
A matrix-free, implicit, incompressible fractional-step

algorithm for fluid–structure interaction applications

O. F. Oxtoby∗, A. G. Malan1

Aeronautic Systems, Council for Scientific and Industrial Research, Building 12,

Box 395, Pretoria 0001, South Africa

Abstract

In this paper we detail a fast, fully-coupled, partitioned fluid–structure
interaction (FSI) scheme. For the incompressible fluid, new fractional-step
algorithms are proposed which make possible the fully implicit, but matrix-
free, parallel solution of the entire coupled fluid–solid system. These al-
gorithms include artificial compressibility pressure-poisson solution in con-
junction with upwind velocity stabilisation, as well as simplified pressure
stabilisation for improved computational efficiency. A dual-timestepping ap-
proach is proposed where a Jacobi method is employed for the momentum
equations while the pressures are concurrently solved via a matrix-free pre-
conditioned GMRES methodology. This enables efficient sub-iteration level
coupling between the fluid and solid domains. Parallelisation is effected for
distributed-memory systems. The accuracy and efficiency of the developed
technology is evaluated by application to benchmark problems from the lit-
erature. The new schemes are shown to be efficient and robust, with the
developed preconditioned GMRES solver furnishing speed-ups ranging be-
tween 50 and 80.

Keywords:

fluid–structure interaction, finite volume method, incompressible split,
matrix free, parallelization, preconditioned GMRES

∗Corresponding author
Email addresses: ooxtoby@csir.co.za (O. F. Oxtoby), Arnaud.Malan@uct.ac.za

(A. G. Malan)
1Present address: Department of Mechanical Engineering, University of Cape Town,

Private Bag X3, Rondebosch 7701, South Africa

Preprint submitted to Journal of Computational Physics June 14, 2012

1. Introduction

Fluid–Structure Interaction (FSI) is a growing field within computational
mechanics with important industrial applications. For example, in aeroelas-
tic systems, the drive to model non-linear flutter response has spawned the
field of Computational Aeroelastics [1], while in Computational Biomechan-
ics the structural response of cardiac, arterial and respiratory systems plays
a cental role in the flow characteristics therein [2, 3]. In real-world systems
such as these, geometries are complex and require considerable computing
power to accurately resolve. In addition, FSI problems typically call for un-
steady analyses where one seeks to identify transient responses or limit-cycle
states rather than steady-state behaviour. All of this means that FSI calcu-
lations are computationally onerous, and while recent years have seen much
progress in FSI modelling technology [4, 5, 6, 7, 8], its biggest hurdle to
becoming a realistically viable tool in industry is still its high computational
cost. In this paper we develop an implicit, matrix-free solver within the El-

emental multiphysics code [9, 10, 11, 12, 13, 14] to solve FSI problems in a
computationally efficient manner.

In order to robustly solve fluid-solid systems which are physically strongly
coupled, it is of value to fully converge the solution at each timestep, so that
both dynamic and kinematic continuity – i.e. continuity of forces and veloc-
ities – are satisfied at the fluid/solid interface. So-called monolithic meth-
ods ensure this by solving the entire coupled system implicitly [15, 16, 17].
Partitioned solvers, on the other hand, are flexible in allowing independent
treatment of fluid and solid, but require that care be taken to ensure the
stability of the coupling process [18, 19, 20, 21, 22, 23]. In this paper, we
propose a system where dual-timestepping [24, 25] is employed for the solid
and the fluid momentum equations to effect the fully-coupled, implicit so-
lution of the entire FSI system in a partitioned manner. This allows for
the realisation of optimum parallel efficiency as fluid and solid domains are
computed simultaneously.

For the fluid, incompressibility has traditionally been dealt with in one
of two ways: Either using the pressure projection (PP) methods which orig-
inated with Patankar [26], or Chorin’s artificial compressibility (AC) [27].
Recently, these two historically opposing methodologies have been combined
into one algorithm in the form of the Artificial Compressibility Characteristic-
Based Split (CBS-AC) scheme [14, 28, 29], which exhibits the desirable char-
acteristics of both. Building on this, we introduce in this paper an upwind

2

stabilised pressure-projection artificial compressibility (UP-AC) method. In
this scheme the characteristic-based term used to stabilise velocity in the
CBS-AC method is replaced with higher-order upwinding of the convective
velocities. This somewhat simplifies the implementation but more impor-
tantly is better suited to stabilising flows with discontinuities in velocity since
limiters can be applied. Furthermore, since the time-step size dependence of
the characteristic-based term is eliminated, we show that local timestepping
can be used to accelerate convergence without impacting accuracy. As a
further simplification to the method, we consider a stabilised direct discreti-
sation of the continuity equation which employs the Consistent Numerical
Fluxes of Löhner et al. [30, 31] (CNF-AC). As this is no longer a pressure-
projection method, it consists of two rather than three steps and a consequent
reduction in computational complexity, as well as simplified implementation.

