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Abstract 
 
To understand the change in dispersion and orientation of clay platelets in three dimensional 
space during tensile test, neat polymer and its nanocomposite samples were studied by small- 
and wide-angle X-ray scattering (SWAXS). The samples after tensile tests were examined by 
tilting and rotating them with respect to the incident X-ray beam and also by scanning them at 
different positions. The tilt angle measurements provide better understanding on the dispersion 
and orientation of the clay platelets in nanocomposite. On the other hand, rotation and scanning 
measurements reveal details information on the orientation of polymer crystal planes due to the 
tensile stretching and percent crystallinity. Finally, the focussed ion beam electron tomography 
was employed to support the dispersion and orientation models of clay platelets proposed on the 
basis of SWAXS analyses. 
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1. Introduction 
 
The properties of clay-containing polymer nanocomposites are directly related to the properties 
of the matrix polymer, the properties of the nano-filler, the strength and nature of the interfacial 
interactions between the polymer matrix and the filler, and finally, the surface area of the 
interfacial bonds. In the case of nano-filled composite materials, the area of interfacial bond is 
determined by the aspect ratio of the dispersed particles as well as loading level. As the 
nanoparticles are more evenly dispersed in the polymer matrix, the thickness of the dispersed 
particles decreases, and as a result the aspect ratio and the effect of the filler on the matrix 
mechanical properties increase. One such nanoparticle, extensively used, is montmorillonite 
(MMT). In pristine form MMT usually contains Na+ ions and in this form it is only miscible with 
water soluble polymers. To render MMT miscible with commodity and engineering polymers, 
MMT is generally ion exchanged with alkyl ammonium or phosphonium cations to obtain 
organically modified MMT (OMMT). Alkyl ammonium or phosphonium cations lower the 
surface energy of silicate hosts and improve the compatibility with polymer matrices [1, 2]. 
 
Over the last few years, nearly all types of polymer matrices have been used for the preparation 
of nanocomposites with both pristine and organically modified clays [16], and research efforts 
have produced many interesting results, including some commercial success [7]. In this work, we 
have used poly[(butylene succinate)-co-adipate] (PBSA) as a model polymer matrix for the 
preparation of nanocomposite with OMMT. PBSA is a synthetic aliphatic polyester and is 
synthesized by the polycondensation of butane-1,4-diol in the presence of succinic and adipic 
acids with relatively low production cost and satisfactory mechanical properties equivalent to 
that of polyolefins such as polyethylene [8, 9]. The PBSA, compared with poly(butylene 
succinate) (PBS), is more susceptible to biodegradation because of its lower crystallinity and 
more flexible polymer chains. It has excellent processibility, so that it can be processed in the 
field of textiles into melt blow, multifilament, monofilament, flat, and split yarn, and also in the 
field of plastics into injection-moulded products. It is, thus, a promising polymer for various 
applications [10]. 
 
In recent publications, we have shown that the tensile properties of PBSA increased upon 
nanocomposite formation with methyl tallow bis(2-hydroxylethyl) quaternary ammonium 
modified MMT (commercially known as Cloisite®30B, C30B) [11, 12]. During that time we 
proposed that the high level interactions between the ‘CO’ groups on the PBSA backbone with 
the diols present in the C30B seem to be responsible for the concurrent improvement of the 
nanocomposites tensile properties. In a subsequent work, we used small-angle X-ray scattering 
(SAXS) and local high-resolution transmission electron microscopy (HRTEM) to understand the 
exact mechanism of enhanced tenacity in a PBSA nanocomposite containing 3 wt% C30B 
(PBSANC3) [13]. The reason behind this selection was that recent structural characterizations by 
SAXS and TEM analyses showed that in the case of PBSANC3, silicate layers have enough 
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available space to orient themselves in PBSA matrix [14]. Results showed that the enhanced 
tenacity in the case of nanocomposite is due to the orientation of the dispersed clay layers in the 
direction of the applied tensile strain [13]. Further, this orientation affects the dispersion 
characteristics in such a way that the intercalated silicate layers overlap. This allows a better 
energy-dissipation mechanism, which in turn is responsible for the concurrent improvement in 
tensile properties [13]. 

 
Now to fully understand the observed tensile properties of PBSACN3 and also to establish the 
structure-property relationship of this nanocomposite material, it is very important to visualise 
their three-dimensional (3D) structure and, in particular, the dispersion/distribution of the clay 
platelets within the PBSA matrix and the nature of the interfacial interaction between the PBSA 
and the C30B surface. In order to achieve this goal, we studied the neat PBSA and PBSANC3 
samples after tensile test using small- and wide-angle X-ray scattering (SWAXS). The samples 
were examined in SWAXS by tilting and rotating them with respect to the incident X-ray beam 
and also by scanning them at different positions. Therefore, this article deals with the following 
challenges in detail: the dispersion and orientation of clay platelets in PBSA matrix after tensile 
test, the ordered structure of polymer chains, and finally, polymer crystallinity. To support the 
SWAXS results, focused-ion-beam electron tomography was employed. 
 
2. Experimental procedure 
 
2.1. Materials and preparation of nanocomposite 
 
The PBSA used in this study is a commercial product from Showa Denko (Japan), with the 
designation BIONOLLE #3001. Details regarding PBSA physical properties can be found 
elsewhere [14]. The organoclay used in this study was Cloisite®30B (C30B), purchased from 
Southern Clay Products. The PBSA nanocomposite (PBSANC) containing 3 wt% of C30B was 
prepared in a Polylab Thermohaake-batch mixer at 135 ºC (set temperature) and a rotor speed of 
60 rpm for 8 min. The dried neat PBSA and nanocomposite strands were injection-moulded 
using an injection moulding machine (bench-top Haake Minijet II) operated at 135 °C with a 
mould temperature of 60 °C (ASTM D-638). Neat PBSA and PBSANC samples were annealed 
at 50 °C under vacuum prior to all characterizations and property measurements.  
 
2.2. Characterization techniques 
 
The tensile modulus, tensile strength, and elongation at break were measured in a tensile Instron 
88215 tester (load 5 kN) with the cross head speed of 5 cm/min [13]. The samples after tensile 
test were analysed by SWAXS. SWAXS experiments were carried out by an Anton Paar 
SAXSess instrument, operated at 40 kV and 50 mA with a point collimation geometry. The 
radiation used was a CuKα radiation of wavelength 0.154 nm (PAN analytical X-ray source). 
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Intensity profiles were obtained with a point collimated SAXSess and recorded with a two-
dimensional imaging plate. In order to understand the effect of elongation (during tensile testing) 
on the dispersion and orientation of clay platelets in the polymer matrix, PBSA and PBSANC 
samples after tensile tests (refer Fig. 1(a)) were examined with three different experimental set-
ups. The vario-stage sample holder allows to tilting (tilt angle measurement), rotating, and 
scanning samples at different positions with respect to the incident X-ray beam. The sample-to-
detector distance for tilt angle measurement, rotation, and scanning were 260.24, 250.24, and 
251.24 mm, respectively. The radius of detector curvature was 260 mm. The read-out angles 
were calculated from the pixel size, and the obtained q scale was cross-checked by measuring 
silver behenate whose equidistant peak positions are known. SAXS data were collected at room 
temperature. All samples were exposed under X-ray for 1h in order to check the dispersion 
characteristic of the silicate particles in the PBSA matrix. The thickness of the samples varied 
roughly between 0.6 to 0.9 mm.  
 
