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Maintaining quantum coherence in the presence of noise through state monitoring
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Unsharp measurements allow the estimation and tracking of quantum wave functions in real time with minimal
disruption of the dynamics. Here we demonstrate that high-fidelity state monitoring, and hence quantum control,
is possible, even in the presence of classical dephasing and amplitude noise, by simulating such measurements
on a two-level system undergoing Rabi oscillations. Finite estimation fidelity is found to persist indefinitely after
the decoherence times set by the noise fields in the absence of measurement.
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I. INTRODUCTION

Maintaining high-fidelity quantum control is a central
requirement in a variety of technologies ranging from nuclear
magnetic resonance to quantum-based precision measure-
ment [1]. Quantum control is usually restricted to a finite
time window as a result of the unavoidable influence of
decohering environments, and the control lifetime is often
extended through the use of decoherence-free subspaces [2],
or dynamical decoupling [3].

In this article, we discuss a scheme which maintains
quantum control through a sequence of consecutive measure-
ments, of which the corresponding measurement operators
form members of a positive operator-valued measure (POVM).
We demonstrate that the time evolution of a driven, isolated
two-level quantum system, subject to classical dephasing and
amplitude noise, can be monitored long beyond its Rabi
coherence time. In fact, the wave function can, in principle,
be tracked indefinitely with finite fidelity, unlike systems
controlled by dynamical decoupling that ultimately undergo
complete loss of coherence. The control scheme relies on
periodic application of special POVM-measurements said to
be “unsharp” in the sense that they are not projective and hence
only weakly disturb the dynamics [4]. Such measurements
have previously been shown to allow faithful monitoring of
Rabi oscillations if the general form of a time-independent
Hamiltonian is known [5,6] and no external noise is present.

A scheme for updating a state estimate during continuous
measurements [7]—the continuum limit of the technique
employed here—has been presented in [8]. In that scheme, the
evolving state of the system, as well as an estimate of that state,
and the measurement readout are described by three coupled
stochastic differential equations, which indicate that the state
estimate converges to the real state for a broad class of systems;
cf. [9]. Continuous measurements have also been shown to
drive statistical mixtures of spatial wave packets into pure
states, which can be entirely determined by the measurement
record alone [10].

Specific experimental implementations of unsharp mea-
surements have been suggested in the context of Bose-Einstein
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condensates [11], cavity QED [12], and coupled quantum
dots [13,14]. Several realizations of the related topic of
“weak-value” measurement have been demonstrated through
measurements of photon momentum [15–18]. In addition,
experiments of “continuous weak measurement” were imple-
mented using a cold cesium vapor [19]. These realizations
all employed ensemble measurements, while here we show
monitoring of a single, isolated quantum system by repeated
measurement as the system evolves.

II. POVM MEASUREMENT SCHEME

We consider a two-level system undergoing Rabi oscilla-
tions. In a frame rotating at the two-level transition frequency,
it evolves under the Hamiltonian

HR = h̄
�R

2
σ̂x, (1)

where σ̂x is the Pauli matrix that generates rotations about the
x axis and �R is the Rabi frequency, which is assumed to be
known. At the same time, we assume that the system is under
the influence of random classical noise fields β(t) and α(t),
causing dephasing and amplitude fluctuations, respectively,
through a noise Hamiltonian

HN = h̄β(t)σ̂z + h̄α(t)σ̂x . (2)

Each noise field is characterized by a power spectrum,
which, by the Wiener-Kintchine theorem, is related to its
autocorrelation function

C(2)(τ ) = 〈ξ (t)ξ (t + τ )〉 (3)

through

Pξ (ω) =
∫

C(2)(τ )eiωτ dτ, (4)

where ξ (t) = α(t),β(t), and the angle brackets in Eq. (3)
indicate an ensemble average.