The use of artificial compressibility naturally allows for matrix-free solu-
tion and efficient parallelisation. However, convergence can be slow if using
simple Jacobi iteration due to the fact that pressure waves have to propagate
and equalise across the entire fluid domain. Therefore an implicit method
of solving the pressure equation, without sacrificing its matrix-free paral-
lel nature, would produce significant savings in computation time. For the
treatment of the advective terms, on the other hand, explicit timestepping
has been shown to be as fast or faster than implicit matrix-free methods in
the case of transient problems [31]. The CBS-AC method has been used with
explicit timestepping [28] and dual-timestepping [32, 33] to increase the al-
lowable time-step size, while still treating the pressure equation in an explicit
manner. In this paper we propose a new approach in which the momentum
equations are solved using Jacobi dual-timestepping while pressures are im-
plicitly integrated using a preconditioned GMRES solver. This recipe com-
bines the computational expediency of explicit momentum advection with
the fully matrix-free and implicit treatment of pressures. A novel feature
of our method is that the pressure equation is not solved to convergence
at each iteration, but converged simultaneously with the momentum equa-
tions. Therefore, a computationally inexpensive, iterative advanced solver is
essential for the pressure equation.

In this work, both fluid and solid governing equations are spatially dis-
cretised via an edge-based finite volume method [11, 34] whose accuracy
is notionally of second order. Edge-based methods hold the advantages
of generic applicability to hybrid-unstructured meshes, ideal parallelisation
properties and improved computational efficiency compared to element-based

3

approaches [35]. In the case of the solid domain, we use a hybrid between the
traditional node-based finite volume method (which suffers from locking of
high aspect-ratio elements) and the element-based strain method [36] (which
suffers from odd-even decoupling), to circumvent both of these problems [37].

The outline of this paper is as follows. In Section 2 we present the gov-
erning equations for fluid and solid domains, then describe the spatial dis-
cretisation and mesh movement algorithm in Section 3. Section 4 details the
numerical solvers and coupling algorithm, and in Section 5 parallelisation of
the code is discussed. We present numerical applications in Section 6 before
concluding in Section 7.

2. Governing Equations

The physical domain to be modelled consists of a viscous incompressible
fluid and homogeneous isotropic elastic solid region. The mechanics of each
is governed by the appropriate governing equation set. In this work the fluid
mesh boundary is fitted to the deforming solid and the internal nodes moved
using the mesh movement algorithm described in Section 3.3.

2.1. Fluid equations

We consider an incompressible viscous fluid undergoing laminar 2D isother-
mal flow. We write the governing equations for an arbitrary Lagrangian
Eulerian (ALE) coordinate frame in weak form as

∂

∂t

∫

V(t)

WdV +

∫

S(t)

(

Fj + Hj − Gj
)

njdS =

∫

V(t)

QdV, (1)

where V(t) denotes an arbitrary volume translating at mesh velocity u∗ and

W =





W0

W1

W2



 =





ρ
ρu1

ρu2



 , Hj =





0
pδ1j

pδ2j



 , Gj =





0
σ1j

σ2j



 , (2)

Fj = W(uj − u∗

j). (3)

In the above, S(t) denotes the surface of the volume V(t) with n being the
outward pointing unit normal vector; Q is a vector of source terms (e.g. body
forces), u denotes velocity, p is the pressure, ρ is density, σ stress, and δij is
the Kronecker delta.

4

The governing equations are closed via the relationship between stress
and rate of strain:

σij = µ

(

∂ui

∂xj

+
∂uj

∂xi

)

, (4)

where µ is the dynamic viscosity and xi are the fixed (Eulerian) co-ordinates.

2.2. Solid Equations

In this work we model isotropic elastic solids using a finite volume for-
mulation (as has been done, for instance, in [36, 38]). To account for large
deformations without accumulating strain errors due to repeated oscillations,
the solid equations are cast in a total Lagrangian formulation, i.e. in the un-
deformed reference frame. The resulting momentum equations are written
in weak form as

∂

∂t

∫

V0

ρ0vidV =

∫

S0

PijnjdS +

∫

V0

QidV, (5)

where v is the solid velocity, P is the first Piola-Kirchoff stress tensor, V0

denotes a volume in the material coordinate system and S0 its surface, with
n being its outward pointing unit normal vector. Further, ρ0 is the solid
density in the undeformed state and Q, again, a vector of source terms.