The experimental set-up for tilt angle measurement (x-axis rotation stage), z-axis rotation, and 
scanning are presented in Schemes 1, 2, and 3, respectively. According to Scheme 1, during tilt 
angle measurement the incident X-ray beam was along the x-axis, and the direction of elongation 
during tensile test was along the z-axis. As presented in Scheme 1, the samples were tilted at 
different angles (x-axis rotation at α = 0°, 36°, 60°, and 90°). Therefore, during tilt angle 
measurement the xz-plane was tilted with respect to the incident X-ray beam. During rotation 
(refer to Scheme 2), the z-axis (direction of elongation) was rotated at different angles (z-axis 
rotation at φ = 0°, 36°, 60°, and 90°). For z-axis rotation at φ = 0°, the xz-plane was turned and 
rotated compared to the position of x-axis rotation at α = 0°. Then the xz-plane was rotated at 
different φ-values. The scanning was performed at four positions (A1, A2, A3, and A4) along the 
direction of elongation (i.e., z-axis) (refer to Scheme 3). The vario-stage sample holder was used 
to perform this scanning experiment. Here the experimental set-up of the sample is similar to the 
position φ = 90°.   
 
The 3D-tomography of the tensile-tested PBSANC sample using FIB/scanning electron 
microscopy (SEM) cross beam system starts by cutting 2D-slices through the selected volume by 
milling steps and cross-section then imaged by high-resolution scanning electron microscope 
(HR-SEM) (Zeiss FIB/SEM cross beam, model Auriga) [15]. Then the 2D-images were aligned 
using cross correlation of reference markers and finally, computer reconstruction of 2D-images 
enables the 3D-morphology of the dispersed silicate layers in the PBSA matrix. Around 100 
images from more than 300 xy-cross sections were used for 3D-reconstructions. One of such xy-
cross section profile is presented in Fig. 1(b). 
 
For the preparation of cross sections using FIB, the Gallium ion beam was perpendicular to the 
sectioning plane of interest. To avoid damage, prior to the milling, the PBSACN tensile-tested 
sample was sputter coated using AuPd alloy for 2.5 min at 20 mA current. At first, a deep 2D-



5 
 

Direction of 
elongation

X-ray

α = 0° x

z

y

z

x

y

Direction of 
elongation

X-ray

α = 36° α

z

x

y

Direction of 
elongation

X-ray

α = 60° α

z

x

y

Direction of 
elongation

X-ray

α = 90° α

z

x

y

z-axis z-axis

Z – rotation angle, φ = 0° Z – rotation angle, φ = 36°

x-axis

z-axis

Direction of 
elongation

Z – rotation angle, φ = 0°

z-axis

z-axis

Z – rotation angle, φ = 60° Z – rotation angle, φ = 90°

cross-sectional surface through the sample was milled using a milling current of 4 nA. The cross-
section was then polished by employing a milling current of 600 pA. After that, 600 pA current 
was used to cut ~30 nm thick slices. 
 

 
 

 
 
 
 
 

 
 
 

 
 

 
 
Scheme 1. Variation of tilt angles of the sample with respect to the incident X-ray beam. The 
sample was fixed by the black o-ring as shown in the schematic diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scheme 2. Variation of rotation angles of the sample with respect to the incident X-ray beam. 
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Scheme 3. Variation of scanning position with respect to the incident X-ray beam. A1, A2, A3, A4 
are representing the scanning position of the sample. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. (a) Portion of sample collected for analyses after tensile tests and (b) a representative 
highly polished scanning electron microscopic image of the xy-cross section by focused ion 
beam. More than 300 of such images were collected and then 100 of them were used 3D-
reconstruction.  
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3. Results and discussion 
 
3.1. Tilt angle measurements 
 
3.1.1. Dispersion characteristics 
 
To examine the effect of elongation during tensile test on the dispersion of clay platelets, the 2D-
scattering patterns were analysed with pi-profile. The scattering patterns of neat polymer and 
composite at different tilt angles (α) are presented in parts (a) and (b) of Fig. 2, respectively. The 
pi-profile with contrast 53 was used to extract the scattering curves from the 2D-scattering 
patterns. Fig. 3 shows the normalised scattering intensity vs. scattering vector (q) plots for neat 
PBSA and PBSANC, in the small angle region. According to Fig. 3(a), for neat PBSA a peak 
appeared around 1.2 nm-1 at α = 0°. This peak is due to the ordered structure of PBSA chains. 
During tensile testing, the PBSA chains get oriented in a certain direction and form such ordered 
structures. But this peak vanishes for α = 36° and 60°. However, it reappears again as a little 
hump for α = 90°.  We have reported earlier, during SAXS measurements of compression-
moulded samples with line collimation geometry in the transmission mode, such humps appeared 
at q = 0.5 nm-1 [14]. Therefore, due to stretching during tensile test, the improvement of ordering 
in PBSA chains may produce such changes in peak position from 0.5 nm-1 to 1.2 nm-1.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. 2D scattering patterns of (a) PBSA and (b) PBSANC at different tilt angles with pi-mask.  



8 
 

0.8 1.6 2.4 3.2 4 4.8 5.6 6.4



 = 36o

 = 60o

 = 90o

In
te

ns
ity

 / 
a

.u

Scattering vector, q / nm-1

PBSA - Tilt

1.2 nm-1

10-2

10-3

a

0.8 1.6 2.4 3.2 4 4.8 5.6 6.4

 = 0o

= 36o

 = 60o

 = 90o

In
te

ns
ity

 /
 a

.u

Scattering vector, q / nm-1

1.6 nm-1

3.2 nm-1

PBSANC - Tilt

10-1

10-2

10-3

b

4.8 nm-1

6.4 nm-1

In the case of PBSANC (refer to Fig. 3(b)), a very shallow peak appeared at q = 1.6 nm-1 for α = 
0°. The other three peaks appeared at 3.2, 4.8, and 6.4 nm-1for α = 0°. The first peak appears at 
1.6 nm-1, second one at 3.2, third one at 4.8, and forth one at 6.4 nm-1, representing the 
characteristic (001) clay peak with higher order clay peaks. These clay peaks are disappearing 
when α changes from reflectance (α = 0°) to transmittance (α = 90°). For this reason, it is 
difficult to find the clay peaks in transmission mode when they are very nicely dispersed. The 
change of tilt angle gives us information about the overall dispersion characteristics of clay 
platelets in the polymer matrix. 
 