The estimation strategy rests on carrying out unsharp
POVM-measurements periodically [20], and updating the state
estimate based on the measurement outcomes. Quite generally,
a POVM-measurement with outcome n, which was carried out
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on a system in the state |ψ〉, will result in a state after the
measurement given by

|ψn〉 = M̂n|ψ〉√
p(n|ψ)

. (5)

Here, M̂n is the so-called Kraus operator, corresponding to the
measurement outcome n, and

p(n|ψ) = 〈ψ |M̂†
nM̂n|ψ〉 (6)

is the probability to detect outcome n, conditioned on the
system being in state |ψ〉.

In an estimation experiment, a sequence of periodic
measurements, with period τ , are applied to the system as
it evolves in time [6]. Despite the dynamics, the state change
due to the measurement can still be described by Eq. (5) if each
measurement is executed much faster than all other dynamical
time scales (impulsive measurement approximation). Between
measurements, the time evolution is described by the operator

Ûj = T
(

exp

{
− i

h̄

∫ tj +τ

tj

[HR + HN (t)]dt

})
, (7)

where T is the time-ordering operator. At t = Nτ , after N

measurements, the system is, up to the appropriate normaliza-
tion constant, in the state

|ψ(Nτ )〉 = M̂nN
ÛNM̂nN−1ÛN−1 . . . M̂n1Û1|ψ〉. (8)

To estimate the state of the system, the same sequence of
operators corresponding to the measured outcomes in Eq. (8)
are applied to an initial guess |ψe〉 (cf. [8]), however,

(i) the initial estimate of the state |ψe〉 can be taken as an
arbitrary state vector on the Bloch sphere, and

(ii) between measurements, the state estimate is assumed
to evolve only through the Hamiltonian given by Eq. (1), since
the experimenter does not know what the instantaneous values
of the noise fields are.

As we will see in what follows, it is still possible to estimate
the state of the system without detailed knowledge of the
noise fields. Our approach differs from [5] where the Rabi
frequency was assumed to be unknown and one of the aims
was to determine its value through a Bayesian estimator in the
absence of noise.

We now define two projectors, P̂+ = 1
2 (11 + r̂ · σ̂ ) and

P̂− = 1
2 (11 − r̂ · σ̂ ), where 11 is the identity operator, r̂ =

(δ,ζ,χ ) is a unit vector on the Bloch sphere, and σ̂ =
(σ̂x,σ̂y,σ̂z). With these terms, it is possible to construct
POVM operators M̂0 = √

p0 P̂+ + √
1 − p0 P̂− and M̂1 =√

1 − p0 P̂+ + √
p0 P̂−, related via M

†
0M0 + M

†
1M1 = 11 and

0 � p0 � 0.5. The strength of a single measurement is
quantified by 
p = (1 − p0) − p0 = 1 − 2p0 [21]. However,
the strength of a sequence of measurements depends also on
the period τ between two consecutive measurements. For fixed

p, a shorter (longer) period τ means a stronger (weaker)
influence of the sequential measurement. The strength of the
state disturbance due to this sequential measurement is best
quantified by the rate γm = 1/τm with τm = 2τ/(
p)2 [21].
The strength γm is the expected rate at which an arbitrary initial
state is reduced to an eigenstate of the measured observable,
in the absence of dynamics other than measurement [6].

III. RESULTS AND DISCUSSION

To set the stage, we illustrate the method in the absence
of noise, i.e., β(t) = α(t) = 0. We simulate an experiment
in which we choose 
p = 0.2 and r̂ = (0,0,1), which corre-
sponds to an unsharp measurement of σ̂z (cf. [5]). We carry
out a measurement every τ = TR/10, where TR = 2π/�R is
the Rabi period. The resulting measurement strength is thus
smaller than the Rabi frequency (γm = �R/10π ), which is
required in order not to disturb the oscillations too strongly.
For a measurement strength γm much greater than �R , the
state would be projected onto an eigenstate of the observable
σ̂z before a single oscillation could take place, and the
dynamics would freeze (similarly to the quantum Zeno effect
[22]). The result of each measurement is chosen at random,
commensurately with the probabilities prescribed by Eq. (6).
The initial-state estimate is chosen orthogonal to the initial-
state vector, a limiting case for which the estimation procedure
might be expected to have some difficulty.