To account for finite strains, we employ the St. Venant–Kirchoff model
with the Green-Lagrange strain tensor

Eij =
1

2

(

∂wi

∂Xj

+
∂wj

∂Xi

+
∂wk

∂Xi

∂wk

∂Xj

)

(6)

where w is the total displacement of the solid from equilibrium and Xi are
the material coordinates of the solid, so that x = X + w.

Under the plane-strain assumption, the second Piola-Kirchoff stress ten-
sor S is related to the strain tensor by

Sij = 2G(Eij − 1
3
Ekkδij) + KEkkδij (7)

where G is the shear modulus and K the bulk modulus (summation over k
implied).

Finally, we convert from the second to the first Piola-Kirchoff stress ten-
sor, P, with

Pij = FikSkj, where Fik = δik +
∂wi

∂Xk

. (8)

5

Sm

Smn1

Smn2

ϒmn

m

n

Vm

Figure 1: Schematic diagram of the construction of the median dual-mesh on hybrid grids.
Here, Υmn depicts the edge connecting nodes m and n.

To close the system of equations, the solid velocity v and displacement
w are related in the obvious way:

Dwj

Dt
= vj , (9)

where D/Dt denotes the derivative with respect to a fixed point in the ref-
erence (initial) configuration.

3. Spatial Discretisation

3.1. Hybrid-Unstructured Discretisation

We use a vertex-centred, edge-based finite volume algorithm for the pur-
pose of spatial discretization, where a compact stencil method is employed
for second-derivative terms in the interests of both stability and accuracy
[11, 34]. The method allows natural generic mesh applicability, second-order
accuracy without odd-even decoupling, and computational efficiency which is
factors greater than element-based approaches [35]. The edge-based scheme
is also particularly well suited to computation on parallel hardware architec-
tures due to the constant computational cost per edge.

Considering the fluid ALE governing equations (1), all surface integrals
are calculated in an edge-wise manner. For this purpose, bounding surface
information is similarly stored per edge and termed edge-coefficients. The

6

latter, for a given internal edge Υmn connecting nodes m and n, is defined
as a function of time as

Cmn(t) = nmn1Smn1
(t) + nmn2Smn2

(t) (10)

where Smn1
is a bounding surface-segment intersecting the edge (Fig. 1) and

the normal unit vectors are similarly a function of time. The discrete form
of the surface integral in Eq. (1), computed for the volume surrounding the
node m, now follows as
∫

Sm(t)

{

Fj + Hj −Gj
}

njdS ≈
∑

Υmn∩Vm(t)

{

Fj
mn + Hj

mn − Gj
mn

}

Cj
mn (11)

where all •mn quantities denote edge-averaged values which are calculated
such that second-order accuracy of the overall scheme is ensured [11]. In

the case of the fluid, Gj
mn =

[

Gj
mn

∣

∣

tang
+ Gj

mn

∣

∣

norm

]

, where Gj
∣

∣

tang
is

calculated by employing directional derivatives and Gj
∣

∣

norm
is approximated

by employing the standard finite volume first derivative terms.
When considering the solid governing equations (5), the above method of

discretising the stress term would enforce continuous gradients at nodes and
element boundaries and therefore suffers from stiffness problems on stretched
elements. To remedy this we use a hybrid nodal/elemental strain technique
[37] in which strains E11 and E22 are evaluated at nodes and averaged to
obtain face values (as per the above method), whereas E12 is evaluated at
the element centre and averaged with the neighbouring element’s value to
obtain the value at the shared face.

3.2. Geometric Conservation

In order for the fluid solution to be as transparent as possible to the
movement of the mesh, an identity known as the Geometric Conservation
Law (GCL) should be obeyed [39, 40, 41]. It asserts that the momentum
flux into a cell due to the motion of the faces should be consistent with the
change in momentum of the cell due to its changing volume. That is, the
discretised version of

∂

∂t

∫

V(t)

dV =

∫

S(t)

u∗

jnjdS (12)

should hold exactly, which implies that constant spatial fields will be un-
affected by arbitrary mesh deformations. The GCL can therefore be said

7

to impose a specific relationship between mesh deformation and the mesh-
velocity field. To enforce the GCL we could discretise the equation above at
node m as

V t+∆t
m − V t

m

∆t
=

∑

Υmn∩Vm(t)

δV t
mn

∆t
, (13)

where δV t
mn is the volume swept out by the face lying between nodes m and

n between time-steps t and t + ∆t, and Vm is the volume of the dual-cell
containing node m. Alternatively, to second order accuracy

3V t+∆t
m − 4V t

m + V t−∆t
m

2∆t
=

∑

Υmn∩Vm(t)

3δV t
mn − δV t−∆t

mn

2∆t
. (14)

So, in order for our discretisation to be consistent with the GCL, the mesh
velocity flux u∗

jC
j
mn in the discretisation of (1) is set equal to (3δV t

mn −
δV t−∆t

mn)/2∆t, similar to the expression used in [41].