 

 

 
 
 
 
 
 
Fig. 3. Normalised scattering intensity vs. scattering vector plots for (a) PBSA and (b) PBSANC 
at different tilt angles in the small angle region. 
 
 
To have a more detailed understanding of the dispersion characteristic of the clay platelets in the 
PBSA matrix, extensive structural analyses were conducted. For this purpose, the scattering 
profiles of neat PBSA at different α-values were taken as a background and then subtracted from 
the corresponding scaled intensity vs. q curves for the PBSANC. Finally, after Porod 
extrapolation the constant background was subtracted, and the results are presented in Fig. 4a as 
ift-0°, ift-36°, and so on. Now these ift-curves for different tilt angles were analysed by the 
Generalised Indirect Fourier Transformation (GIFT) technique (details can be found in 
supporting document) [13, 14]. According to this technique, the sums of the Fourier-transformed 
spline functions whose oscillations are restricted by Lagrange multipliers (λL) give an 
approximated scattering curve. This analysis also provides some additional information, like 
p(r). p(r) is the pair-distance distribution function of the electrons; or in other words, the radial or 
spherical symmetric correlation function of electron density differences weighted by 4πr2. It 
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shows directly the probability of finding a pair of electron density at a particular distance r. The 
requirements of the GIFT technique are: specification of the number of spline functions (N) and 
the upper limit of the largest particle dimension (Dmax).  The number of spline functions (N) used 
to cover the range of p(r) was 20. For α = 36°, 60°, and 90° the value of Dmax used was 15.5 nm 
and for α = 0°, the value of Dmax used was 10.4 nm. Initially, we determined approximated 
scattering curve, for 19 different λL-values and finally, we chose a particular λL-value for which 
the approximated scattering curve is similar to the experimental scattering curve. In Fig. 4(a) 
‘APP’ stands for approximated scattering curve. As Fig. 4(a) shows, the approximated results 
match nicely with the experimental scattering curve for all the tilt angles examined. Therefore, 
the approximated pair-distance distribution function of the electrons (e.g., GIFT-0°, GIFT-36°, 
etc.) from where the scattering curve was estimated should be similar to the p(r) representing the 
experimental scattering curves (presented by e.g., ift-0°). The values of p(r) of PBSANC at 
different tilt angles are depicted in Figs. 4 (b)-(d). The regions with opposite signs of different 
electron density give negative contributions to p(r), i.e., p(r) can be negative in some regions as 
observed for the case of PBSANC at α = 0° in Fig. 4(b). The correlation maximums (i.e., the 
peak positions) represent the average radial distance to the next neighbouring domain, commonly 
known as long spacing. Therefore at α = 0°, in PBSANC stacked clay layers are mostly 
separated. With a change of tilt angles, the overlap of the clay layers due to tensile stretching 
becomes prominent. As a result, the p(r) profile changes from α = 0° to α = 36°, and so on. 
Therefore, according to Figs. 4(b)-(d), the PBSANC possesses some distinct neighbours when 
the dispersion on the surface (α = 0°) of the sample was investigated. The tensile stretching 
orients the clay platelets in such a way that the clay platelets start to overlap mainly in the core of 
the sample. 
 
Now in a way similar to the GIFT method, one can determine the electron density distribution 
profile for the dispersed clay platelets (refer to the theoretical section in supporting document as 
Appendix). The deconvolution (DECON) of approximated electron density distribution function 
provides a p(r) function as denoted by e.g., DECON-0° in Fig. 4(b)-(d). If the p(r) values 
determined by both GIFT and DECON matches nicely, one can claim the approximated electron 
density profile should correspond to the experimental scattering result. Since in Fig. 4(b)-(d), the 
p(r) determined by both GIFT and DECON matches nicely, the electron density profile presented 
in Fig. 4(e) should represent the electron density profile for ift-curves. According to Fig. 4(e), for 
α = 0° electron density has positive and negative contributions. With an increase of the α-value, 
the negative contribution in the electron density profiles decreases. Such a result again confirms 
that the information regarding the dispersion of clay platelets in the xz-plane varies with the tilt 
angle of the sample with respect to the incident X-ray beam. 
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Fig. 4. (a) Background (PBSA) subtracted scattering profile of PBSANC at different tilt angles. 
“ift” stands for experimental scattering curve after background subtraction and “APP” stands for 
approximated scattering curves determined on the basis of GIFT. (b) The pair distance 
distribution function, p(r) for PBSANC at tilt angle 0° determined on the basis of GIFT and 
DECON, (c) p(r) for PBSANC at tilt angle 36° and 60°, (d) p(r) for PBSANC at tilt angle 90°, 
and (e) electron density profile of PBSANC at different tilt angles determined on the basis of 
DECON. 
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3.1.2. Orientation of dispersed clay platelets 
 
In a densely packed system of particles, the positional ordering can develop a preferential 
orientation with respect to each other, especially when the particles are not spherical. The degree 
of orientation can be detected easily from the two dimensional (2D)-SAXS patterns. Usually, the 
arc-profile is used to determine the orientation of crystals in a certain basal plane. Parts (a) and 
(b) of Fig. 5, respectively, represent the 2D-SAXS patterns of neat PBSA and PBSANC with the 
variation of tilt angles. Both samples after tensile test show a scattering pattern similar to the 
oriented sample. The scaled normalised scattering profiles (determined on the basis of the arc-
mask shown in Fig. 5) against the orientation angle for both samples at different α-values are 
presented in Fig. 6. In order to get information on the orientation of the dispersed clay layers, the 
scattering profile of PBSA was subtracted from that of PBSANC. The background-subtracted 
scattering profiles are depicted as PBSANC-SBG in Fig. 6. Again, the degree of anisotropy (doa) 
and the mean orientation direction from azimuthal scattering profiles (refer Fig. 6) were 
estimated according to the programme “tdoa” (refer to the theoretical section in supporting 
document) and calculated values are presented in Table 1. According to Fig. 6 and Table 1, for 
all α-values, PBSA chains are oriented at an angle ~0° or 180° and the clay layers are oriented 
perpendicular to the polymer chains. But the intensity of the clay peak is highest at α = 0°, and it 
reduces as α increases. It should be noted that the assumption used for the whole analysis was 
that clay platelets are infinitely long and we are considering the thickness cross-section profile of 
the clay platelets. Therefore, this analysis indicates, at α = 0° most of the thickness cross-section 
profiles of the clay layers get oriented perpendicular to the xz-plane as demonstrated in Fig. 7, 
and the polymer chains are oriented along the xz-plane. If we probe the sample along the 
thickness of the sample (e.g., α = 90°) (refer to Fig. 7), only a few thickness cross-section 
profiles of the clay layers are there oriented parallel to the xz-plane. However, most of the clay 
layers are oriented perpendicular to the xz-plane. Therefore, during tensile stretching mostly on 
or next to the surface of the sample, clay platelets get oriented perpendicular to the xz-plane.  
  
