¢ is

accepted or not:

1. if $(Si11) < o(S))
Pe(Si — Siy1) = exp <¢’(Si) - ¢(S’+‘)> . if 9(Sip1) > ¢(S))

C



METHODS (cont...): FITNESS FUNCTION
PER CATEGORY

GIR
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el random selection of nk [see Equation 3] points from
category k. For S, the fitness function equals
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1
dwmisp(Sk) = iy > ey — We ekl - (8)

ko (ijyect)

where ¢ € Cf(r) is a location vector denoting the (i, j)th
pixel belonging to category k and Ws, (ck(;)) denotes the
location vector of the nearest sampling point in S.
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Figure: Generated segmented image.
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RESULTS (cont...): OPTIMIZED SAMPLING
SCHEME

Figure: Optimized sampling scheme.



CSIR RESULTS (cont...): ORIGINAL
- HYPERSPECTRAL IMAGE
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Figure: Original hyperspectral image. Reflectance values for
bands 29 (0.988 um), 39 (1.727 um) and 1 (0.496 um).




RESULTS (cont...): SEGMENTED IMAGE - 8
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Figure: ICM Segmented image with eight categories.
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Figure: Segmented image confining sampling regions to the four
categories.
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Figure: Optimized sampling locations of 50 points distributed over
4 categories.




RESULTS (cont...): DIFFERENT

VEGETATION INDICES

Samping @ Normalized Difference Vegetation Index (NDVI)

Schemes for

Vegetztion R0.886 _ R0.675
Gec:ggical NDVI = R R (6)
Field Visits 0.886 1+ M0.675
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@ Renormalized Difference Vegetation Index (RDVI)

Ro.sss — Ro.675 @)
v/ FRo.ggs + Ho.675

@ Modified Simple Ratio (MSR)

Ro ss6 / Ro. 886
MSR = — 1 8
< Ro 675 Ro. 675 ®

@ Soil-Adjusted Vegetation Index (MSAVI)

RDVI =

1
MSAVL = 5 [(2,:',0.886 +1)? — 8(Ro.ses — R0.675)] 9)



RESULTS (cont...): COMPARISON OF
SAMPLING SCHEMES
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Optimized sampling scheme 0.58 86 1.32 1.22

Random sampling scheme 1 0.49 79 1.18 1.09

2 0.38 6.1 0.94 0.89

3 045 7.0 1.11 1.06
Grid sampling scheme 1 0.49 7.8 1.14

2 0.53 82 1.25

w

0.53 8.3 1.26
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CS|R OBJECTIVE OF STUDY
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Using a hyperspectral image, to guide field sampling
collection to those pixels with the highest likelihood for
occurrence of a particular mineral, for example alunite, while
representing the overall distribution of alunite.

Usefulness: To create a mineral alteration map

Optimized field
sampling
representing the
overall distribution of
a particular mineral
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CS|R SPECTRAL ANGLE MAPPER (cont...)
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CSiR METHODS (cont...): SFF Rule Image for
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Figure: SFF fit image for alunite. Lighter areas indicate better fit
values between pixel reflectance spectra and the alunite
reference spectrum.




CSIR METHODS: Fitness Function
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: (11)
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Figure: Fitness function with different weights for N = 15.
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RESULTS (cont...): OPTIMIZED SAMPLING
SCHEME

Figure: Optimized sampling scheme.
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RESULTS (cont...): Distribution of 40 highest
values

Figure: Sampling scheme: 40 highest values
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RESULTS (cont...): Distribution of 40
optimized sampling scheme

Figure: Distribution of 40 optimized sampling scheme



CSIR OPTIMIZED SPATIAL SAMPLING SCHEMES

e This is a numerical measure of the quality of the sampling

sl design. The most common are:

Vegetation

and

Geological @ Minimise the maximum kriging variance
Field Visits
@ Minimise the average kriging variance
@ Maximise the information in a sample variogram

Kriging variance does not depend on the observed values,
but only on the spatial structure and the location of the
sample points i.e. the only factors influencing the kriging
variance are therefore the variogram, the number of
observations and the location of the prediction point. This
means that it is possible to calculate the kriging variance
before actual sampling takes place, provided the variogram
is known or can be assumed. This feature is used to
optimise spatial sampling schemes for minimal kriging
variance.
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CSIR OPTIMIZED SPATIAL SAMPLING SCHEMES

Optimal
Sampling Example
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Fio Vit dok (S Z (x8) (12)
Debba :
or
dwax(8) = max (o8 (x19)) | (13)
where
ook (Xo0) ZA, v (X +o, (14)

where \; denotes the weight of the ith observation and ¢ a
Lagrange multiplier.
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