3.3. Dynamic Mesh Movement

For the purposes of mesh movement, we employ an interpolation pro-
cedure which, while offering no guarantees about element quality, has no
significant computational cost and is well suited to parallel computing. This
approach entails redistributing internal fluid nodes according to the distance
from two fixed boundary regions, for instance internal and external bound-
aries. The following interpolation function is used:

∆x = r∆x1 + (1 − r)∆x2,

where ∆x1 and ∆x2 respectively denote the displacement of the closest in-
ternal and external boundary nodes from their initial locations, and r, which
varies between zero and one, is computed as

r =
Dp

2

Dp
1 + Dp

2

with p = 3/2.

Here, D1 and D2 are the distances to the identified boundary points in the
undeformed configuration. The value p = 3/2 was found to produce the best
results for the largest displacements of the block with flexible tail problem
considered below, and may not be optimal for different geometries. Problems
involving smaller displacements will be less sensitive to the value chosen,

8

however. The closest point and the values of r are only calculated at the
start of the analysis. Thus, they are based only on the initial configuration
in order to ensure that the the mesh does not deteriorate due to repeated
oscillations. As a result, the application of the mesh movement function is
essentially instantaneous.

4. Temporal Discretisation and Solution Procedure

The solution procedure must allow for fully coupled implicit solution of all
discritised equations while allowing independence in terms of discretisation
and solution strategy employed for the fluid and solid domains. We therefore
advocate a partitioned, matrix-free iterative solution process where fluid-
solid interface nodes communicate velocities and tractions at each iteration.
The resulting proposed solution procedure is detailed below.

4.1. Temporal Discretisation

For the purpose of transient calculations, a dual-timestepping [24, 25]
temporal discretisation [9] is employed such that second-order temporal ac-
curacy is achieved while ensuring that all equations are iteratively solved
simultaneously to obtain the implicit solution. The real-time temporal term
is accordingly discretised and added as a source term to the right-hand-side
of the discretised fluid equation as

QiV
∣

∣

τ
= −3W τ

i V τ − 4W t
i V

t + W t−∆t
i V t−∆t

2∆t
for i = 1, 2 (15)

where ∆t denotes the real-time-step size, the t superscript is the previous
(existing) real time-step and τ denotes the latest known solution to the time-
step being solved for viz. t + ∆t.

For the solid equation, a similar source term is added to the right-hand
side of the discretised version of Eq. (5), namely

Qτ
i V0 = −ρ0

3vτ
i − 4vt

i + vt−∆t
i

2∆t
V0 (16)

and also to the discrete form of Eq. (9), to give

Dwi

Dt
= vi −

3wτ
i − 4wt

i + wt−∆t
i

2∆t
(17)

where the nomenclature is as previously defined.

9

4.2. Solution Procedure: Fluid

The solution of the incompressible fluid equations (2) presents two nu-
merical difficulties. Firstly, the spatial discretisation of the convective terms
via linear interpolation results in destabilising odd-even decoupling, and sec-
ondly, the incompressibility of the fluid demands that the pressure field evolve
such that the continuity equation ∇ · u = 0 is satisfied. Since this equa-
tion does not involve pressure, solving for it in a matrix-free manner is not
straightforward. We investigate two algorithms to overcome these difficul-
ties. The first is an Upwind Pressure-Projection Artificial Compressibility
(UP-AC) algorithm. This method builds on the Artificial Compressibil-
ity Characteristic Based Split (CBS-AC) algorithm of Nithiarasu [14, 28,
29], but stabilises convective velocities using upwinding rather than the
characteristic-based approach. Secondly, we introduce a more economical
approach to pressure-stabilisation, in which artificial compressibility is added
to the divergence-free constraint to solve for pressure, along with forth-order
stabilisation terms similar to those employed by Löhner et al. [30, 31] to
prevent its consequent chequerboarding. These two techniques are described
in detail below.

For incompressible flow it is usually advocated that the pressures are
solved implicitly [31] while momentum advection terms are often explicitly
integrated [28, 31] since the advective timescales are those of interest, whereas
pressure waves propagate instantaneously. Löhner et al. [31] have undertaken
a thorough investigation of different strategies of explicit and implicit inte-
gration of pressure and momentum equations and the system as a whole,
with the fastest solution times for transient problems achieved using explicit
integration of the advective terms. However, for fluid–structure interaction
problems, explicit timestepping is not ideal as it can lead to instabilities if
used in a staggered (weakly-coupled) mode [42]. Here we propose an ap-
proach that effects strong coupling while retaining the efficiency of Jacobi
solution of the momenum equations.