 
3.1.3. Crystalline region 
 
Parts (a) and (b) of Fig. 8 show the normalised scattering intensity vs. scattering vector (q) plots 
for neat PBSA and PBSANC, respectively, in the wide angle region. According to Fig. 8(a), 
there are four peaks in the crystalline region of neat PBSA. These peak positions remain 
unaltered with the variation of tilt angles. PBSANC shows results similar to neat PBSA (refer to 
Fig. 8(b)). Therefore, the crystal forms of neat PBSA remain the same after preparation of 
nanocomposite.  
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Fig. 5. 2D scattering patterns of (a) PBSA and (b) PBSANC at different tilt angles with arc-
mask. 
 
 
3.2. Rotation 
 
3.2.1. Orientation of polymer chains 
 
To obtain a more detailed understanding about the dispersion and orientation of the clay platelets 
in PBSANC, both neat PBSA and PBSANC samples after tensile test were characterized 
according to Scheme 2 (refer the Experimental procedure section). The 2D-scattering patterns 
were first analysed with pi-profile as demonstrated in Fig. 9. The scattering patterns of neat 
PBSA and PBSANC at different rotation angles (φ) extracted from these 2D-images are 
presented in Fig. 10. The contrast was kept the same as the tilt analysis to extract the scattering 
curves from the 2D-images. The normalised scattering intensity vs. q plots for neat PBSA and 
PBSANC in the WAXS region are presented in Fig. 11. According to Fig. 10(a), for neat PBSA 
a sharp peak appeared around 0.8 nm-1 at φ = 0°. As mentioned earlier, this peak is due to the 
ordered structure of PBSA chains. During tensile testing, the polymer chains get oriented in a 
certain direction and form such ordered structures. But the intensity of this peak decreases with 
increases in the value of the rotation angle from 0° to 90°. This fact suggests that most of the 
polymer chains get oriented in the direction depicted by φ = 0°. A similar result can be observed 
for PBSANC (refer Fig. 10(b)). Therefore, this rotation experiment mainly provides information 
on the orientation of the PBSA chains. 
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Now the orientation of crystals in a certain basal plane was determined by using an arc-mask for 
the same 2D-scattering patterns. The 2D-images with arc profile are presented in Fig. 12. In Fig. 
13 the normalised scattering intensity for the masked region was plotted against the orientation 
angle. According to this figure it is clear that PBSANC has an intercalated structure since PBSA 
and clay peaks appeared alternately. Again, for all the rotation angles examined the orientation of 
neat PBSA and PBSANC always remained orthogonal.  
 
 

 

 
 
 
Fig. 6. Normalised scattering profiles (determined on the basis of the arc mask presented in Fig. 
4) plotted against the orientation angles at different tilt angles. SBG indicates the background 
(PBSA) subtracted scattering profile. 
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Table 1. The degree of anisotropy (doa) and the mean orientation direction determined on the 
basis of tilt angle measurements. 
 

Sample Tilt angle / degree Degree of anisotropy / % Orientation angle / degree 

 

PBSA 

0 67.3 0 

36 70.0 0.6 

60 72.1 0.8 

90 74.7 1.5 

 

PBSANC 

0 53.0 90.1 

36 39.1 91.0 

60 29.8 94.7 

90 26.4 100.1 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
Fig. 7. Schematic representation of the orientation of polymer chains and dispersed clay layers at 
tilt angle 0° and 90°.  
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Fig. 8. Normalised scattering intensity vs. scattering vector plots for (a) PBSA and (b) PBSANC 
at different tilt angles in the wide angle region (determined on the basis of pi-profile). 
 

 
 
 
Fig. 9. 2D scattering patterns of (a) PBSA and (b) PBSANC at different rotation angles with pi-
mask.  
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Fig. 10. Normalised scattering intensity vs. scattering vector plots for (a) PBSA and (b) 
PBSANC at different rotation angles in the small angle region. 
 
 
 
 
 

 

 

 
 
 
 
 
Fig. 11. Normalised scattering intensity vs. scattering vector plots for (a) PBSA and (b) 
PBSANC at different rotation angles in the wide angle region (determined on the basis of pi-
profile). 
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Fig. 12. 2D scattering patterns of (a) PBSA and (b) PBSANC at different rotation angles with 
arc-mask. 
 
3.2.2. Crystalline region 
 
The most important observation from this rotational test is that the intensity of polymer peak in 
the wide angle region increases with variation of φ from 0–90° (refer Fig. 11). However, as 
mentioned earlier, in the small angle region the intensity of polymer peak decreases with the 
variation of φ from 0–90°. It is well-known that according to the reciprocity theorem of 
scattering big structures scatter in the small angle side and smaller ones to the higher angle side. 
Therefore, the reduction of polymer peak intensity in the small angle side is attributed to the fact 
that the overlapping of polymer chains responsible for the ordered structure decreases when the 
sample was rotated from φ = 0° to 90°. In the case of PBSANC, the ordering of polymer chains 
can be viewed only for the position φ = 0° and 36°.    
 
Now we can ask a very simple question: why does the intensity variation of the polymer crystal 
peak with change in rotation angle differ in small and wide angle regions for both samples? 
According to Fig. 11 the crystal peak position of neat PBSA remained unchanged after 
nanocomposite preparation. This indicates both samples possess the same type of crystal lattices. 
But the information of these crystalline planes can be obtained distinctively for φ = 90°. The 
reason behind this can be understood easily from the drawing presented in Fig. 14, where at φ = 
0°, the X-ray probes through the xz-planes in such a way that it gets scattered from the ordered 
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structure of polymers and a few stacked clay layers. However, at φ = 90° the X-ray interacts 
more with the crystalline lattices of polymer. For this reason, the intensity of the polymer crystal 
peak is higher in the wide angle region at φ = 90°, but not at φ = 0°. On the other hand, the 
polymer peak in the small angle region, due to ordered polymer chains, becomes more prominent 
at φ = 0°, but not at φ = 90°. 
 
 
 
 

 
 

 
 
 
 
Fig. 13. Normalised scattering profiles (determined on the basis of the arc mask presented in Fig. 
12) plotted against the orientation angles at different rotation angles. 
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Fig. 14. Schematic representation of the orientation of polymer chains and dispersed clay layers 
at rotation angle 0° and 90°.  
 
3.3. Scanning at different positions 
 
Scanning the samples at different positions along the direction of elongation allows us to see the 
effect of unidirectional stretching (during tensile test) on the dispersion of clay platelets in the 
polymer matrix. This experiment also provides some information on the crystallinity of neat 
PBSA and PBSANC after tensile tests. 
 