In Fig. 1(a), we plot the expectation value of 〈σ̂z〉 for the true
state (black line) and the state estimate (red line) for one single
run of the measurement experiment. The state (black line)
undergoes Rabi oscillations, but with measurement-induced
random phase shifts compared to the undisturbed oscillations
(dashed blue line). The oscillations, including the influence
of the measurement, are monitored accurately by the estimate
(red line) after about six Rabi periods. After this time, not
only does the expectation value of the measured observable
σ̂z with respect to the true and estimated state coincide, but
the states themselves also do, as is indicated by the plot of the
estimation fidelity, F (t) = |〈ψest|ψ〉|2, in Fig. 1(b). Asymp-
totically, the fidelity tends to unity, indicating the perfect state
monitoring of a single system, in real time, in the absence of
noise.

Now consider a more realistic situation in which the
two-level system is not isolated but is subject to random
classical noise, as described by the Hamiltonian of Eq. (2).
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FIG. 1. (Color online) Wave-function estimation in the absence of
noise (single run). (a) Expectation value 〈σ̂z〉 for the true expectation
value (black line), estimated expectation value (red, gray line), and
expectation value in the absence of measurements (dashed blue line).
(b) Estimation fidelity.
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FIG. 2. (Color online) State estimation in the presence of de-
phasing and amplitude noise. (a) Expectation value of σ̂x and
(b) expectation value of σ̂z. Here we used 
β = 0.05, 
α = 0.005,

p = 0.2, and r̂ = (0.43,0,0.9).

As an example, we assume that the noise fields both have a
power spectrum Pξ (ω) = Aξ/ω, since this “one-over-f ” noise
is ubiquitous in many systems. For concreteness, we choose
a lower cutoff of ω = 0.01 and a high-frequency cutoff of
ω = 10, where the frequency is specified in units of �R . In
accordance with Eqs. (3) and (4), we generate a specific noise
trajectory by summing over different spectral components,
weighing each with the square root of the noise power:
ξ (t) = ∑

i

√
Pξ (ωi) cos (ωit + φi). Each spectral component

contains a random phase factor φi , allowed to vary between
[0,2π ], and assumed to be δ correlated. Each noise trajectory,
α(t) and β(t), is normalized so that their root-mean-square
deviations are, respectively, one-hundredth and one-tenth
of the drive field amplitude, 
α = 0.005 and 
β = 0.05.
We use the same measurement strength as before, but an
observable r̂ · σ̂ with a finite x component, r̂ = (0.43,0,0.9),
since the noise is expected to tip the Bloch vector out of the
yz plane.

Figure 2 displays the evolution of the expectation values
(a) 〈σ̂x〉 and (b) 〈σ̂z〉 for the true state (black lines) and the esti-
mate (red lines), again for a single run of the experiment. The
amplitude of the Rabi oscillations, shown in Fig. 2(b), although
modulated by the noise, does not decrease permanently and
the estimate succeeds in tracking both components. The red
line in Fig. 3(a) shows the estimation fidelity corresponding
to the single run of the experiment of Fig. (2). Despite the
noise, the state estimate quickly approaches the real state,
although the fidelity does not converge completely to unity.
Instead, it exhibits random excursions away from unity, which
at long times are centered around an average, asymptotic value.
To find this asymptotic value, we execute 1000 runs of the
experiment with the same initial conditions and average over
the resulting fidelities, leading to the dashed black curve in
Fig. 3(a). We have found empirically that this average fidelity
F̄ is well described by

F̄ (t) = F0(1 − e−t/τE ). (9)
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FIG. 3. (Color online) State estimation in the presence of classical
noise. (a) Estimation fidelity for a single run (red line), corresponding
to Fig. 2; expected fidelity obtained by averaging 1000 runs (dashed
black line). (b) Rabi oscillations showing monotonic loss of coherence
in the absence of unsharp measurements (blue line).