Dual-timesteping has long been used to increase the allowable real-time-
step size without introducing the extra computational cost of an implicit
solver [9, 11, 24, 25, 32]. In the context of FSI, it confers the additional
advantage of allowing the coupled system to be solved simultaneously but
with the iterative solution process serving the extra purpose of effecting cou-
pling between fluid and solid. In other words, it allows for coupling infor-
mation to be exchanged on a fine-grained level while both fluid and solid
are concurrently converged, nonetheless keeping the discretisation and solver

10

methodologies of the two entirely partitioned. We therefore propose the use
of dual-timestepping for the momentum equations combined with implicit
integration of pressures. We now describe in detail the two split-step incom-
pressible flow algorithms.

4.2.1. UP-AC algorithm

To account for moving meshes we consider Eq. (1) with a time-dependent
dual-cell V(t) which is moving at the mesh velocity u∗, from which the first
incremental solution step written in semi-discrete form follows as:

∆W ∗
i

∆τ
V τ = −

∫

S(t)

(F j
i − Gj

i)njdS

∣

∣

∣

∣

τ

+ QiV |τ for i = 1, 2, (18)

where the τ superscript denotes the previous (existing) solution or pseudo
time-step and ∆τ is calculated as in Eq. (36). Convective odd-even decou-
pling is circumvented by upwinding momenta in the flux term F via 3rd
order interpolation as in the MUSCL scheme [43]. Similar upwinding is
used to construct left and right states in compressible flow schemes [44],
artificial-compressibility characteristic schemes [45], as well as in construct-
ing consistent numerical fluxes [46], although the present scheme is somewhat
simpler in being a one-sided extrapolation from the upwind node. As men-
tioned, this technique of stabilising the convective velocity has an advantage
over the second-derivative characteristic-based stabilisation when consider-
ing flows with sharp velocity gradients, such as jet-flows and free-surface
flows, since limiters may be applied to the extrapolated velocities, while the
second-order stabililsation term can introduce spurious oscillations. ∆W ∗

i is
an auxiliary variable which is used in the second step as:

1

c2
τ

pτ+∆τ2 − pτ

∆τ2

V τ = −
∫

S(t)

[

ρuk

∣

∣

τ
+∆τ

(

∆W ∗
k

∆τ
− ∂Hj

k

∂xj

∣

∣

∣

∣

τ+α∆τ2
)]

nkdS. (19)

Here cτ denotes the pseudo-acoustic velocity which is given by

c2
τ = max[ε2; 1.2ujuj]

and ε is typically chosen as 0.1umax where umax is the peak flow velocity in
the domain [9]. By selecting α = 0 we obtain an explicit solution method and
with α = 1 an implicit method. We shall solve the implicit form of the equa-
tion in a matrix-free manner by using a preconditioned GMRES routine to be

11

described later. The pressure term above (involving H) is discretised using
a compact stencil to compute the derivative at the edge centre as described
in Section 3.1. For efficiency, we only consider the tangential component of
the compact derivative implicitly [13], i.e. we write

∂Hj

∂xj

∣

∣

∣

∣

τ+α∆τ2

≈ Hj
mn

∣

∣

∣

τ+α∆τ2

tang
+ Hj

mn

∣

∣

∣

τ

norm
. (20)

This implies that the Jacobian matrix at a node only involves that node and
its nearest neighbours rather than next-nearest neighbours as well. On a 2D
unstructured grid this implies a roughly sixfold decrease in the number of
potentially nonzero entries in the matrix. On structured grids the Jacobian
is exact. Since the equations are iterated to convergence, the inexact nature
of the Jacobian does not affect the solution. However, if the mesh is highly
skewed or if the system is stiff due to large discontinuities in the domain,
the artificial compressibility provides a degree of under-relaxation to ensure
robust convergence under these conditions.

The third and final incremental solution step written in semi-discrete form
now follows:

W τ+∆τ
i − W τ

i

∆τ
V τ =

∆W ∗
i

∆τ
V τ −

∫

S(t)

Hj
i njdS

∣

∣

∣

∣

τ+∆τ2

≡ Ri(W) for i = 1, 2.

(21)
Finally, the fluid mesh velocity u∗ is calculated as follows:

u∗

j =
3xτ

j − 4xt
j + xt−∆t

j

2∆t
, (22)

again using second order backward difference.