3.2.1. Effect of unidirectional stretching on the periodic arrangements of polymer chains and 
dispersed clay layers. 
 
The 2D-scattering patterns of neat PBSA and PBSANC at different scanning positions (A1, A2, 
A3, and A4) with pi-profile are presented in Fig. 15. The scattering patterns of neat polymer and 
composite at different positions extracted from these 2D-images are shown in Fig. 16 and 17. 
The contrast was kept the same as in the tilt analysis to extract the scattering curves from the 2D-
images. Parts (a) and (b) of Fig. 16, respectively, show the normalised scattering intensity vs. q 
plots for neat PBSA and PBSANC, in the small angle region. It is interesting to note that two 
distinctive peaks at 0.8 and 1.2 nm-1 appeared in Fig. 16(a), especially for scanning positions A3 
and A4. These peaks are due to the periodic arrangements of PBSA chains in the direction of 
elongation. Since the positions A3 and A4 are closer to the stretching site, the regular 
arrangements of polymer chains are more prominent there. Anyway, the first crystal peak at 0.8 
nm-1 can also be detected by the rotation experiment and the second one (at 1.2 nm-1) by the tilt 
angle measurement. As expected, these peaks are not as sharp as the results obtained during the 
rotational experiment at φ = 90°. 
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According to Fig. 16(b), the clay peak at 3.2 nm-1 appeared for all the scanning positions 
examined. But the intensity of this peak is highest at position A1, and it decreases as one move 
towards position A4. Therefore, it is clear that the periodic arrangement or the stacking of 
dispersed clay layers reduces slightly near the stretching site compared to the fixed clamp site 
during tensile testing. 

 
Fig. 15. 2D scattering patterns of (a) PBSA and (b) PBSANC at different scanning positions with 
pi-mask. 
 

 

 
 
 
 
 
Fig. 16. Normalised scattering intensity vs. scattering vector plots for (a) PBSA and (b) 
PBSANC at different scanning positions in the small angle region. 
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3.3.2. Crystalline region 
 
Figs. 17(a) and (b), respectively, show the normalised scattering intensity vs. scattering vector 
(q) plots for neat PBSA and PBSANC, in the wide angle region. According to these figures the 
crystal forms of neat PBSA after tensile test remained unaltered in PBSANC after tensile test. In 
order to estimate roughly the percent crystallinity, the area under the normalised curves were 
calculated within the q-value range 829 nm-1. The estimated percent crystallinity values are 
tabulated in Table 2. According to this table, the percent crystallinity in PBSA after tensile test is  
~5% and that in PBSANC under the same condition is ~4%. Therefore, the percent crystallinity 
decreases slightly in PBSANC. Because of the even dispersion of the clay platelets in the PBSA 
matrix, the overall crystal growth gets hampered [16] and as a result, the percent crystallinity 
decreases slightly. Usually, the decrease in crystallinity is inversely proportional to the 
biodegradability [17]. Therefore, it is expected from this SWAXS result that biodegradability 
should increase slightly in PBSANC compared to the neat PBSA.   
 
 

 

 
 
 
 
 
 
Fig. 17. Normalised scattering intensity vs. scattering vector plots for (a) PBSA and (b) 
PBSANC at different scanning positions in the wide angle region (determined on the basis of pi-
profile). 
 
3.4. Structural characterisation by focus ion beam electron tomography 
 
In order to support the conclusions drawn on the basis of SWAXS analyses (especially Figs. 7 
and 14), FIB-electron tomography was employed. The 3D-reconstruction from the cross-
sectional images provides the information of dispersion and orientation of clay platelets in the 
PBSA matrix. The 3D-reconstructed images at different planes of PBSANC sample (after tensile 
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tests) are presented in Fig. 18. The first observation on the basis of this figure is that the 
dispersed clay platelets are oriented along the z-axis, i.e., the direction of elongation during the 
tensile test. The second observation is that the thicknesses of the clay layers are in xy- and yz-
planes. The surface of the clay platelets are in the xz-plane. 
 
Therefore, Fig. 18 strongly supports the models on the dispersion and orientation of clay platelets 
proposed on the basis of SWAXS analyses (Figs. 7 and14). But SWAXS studies provide extra 
information on the crystal planes of polymer, ordered structure of polymer chains, and also the 
percent crystallinity. 
 

Table 2. Estimated percent crystallinity in PBSA and PBSANC after tensile test. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 18. The 3D-reconstructed images at different planes of the PBSANC sample by focused ion 
beam scanning electron microscope. 

Sample Scanning position Percent crystallinity / % 

 

PBSA 

A1 4.98 

A2 4.70 

A3 5.06 

A4 4.72 

 

PBSANC 

A1 4.44 

A2 4.37 

A3 4.13 

A4 3.85 
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4. Conclusions 
 
This work reports on the dispersion characteristics and orientation of clay platelets in a polymer 
nanocomposite after tensile test, the ordered structure of polymer chains, and their crystallinity. 
All these aspects were analysed using SWAXS by tilting, rotating, and scanning the samples at 
different planes and supported by FIB-tomography studies. Results show that the clay platelets 
dispersed in PBSA matrix get oriented in the direction of elongation during tensile test and the 
PBSA chains get oriented orthogonally to the clay layers. However, tilting the sample at different 
angles with respect to the incident X-ray beam provides more information on the dispersion and 
the orientation of clay layers, which are delaminated in PBSA matrix. The rotation of samples at 
different angles with respect to the incident X-ray beam provides information on the ordered 
arrangement in PBSA chains and also on the crystal planes. On the other hand, scanning samples 
at different positions allows estimating the percent crystallinity present in the sample. The FIB-
tomography results support the conclusions drawn on the basis of tilt angle measurements. 
However, the rotation and scanning measurements provide extra information on the crystal 
planes of polymer chains, their ordered structure, and crystallinity. 
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1. The Relationship between Bragg condition and reciprocal lattice  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
The small angle X-ray scattering (SAXS) is a powerful tool used to determine the size, shape, 
and internal structure of the particle system of sizes ranging from 1 to 100 nm. The SAXS 
analysis is mainly applicable for randomly oriented and statistically distributed particle systems. 
Hence, their three-dimensional scattering pattern represents the orientational average of their 
structure. Only in the case of three types of ideal symmetries; i.e., for spherical, cylindrical, and 
lamellar structures with a centrosymmetric scattering length density distribution, there is no loss 
of information due to the orientational averaging [1].  
 
The scattered waves are usually coherent. Although some incoherent scattering (Compton) is 
also present, it can be neglected since only small angles are involved in our study. Coherence 
means the intensity can be obtained by the absolute square of the sum of the amplitudes. The 
amplitudes remain same in magnitude for all the scattered waves; however there exists a phase 
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Fig. 1 The relationship between the Bragg condition and 
reciprocal lattice determined on the basis of Ewald sphere. 
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difference which depends on the position of electrons in space. Conventionally, a single 
secondary wave can be represented by e-iφ; where the phase φ is (2π/λ) times the path difference. 
Now let’s use the concept of a Ewald sphere where one particle is located at the centre O and 
another at position R. Usually, the relationship between the Bragg condition and reciprocal 
lattice can be explained by Ewald sphere. The incident beam is represented by a unit vector s0 

and scattered beam by s. According to Fig. 1, the path difference is  
 

).(.. 00 ssrsrsrab                               (1) 

 
Now according to Fig. 1,  
 
  sin20  ss                               (2) 

 
Where, 2θ is the scattering angle. 
 