In Eq. (9), F0 is the asymptotic estimation fidelity and τE is the
estimation time. By fitting Eq. (9) to the simulated result, we
extract an estimation time of τE = 3.7TR and an asymptotic
fidelity of F0 = 0.98. For comparison, the blue curve in
Fig. 3(b) plots the result of an average over 1000 simulated
runs of the experiment in the absence of measurements, but
with the same noise source as in (a). It shows the decay of Rabi
oscillations to about half-amplitude over the same time span
due to the noise. Labeling τR as the characteristic decay time
of Rabi oscillations, we remark that Eq. (9) holds accurately
only when τm � τR . For τm � τR , the asymptotic approach is
no longer simply exponential.

The results of Figs. 3(a) and 3(b) taken together imply
that in any single run of the experiment, the state can be
estimated at all times after convergence with an average of
98% fidelity, by a pure state |ψe(t)〉. On the other hand, in
the absence of measurements, the state would lose coherence
due to the noise, and evolve into a statistical mixture as
evidenced by the decay of Rabi oscillations of the ensemble
average, as shown in Fig. 3(b). This constitutes the main
result of this article. The fidelity can be operationally tested
at the end of a run by deducing from the state estimate the
appropriate unitary rotations needed to place the system in
the state |↑〉, say, where it will then be detected with 98%
probability. As such, the experimenter has maintained quantum
control by the monitoring of the state evolution, despite the
noise.

Finally, we study the effectiveness of the estimation process
as a function of the measurement strength, γm, when noise
is present. The simulations are repeated for different values
of γm, and still choosing r̂ = (0.43,0,0.9) in each case.
Figures 4(a) and 4(b), respectively, plot the estimation fidelities
and convergence times as a function of γm for different noise
strengths: no noise (diamonds), 
β = 0.05,
α = 0.005 (cir-
cles), and 
β = 0.1,
α = 0.01 (squares). When noise is
present, the asymptotic fidelity monotonically decreases as
the measurement strength becomes weaker, and approaches
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FIG. 4. (Color online) Effect of measurement strength on state estimation in environments with different noise strengths: No noise
(diamonds), 
β = 0.05, 
α = 0.005 (circles), and 
β = 0.1, 
α = 0.01 (squares). (a) Asymptotic fidelity F0 as a function of measurement
strength. (b) Convergence time τE as a function of measurement strength. For the three weakest γm’s on the curves with noise, we plot in (a)
the asymptotic fidelity and in (b) the time that it takes to reach a fraction 1 − e−1 of that fidelity, even though the corresponding fidelity curves
are not strictly exponential.

F0 = 0.5 as γm → 0. This is consistent with the average
fidelity obtained when taking random guesses for the state
estimate. Simultaneously, the convergence time increases as
the measurement becomes weaker, but plateaus to a finite value
as γm → 0. By contrast, in the absence of noise, the fidelity
always approaches F0 = 1, but the convergence time increases
indefinitely as the measurement strength weakens, as can be
seen in Fig. 4(b).

The trends observed in Fig. 4 emphasize that the
appropriate time scales need to be obeyed for the measurement
scheme to work. The sequential measurement must be weak
enough not to freeze the dynamics, but strong enough to
enable a high-fidelity estimate before the noise randomizes
the system, i.e., TR � τm � τR .

IV. CONCLUSION

In conclusion, we remark that this study was carried out in
a regime of comparatively strong noise, namely, �R/
β ∼ 5–
10. With stronger drive fields, higher asymptotic fidelities can
be expected for the same measurement strengths considered
here. For example, we find that if �R/
β = 100, �R/
α =
1000, 
p = 0.1, and r̂ = (0.43,0,0.9), then F0 = 0.999 and
τ = 15.8TR . It is encouraging that the estimation procedure
described here predicts finite estimation fidelity despite the
presence of random classical noise. This opens the way
for quantum control techniques that monitor wave-function
dynamics beyond the limitations set by decoherence processes
in the absence of unsharp measurements.
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