4.2.2. CNF-AC algorithm

In contrast to the preceding method which involves a 3 step solution
procedure, the CNF-AC scheme addresses the continuity equation directly:

1

c2
τ

pτ+∆τ2 − pτ

∆τ2
V τ = −

∫

S(t)

[

ρuk

∣

∣

τ
+

∆τ

ℓ
(pR − pL)nk

∣

∣

∣

τ+α∆τ2
]

nkdS (23)

Here, pR denotes the pressure extrapolated from the node outside the control
volume (node n in Fig. 1), pL denotes the pressure extrapolated from the node
inside it (node m in Fig. 1) and ℓ is the length of the edge connecting nodes

12

m and n. This stabilisation term is essentially the same as the ‘consistent
numerical flux’ of Löhner et al. [46], but in a three-step pressure-projection
method. Using constant interpolation (i.e. the nodal values for pR and pL)
yields an effective second-order (Laplacian) stabilisation term, whereas an
effective fourth-order stabilisation term results from the third-order accurate
linear interpolation used in the MUSCL scheme [43]:

pL = pm +
1

2

[

(1 − κ)∇p|m · ℓ + κ(pn − pm)
]

, κ = 1/3. (24)

Here, ℓ is the vector from node m to node n. It can be shown that on a
structured mesh, Eq. (23) is identical to (19) once the momentum equation
has converged.

In the interest of computational efficiency, we use the implicit formulation
(α = 1) to approximate the interpolated pressures in such a way as to use
only nearest-neighbour values of the increment ∆p ≡ pτ+∆τ2−pτ being solved
for:

(pR − pL)τ+∆τ2 ≈ (pR − pL)τ + (∆pn − ∆pm). (25)

Via numerical experiementation it is found that the computational cost of
additional iterations due to the inexact Jacobian is more than offset by the
saving due to the greater sparsity of the Jacobian.

Having solved (23) for pτ+∆τ2, a momentum iteration follows as

W τ+∆τ
i − W τ

i

∆τ
V τ = −

∫

S(t)

(F j
i − Gj

i)njdS

∣

∣

∣

∣

τ

−
∫

S(t)

Hj
i njdS

∣

∣

∣

∣

τ+∆τ2

+ QiV |τ

≡ Ri(W), (26)

where the nomenclature is as defined previously.
The CNF-AC scheme involves only two sweeps over the computational

mesh in contrast to three for the UP-AC scheme and other pressure-projection
schemes, e.g. [31], and is therefore computationally cheaper per iteration, as
well as being more straightforward to implement. Comparative performance
in terms of accuracy and rate of convergence will be investigated below. The
CNF-AC scheme will produce the same results as the method of Löhner et

al. [31] upon convergence, but differs in that it does not have a pressure-
projection step, and includes artificial compressibility. As mentioned, the
main virtue of the artificial compressibility term is to reduce the numerical
stiffness of the pressure equation system, thus making it more amenable to
solution with fast iterative implicit solvers, particularly in the presence of
skewed grids or discontinuities in the domain.

13

4.2.3. Preconditioned GMRES Routine

As mentioned, we wish to solve Eqs (19) and (23) implicitly in order
to overcome the time-step-size restriction on ∆τ2. This is of particular im-
portance when considering incompressible flow, as pressure waves propagate
throughout the domain instantaneously. However, in order to scale efficiently
to large problems, the procedure must be matrix-free. A popular approxi-
mate matrix solver is the Generalised Minimum Residual (GMRES) method
of Saad and Schultz [47], which finds an optimum solution within a reduced
subspace of the column space of a matrix, viz. the Krylov space. The Krylov
vectors must however be preconditioned to yield suitably fast solution times
[48].

The choice of the preconditioner to be applied to the GMRES Krylov-
subspace vectors is of utmost importance. It must ensure a good condition
number while, importantly, preserving the matrix-free nature of the solution
scheme and being computationally efficient. Luo et al. [49] were the first
to employ LU-SGS [50, 51, 52] as a preconditioner. As compared to its
main competitor, Incomplete Lower-Upper decomposition (ILU), it does not
require the storage of any part of the preconditioning matrix. Furthermore, it
has been applied with great success to the nonlinear heat conduction equation
(which is similar to the pressure-Poisson equation) [13], showing orders of
magnitude performance improvement over Jacobi iterations and even over
both GMRES and LU-SGS in isolation.

The discretised form of Eqs (19) and (23) can collectively be written in
algebraic form as

A∆p = Res (27)

where the length of the vectors ∆p and Res is equal to the number of nodes
N , and A is a sparse N × N coefficient matrix. An outline of the LU-SGS
preconditioned, restarted GMRES procedure follows. At each iteration the
change in the primitive variable vector p is calculated from ∆p = vlal, l =
1 . . . L. Here L denotes the number of preconditioned Krylov-space vectors
vl, and the coefficients al are calculated such that they minimise the residual
Res for a given set of Krylov-space vectors (the expression from which al is
calculated follows below). The latter are calculated via the following GMRES
procedure, which is invoked iteratively for a pre-specified number of GMRES
iterations.