Hence the phase difference is, 
 

  rqrssr  
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




sin
4

.
2

0                            (3) 

 
The vector q is known as reciprocal lattice vector and is perpendicular to the plane of the particle 
from where the scattering is taking place. Therefore, a single secondary wave can be represented 
by e-iφ = e-iqr. 
 
Now the total scattered field (Es(q)) can be obtained by integrating over whole illuminated 
scattering volume (v), 
 

    drerconstqE iqr

v

s
                                 (4) 

The electron density ρ(r) can be expressed in terms of its mean value (  ) and its fluctuation 
Δρ(r) as, 
 
   rr                                   (5) 

 
The Fourier integral is linear, so equation (4) can be rewritten as, 
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The integration containing the term   over the total volume acts as a homogeneous object and 
much too large to make any contribution to the diffraction pattern. Hence, this term drops out 
right from the beginning. Then Es(q) reduces to, 
 



28 
 

    drerqF iqr

v

                                  (7) 

The intensity is given by the square of the amplitude, 
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Substitute rrr  12  and introduce the convolution square or auto correlation function defined 
by, 
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2~ drrrrrr

v

                                (9) 

 
      where, r = (r1 – r2) = constant 
 
The auto correlation function is calculated by shifting the ghost particle by a vector r and 
integrating the overlapping volume (since it is necessary to average over all possible direction in 
space).  
  
Then equation (8) reduces to, 
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Now there are two restrictions in the small angle X-ray scattering, 
 
      (i) The system is statistically isotropic. It makes no difference here whether this is a property 
of the structure itself or a consequence of change of time (like rotation of particles). 
 
      (ii) There exists no long range order; i.e., there is no correlation between the two points 
separated wide enough. 
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Now replace 
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where q is the scattering vector and can be related to the scattering angle (θ) and wavelength (λ) 
by equation (12). 
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 The p(r) in equation (3.11) represents a pair-distance distribution function of the electrons; or in 
other words, the radial or spherical symmetric correlation function of electron density differences 
weighted by 4πr2. It shows directly the probability of finding a pair of electron densities at a 
particular distance r. All the information available from the experimental curves in the small 
angle region is in reciprocal space since q α 1/λ. Therefore, it is difficult to get direct information 
about the form and structure factors of the particles.  
 
 
2. The form and structure factors  
 
      The form and structure factors can be explained as follows: Let us consider a composite 
particle consist of sub-particles with a fixed orientation. The positioning of the centres of mass of 
the sub-particles may be designated by r1, r2… rj…… rN. The scattered wave’s amplitudes from 
these sub-particles can be designated by (with respect to each centre) F1, F2 ….., Fj ….., FN. The 

positions of the sub-particles are each accounted for by an additional phase factore jiqr
. 

Therefore, the total amplitude of the composite particle is  
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In general, each amplitude will have a phase too,  
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Then the intensity is  
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The double sum contains N terms with j=k, the phase factor consequently vanishing. The 
remaining term with j≠k represent the interference between the sub-particles according to the 
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relative distance rjk = (rj- rk). Since each pair is counted twice with rjk = - rkj, only the real part is 
accountable. Therefore, the intensity contribution with j=k can be considered as form factor and 
that with j ≠ k can be considered as structure factor. 
 
 
3. The Generalized Indirect Fourier Transformation method (GIFT)  
  
      The real space transformation of the SAXS data (after desmearing) by inverse Fourier 
transformation (IFT) of the Fredholm integral equation (see equation (11)) can determine the 
parameters such as p(r); from where the form factor and structure factor can be evaluated. But 
doing IFT is impossible here because of the termination effect of q-scale and the influence of a 
remaining background scattering. These may cause some strong artificial oscillations (“Fourier 
ripples”) in the p(r) function and make the analysis useless [2, 3]. At small q-values the 
measurement is limited by the unscattered primary beam and at large q-values by the progressive 
decrease of the signal-to-noise ratio. The scattered intensity is usually determined at discrete 
points. According to the counting statistics, the standard deviation of each data point is equal to 
the square root of the number of pulses registered by the counter. The termination effect can be 
reduced by the extrapolations of the scattering curve. For example, the Guinier approximation 
can be used to extrapolate the scattering curve toward a zero angle provided the first data point is 
measured at a very small angle. The extrapolation toward a large angle can sometimes be 
performed with Porod’s law. But the termination effect can be minimized by the indirect Fourier 
transformation method developed by Glatter [4-6]. In most cases researchers are interested in 
studying the structure of particles dispersed in solution and to avoid background scattering the 
solvent is taken as a background, and then the I(q) of the solvent is subtracted from the I(q) of 
the solution. In the case of polymer nanocomposite, in order to get information about the 
dispersed nanoparticles, the pure polymer should be taken as a background and subtracted from 
the scattering intensity of the nanocomposite. The indirect Fourier Transformation takes into 
account the following factors: single-step procedure, optimized general function system, 
weighted least square approximation, error propagation, minimization of the termination effect, 
and consideration of the physical smoothing condition given by the maximum intra-particle 
distance [7]. Therefore, for smoothing conditions it is necessary to estimate the upper limit of the 
largest particle dimension, i.e. Dmax. Therefore, if  
 
r ≥ Dmax,    p(r) = 0                                                    (16) 
 
Now, a function system should be defined in the range 0 ≤ r ≤ Dmax and a linear combination of 
these functions should provide the p(r). Therefore,  
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where the suffix “A” denotes only that this p(r) is approximated. N is the number of functions 
and should be chosen sufficiently in order to cover the range 0 ≤ r ≤ Dmax; cυ is an unknown and 
can be determined by a weighted least square approximation of the experimental data.  υ(r) are 
chosen as cubic B-spline functions, and they can be defined as multiple convolution products of a 
step function, representing curves with a minimum second derivative. Each individual spline 
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function can be subjected to Fourier transformation (T1), wavelength integral (T2), slit-length 
integral (T3), and slit-width integral (T4). The intermediate result after Fourier transformation of 
all the splines represents the scattering intensity without the collimation effect corresponding to a 
distance distribution  υ(r). Therefore, the intensity without the collimation effect [  q ] can 

be expressed as 
 

  )(1 rTq                                                           (18) 

 
The smeared intensity (i.e., after adding the collimation effect) can be obtained after execution of 
T2, T3, and T4 as 
 

  )()( 1234234 rTTTTqTTTq                                                        (19) 