1. Initialise ∆p0 = 0.

14

2. Starting Krylov-subspace vector:

v1 =
[

P−1(Res −A∆p0)
] ∣

∣P−1(Res − A∆p0)
∣

∣

−1
(28)

where P−1 denotes the preconditioning matrix, or P−1 ≈ A−1, and | · |
denotes the Euclidian norm.

3. For l = 1, 2, . . . , L − 1, compute

wl+1 = P−1Avl −
l

∑

k=1

hklvk, hkl = vk · P−1Avl (29)

vl+1 =
wl+1

|wl+1| (30)

4. The change in p is now calculated from the expression given previously,
namely

∆p = ∆p0 + vlal (31)

where al are calculated such that the residual is minimised:

(

Avk
)

·
(

Avl
)

al =
(

Avk
)

·
(

Res − A∆p0

)

(32)

5. Restart from Step 2 using ∆p0 = ∆p until required number of itera-
tions complete.

We now outline the preconditioning procedure. The generic vector ω is
preconditioned by the LU-SGS procedure by performing two computational
sweeps over the mesh:

• Sweep 1: Calculate ω∗ from (D + L)ω∗ = ω, and

• Sweep 2: Calculate ωp from (D + U)ωp = Dω∗,

where L, D and U are the strict lower, diagonal and upper parts of A.
Further, ω∗ and ωp respectively denote the intermediary and preconditioned
versions of ω. Note that this procedure may be implemented in a completely
matrix-free form.

As mentioned, a fixed number of GMRES iterations (restarts) are used
rather than running the GMRES procedure to convergence; this dramatically
reduces the computation time since the pressure equation is converged in

15

concert with the momentum equations. After extensive numerical tests it was
found that optimal convergence of the overall scheme is seemingly attained
with three GMRES iterations (i.e. two restarts). This is because the residual
is rapidly reduced at first, with diminishing returns for further restarts.

For fastest convergence of the pseudo-timestep iterations, ∆τ2 should be
made as large as possible, reducing the amount of artificial compressibility.
On the other hand, if it is made too large the performance of GMRES suffers
as the A matrix loses diagonal dominance. This is particularly important
since the pressure equation is not solved to convergence for every iteration
of the momentum equations. For the purposes of this work a scaling factor
of order 105 was found to yield satisfactory performance, i.e. ∆τ2 = 105∆τ .

4.3. Solution Method: Solid

For the solid domain, the solution procedure simply involves the pseudo-
temporal discretisation of Eqs (5) and (17). Traction boundary conditions
are realised numerically by excluding external boundaries from the surface
integral in (5) and adding in surface integrals of the applied tractions τ .
Thus, the equation becomes

∂

∂t

∫

V0

ρ0vidV =

∫

S0internal

PijnjdS+

∫

Sboundary

τidS+

∫

V0

QidV ≡ Ri(w), (33)

This work considers FSI systems for which the structure is consider-
ably less computationally expensive than the fluid. Therefore, for pseudo-
temporal discretisation a matrix-free Jacobi method is employed. For stabil-
ity the single-step procedure proposed in [53] is used:

wτ+∆τ
i = wτ

i + ∆τ
[

vτ
i − 3wτ

i
−4wt

i
+w

t−∆t

i

2∆t
+ 1

2
∆τRi(w

τ)/(ρτ+∆τ
0 V τ+∆τ

0)
]

vτ+∆τ
i = vτ

i + ∆τRi(w
τ)/(ρτ+∆τ

0 V τ+∆τ
0)

(34)
where V0 is the volume of dual-cell V0 in the undeformed configuration and
wτ denotes a projected displacement which is calculated as

wi
τ = wτ

i + ∆τvτ
i (35)

for a stable iterative procedure.

16

4.4. Pseudo-timestep Calculations

The pseudo-timestep ∆τ local to each computational cell is to be deter-
mined in the interest of optimal convergence while ensuring a stable solution
process. An accurate estimation is therefore required for which the following
expression is employed:

∆τ = CFL

[|ui − u∗
i | + cunified

∆xi

+ κ
2µ

ρ∆x2
i

]−1

(36)

where CFL denotes the Courant-Friedrichs-Lewy number, ∆xi is the effective
mesh spacing in direction i and κ is equal to 1 in the fluid domain and 0 in
the solid domain. Further,

cunified = κcτ + (1 − κ)
(

√

K/ρ0 +
√

η/ρ0

)

. (37)

Finally, in the case of transient analyses, we treat the dual-timestepping
term implicitly, i.e. change τ to τ + ∆τ in (15) to (17), in order to maintain
stability in cases where ∆τ is comparable to or larger than ∆t, as per [25].