 
So )(q represents the approximated scattering data from a particle with maximum distance, 
Dmax. The next step is the stabilization of these coefficients. The stabilized least squares 
condition is given below 
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Here, q1 and q2 are the first and last data points, Iexp(q) is the experimental intensity, σ2 is the 
estimated variance of the observed intensity, and λL is known as the stabilization parameter or 
Lagrange multiplier [2, 4, 5]. The optimum fit to the observed data points is given by 
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IA(q) represents the approximated scattering curve, which should be similar to the experimental 
curve, Iexp(q). Therefore, it can be concluded that the approximated distance distribution function 
[pA(r)] represents the p(r) for the experimental curve. 
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      In this study, we used the GIFT method to evaluate the p(r), which is consistent with the 
experimental scattering curve. Fig. 2 is the representative diagram of GIFT method for spherical 
particle. Here we consider p(r) consists of N number of cubic B-spline functions. p(r) shows 
directly the probability of finding a pair of electron densities at a particular distance ‘r’. 
Therefore, each spline function can be considered as a distance between a pair of stacked silicate 
layers.  
 
      The beauty of the GIFT method is that the form and structure factors can be determined 
simultaneously from the measured scattering data with the correction for the instrumental 
broadening effect [8, 9, 10]. Therefore, to evaluate the p(r) from the scattering curve, one has to 
consider the value of N, Dmax, and λL. If there is a difference between IA(q) and Iexp(q), then it is 
necessary to consider the effect of the structure factor.  
 
      Dmax need not to be a perfect estimation of D. For rough estimation, Dmax ≤ (π / q1), where q1 

is the lowest scattering angle. A theoretical limitation for the number of functions N= Nmax 
follows from the sampling theorem. The main idea of the indirect Fourier transformation 
technique is to start with a large number of coefficients to guarantee a sufficient representation of 
the distance distribution function. For rough estimation, Nmax ≤ (q2.Dmax / π), where, q2 is the 
maximum scattering angle. The stabilization parameter restricts the oscillation of the spline 
functions, in other word, oscillation of p(r). It should be chosen in such a way that the 
approximated scattering curve (determined on the basis of the p(r)) posses similar nature as the 

r

  )(
1

rcrp
N

A 







r

Cubic B-spline functionsFourier transformed splines
(T1 represents Fourier 

transformation) 

  )(1 rTq  

q

q

)(
1

rc
N




)(
1

rc
N






p A
(r

 )

I A
(q

)-
de

sm
ea

re
d

Scattering 
intensity without 
collimation effect

I A
(q

)

q


10 

20

)()( 1234 rTTTTq   

Smeared Fourier transformed splines

(T2, T3, T4 represents respectively wavelength, 
slit-length and slit-width integrals)

)(
1

rc
N




 

F
it

to
 th

e
 e

xp
er

im
en

ta
l s

ca
tte

ri
ng

 c
ur

ve

IA = .APP

Iexperimental = .ift

Approximated 
scattering curve similar 
to experimental curve

q


10


1


20


20

 10

r

  )(
1

rcrp
N

A 







r

Cubic B-spline functionsFourier transformed splines
(T1 represents Fourier 

transformation) 

  )(1 rTq  

q

q

)(
1

rc
N




)(
1

rc
N






p A
(r

 )

I A
(q

)-
de

sm
ea

re
d

Scattering 
intensity without 
collimation effect

I A
(q

)

q


10 

20

)()( 1234 rTTTTq   

Smeared Fourier transformed splines

(T2, T3, T4 represents respectively wavelength, 
slit-length and slit-width integrals)

)(
1

rc
N




 

F
it

to
 th

e
 e

xp
er

im
en

ta
l s

ca
tte

ri
ng

 c
ur

ve

IA = .APP

Iexperimental = .ift

Approximated 
scattering curve similar 
to experimental curve

q


10


1


20


20

 10

Fig. 2 The representative diagram of generalized indirect Fourier transformation (GIFT) 
method for spherical particle 



33 
 

experimental scattering curve. Then only one can conclude the p(r) related to the approximated 
scattering curve is the same as for the experimental scattering curve. 
 
 
3. Determination of structure factor by applying modified Caillé theory conjugated with 
GIFT 
 
      The structure factor is determined according to the GIFT by using the modified Caillé theory 
for the lamellar phase. There are two theories that are applicable for the lamellar systems. The 
paracrystalline theory, a general theory for disorder of the first and second kind was developed 
by Hosemann & Bagchi [11] and Guinier [12]. This was the first attempt to deal with the 
disorder in multilamellar arrays. The paracrystalline theory of the first kind assumes that there 
are stochastic distance fluctuations around the well-defined mean layer positions of equal 
separation; i.e., the long range order is maintained. The paracrystalline theory of the second kind 
describes the fluctuations of bilayer separations relative to the nearest neighbors of ideally flat 
bilayers. These fluctuations are not correlated and the long-range periodic order collapses [12]. 
On the other hand, the Caillé theory developed on the basis of thermodynamic theory of 
DeGennes for the smectic liquid crystal is preferable because it takes into account the bending of 
the bilayers in addition to fluctuations in the mean spacings between bilayers [13]. The modified 
Caillé theory proposed by Zhang et al. takes into account the finite size of the lamellar stack [14, 
15]. This modification does not affect the quantitative results obtained by the original Caillé 
theory, but the modification is necessary to obtain better quantitative fits to the data and 
particularly for extracting the correct form factor, which could be used later to obtain an electron 
density profile. 
 
As long as the bilayer is unilamellar, there exists a direct relationship between the electron 
density profile in the perpendicular direction to the midplane of the bilayer and the form factor. 
The lateral arrangement of multilamellar bilayers is represented by the structure factor and can 
be determined by either the paracrystalline or Caillé theory with a few parameters. It is necessary 
to assume either a form factor or a structure factor for the evaluation of the scattering data 
according to the paracrystalline or modified Caillé theory.  
 
 Frühwirth et al. implemented the modified Caillé theory on the GIFT in order to analyze the 
stacked lamellar systems [16]. This model is defined by three parameters: the number of 
coherently scattering bilayers (n), the repeat distance (d) of bilayers, and the Caillé parameter 
(η1). According to the modified Caillé theory, the structure factor can be expressed as  
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where γ is the Euler’s constant (= 0.5772). Again, the Caillé parameter η1 can be expressed as 
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where, q=(2π/d)                           (26) 
 
Kc is the bending modulus and B is the bulk modulus for compression. Since the two moduli 
can’t be determined independently from the scattering data, one can consider η1 as a measure of 
flexibility of the bilayers. According to the author, increasing the number of bilayers cause 
higher and narrower peaks, and increasing the Caillé parameter leads to a faster decay of the 
peaks of higher order.  
 
 
4. Determination of electron density distribution profile  
 
The electron density for the lamellae can be written as (provided one assumes the lamellae are 
homogeneous along the basal plane) 
 

)(.)( 0 xr t                                                                             (27) 

 
Here, ρ0 is a constant and x is the normal distance from the central plane in the lamellae. 
Therefore, ρt(x) represents the electron density along the thickness cross-section profile. There 
are two different ways to determine the electron density profile. In the conventional method, one 
has to determine the scattering amplitude from the scattering intensity by a simple square root 
operation. However, the main problem is the determination of the right sign—the so-called phase 
problem. The second method is the estimation of the electron density from the distance 
distribution function by a convolution square root technique. This method doesn’t suffer from the 
phase problem. Hosemann & Bagchi and Engel [11] showed that for the lamellar system, the 
convolution square root has a unique solution (except for a factor ±1) if the function has a finite 
range of definition and the function is symmetrical. Glatter used the convolution square root 
method in a different way. He deconvoluted the approximated electron density distribution in 
order to get the distance distribution function for the highly symmetric systems (sphere, cylinder, 
or lamella). According to him, the electron density is approximated in its range of definition by a 
linear combination of a finite number of functions that have to be linearly independent in this 
range and can be expressed as  
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where N is the number of functions, r is the normal distance from the center of symmetry, )(ri
is the equidistant step function (cubic B-spline of zero order) with a width ΔR allowing the 
analytical integration of the overlap integrals, and ci is the height of the step functions. Equation 
(28) corresponds to a nonlinear distance distribution function (presented in equation (3.29)), 
which can be solved by an interactive stabilized way to describe the p(r) function obtained from 
indirect Fourier transformation / GIFT [6, 7, 17]. 
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 Now if there is some deviation from the high symmetry, which is known as the polydispersity of 
the sample, then the p(r) determined by the deconvolution (DECON) method (done by DECON 
software) will be slightly different than the p(r) determined from GIFT. By estimating the 
amount of polydispersity one can achieve the best matching in p(r) determined by GIFT and 
DECON. Therefore, the electron density distribution derived from DECON should represent the 
experimental scattering curve. 
 
 
5. Calculation of degree of anisotropy and mean orientation angle  
 
In a densely packed system of particles, the positional ordering can develop a preferential 
orientation with respect to each other, especially when the particles are not spherical. The degree 
of orientation can be detected easily from the 2D SAXS patterns. An arc-profile is usually used 
to determine the orientation of crystals in a certain basal plane. The tdoa program uses the 
following equations to evaluate the degree of anisotropy and the mean orientation angle from 
azimuthal scattering profiles [18, 19]. 
 
A point on the azimuthal scan can be presented by a unit vector, u, such that u1 = cos β and u2 = 
sin β, where β is the azimuthal angle. The anisotropy in the X-ray scattering pattern can be 
obtained by the weighted average of the second moment tensor of ‘u’ as 
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Here, <…..> represents an average weighted by the azimuthal intensity distribution and         
<cos2 β > can be expressed as 
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The difference in eigenvalues (λ1 – λ2) of <uu> gives a measure of the anisotropy factor and can 
be expressed as 
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The degree of anisotropy determined by the tdoa program is (λ1 – λ2) in percent. 
 
The mean orientation angle or the average domain orientation angle can be expressed as 
 
 



36 
 













 

2211

211 2
tan

2

1

uuuu

uu
                                                                                 (33) 

 
 
_____________________ 

References 
 
[1] Mittelbach R, Glatter O. Direct structure analysis of small-angle scattering data from 
polydisperse colloidal particles. J Appl Cryst 1998; 31: 60008.  
 
[2] Glatter O, Kratky O. Small Angle X-ray Scattering, Academic Press, London 1982. 
 
[3] Schnablegger H, Singh Yashveer. A Practical Guide to Small Angle X-ray Scattering. 
Austria, Anton Par GmbH; 2006. 
 
[4] Glatter O. A new method for the evaluation of small-angle scattering data. J Appl Cryst 1977; 
10: 41521. 
 
[5] Glatter O. Data evaluation in small-angle X-ray scattering: Calculation of the radial electron 
density distribution by means of Indirect Fourier Transformation. Acta Phys Austriaca 1977; 47: 
83102. 
 
[6] Glatter O. Convolution square root of band-limited symmetrical functions and its application 
to small-angle scattering data. J Appl Cryst 1981; 14: 10108.   
 
[7] Glatter O. Comparison of two different methods for direct structure analysis from small-angle 
scattering data. J Appl Cryst 1988; 21: 88690.  
 
[8] Bergmann A, Fritz G, Glatter O. Solving the generalized indirect Fourier transformation 
(GIFT) by Boltzmann simplex simulated annealing (BSSA). J Appl Cryst 2000; 33: 121216. 
 
[9] Brunner-Popela J, Glatter O. Small-angle scattering of interacting particles. I. Basic 
principles of a global evaluation technique. J Appl Cryst 1997; 30: 43142.  
 
[10] Weyerich B, Brunner-Popela J, Glatter O. Small-angle scattering of interacting particles. II. 
Generalized indirect Fourier transformation under consideration of the effective structure factor 
for polydisperse systems. J Appl Cryst 1999; 32: 197209.  
 
[11] Hosemann R, Bagchi SN. Direct Analysis of Diffraction by Matter. Amsterdam, The 
Netherlands: North-Holland, 1962. 
 
[12] Guinier A. X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies. 
General Publishing Company, Ontario, Canada, 1994. 
 



37 
 

[13] Caille´ A, Seances CR. Acad. Sci. Ser. 1972, B274, 891. Also see the erratum in Gennes 
PG, The Physics of Liquid Crystals ~Oxford University Press, London, 1974, p. 336, Ref.20. 
 
[14] Zhang R, Suter RM, Nagle JF. Theory of the structure factor of lipid bilayers. Phys Rev E 
1994; 50: 504760. 
 
[15] Zhang R, Tristram-Nagle S, Sun W, Headrick RL, Irving TC, Suter RM, Nagle JF. Small-
angle x-ray scattering from lipid bilayers is well described by modified Caillé theory but 
not by paracrystalline theory. Biophysical J 1996; 70: 34957.  
 
[16] Frühwirth T, Fritz G, Freiberger N, Glatter O. Structure and order in lamellar phases 
determined by small-angle scattering. J Appl Cryst 2004; 37:70310.  
 
[17] Glatter O, Hainisch B. Improvements in real-space deconvolution of small-angle scattering 
data. J Appl Cryst 1984; 17:43541. 
 
[18] Caputo FE, Burghardt WR. Real-time 1−2 Plane SAXS measurements of molecular 
orientation in sheared liquid crystalline polymers. Macromolecules 2001; 34: 668494. 
 
[19] Cinader JR, Burghardt WR. X-ray scattering studies of orientation in channel flows of a 
thermotropic liquid-crystalline polymer. J Polym Sci Part B: Polym Phys 1999; 37: 341128. 
 
 
 