4.5. Solution Procedure

To achieve simultaneous solution of the discretised fluid-solid equations
in a manner which effects strong coupling, the following solution sequence is
employed in an iterative fashion:

1. The fluid and solid discrete equations are solved concurrently via (18)–
(21) or (23)–(26), and (33). Due to the accelleration of the fluid solver
with GMRES, convergence of the fluid domain is typically faster than
the solid. Therefore, in order to achieve convergence of the coupled
system at an optimum rate, an adjustable number of iterations of Eq.
(33) may be performed for every iteration of the fluid equations.

2. At the interface, the calculated fluid traction is applied to the solid
boundary and the solid velocities to the fluid boundary. That is, the
following equations for traction and velocity at the boundary are pre-
scribed:

τj = pnj − σijni

u = v
(38)

where n is the related normal unit vector pointing outward from the
fluid domain.

17

3. The mesh is only moved if a solid mesh boundary node displacement
exceeds a certain proportion of the element size (here chosen as 30%) or
the residual of the fluid or solid mesh has been reduced to less than the
convergence tolerance (a real-time-step is considered converged when
the residual of all fluid and solid equations have dropped by at least 5
orders of magnitude).

4. The residuals are recalculated following the mesh movement, and if
larger than the convergence tolerance steps 1–3 are repeated. This
ensures a fully-converged solution.

5. If the residuals are below the convergence tolerance, the real-timestep
is terminated, and the next time-step entered by proceeding to step 1.

The above is repeated for all real-time steps.

5. Parallelisation

Because of the fully matrix-free nature of the numerical method at solver
sub-iteration level, the mesh can be decomposed into separate subdomains
for parallel computing. Firstly, in composing the right-hand side, all loops are
over edges, with the operation count for each edge being very nearly identical.
Secondly, in performing the various sparse-matrix–vector dot products that
make up the preconditioned GMRES algorithm, there is one dot product per
node; however, the number of nonzero entries in the corresponding row of the
Jacobian matrix is equal to the number of edges surrounding the node, plus
one. Therefore, to balance the operation count for efficient parallelisation
of not only the right-hand side calculation but also the LU-SGS/GMRES
routine, the number of edges in each domain was balanced. This was done
by weighting each node with an integer equal to the number of edges which
connect to it, followed by applying the METIS library [54] to its connectivity
graph. For interdomain communication, a system of “ghost nodes” is used in
this work, with one layer of overlapping nodes at domain boundaries, where
‘slave’ nodes are updated with the values from corresponding ‘master’ nodes
in the neighbouring domain. For efficiency, data transfer is consolidated into
the largest possible packets and communicated using MPI.

An example of the overlap of domains due to the inclusion of ghost nodes
is shown in Fig. 2. The inset shows extended overlap near the boundary due
to the larger stencil required for certain types of boundary conditions.

18

Figure 2: Example of domain decomposition showing one-element overlap due to ghost
nodes and extended overlap near the boundaries.

The GMRES routine consists of sparse-matrix–vector products and dot
products which may be computed in parallel to yield the serial computation
result. However, the LU-SGS preconditioning steps are sequential in nature.
They involve sweeps across the mesh, with each subsequent nodal value cal-
culated from the newly updated values of the preceding ones. While this pro-
cess may be vectorised on shared-memory architectures [55], on distributed-
memory machines excessive communication would be required during each
sweep over the mesh, severely impairing performance. In this work we have
therefore elected to perform the LU-SGS preconditioning only within each
parallel subdomain, eliminating the need for interdomain communication.
Though this violates the formal serial nature of the procedure, being merely
a preconditioning step it only impacts speed of convergence. However, this
effect was found to diminish as the number of parallel domains increases,
while being dwarfed by the performance gain due to parallelisation. Rele-
vant results are presented below.

6. Application and Evaluation

6.1. Fluid solver validation

In order to validate the new UP-AC and CNF-AC flow solver algorithms
we consider the popular lid-driven cavity test case. This consists of a square

19

u1 = 1, u2 = 0

x1

x 2

1

1

0

u2
u1

u1

x1 coordinate

u 2

x 2
co

or
di

na
te

10.60.2-0.2-0.6
0.6

0.3

0

-0.3

-0.6

10.750.50.250

1

0.75

0.5

0.25

0

Figure 3: Lid-driven cavity. Left: mesh and boundary conditions. Sides and bottom are
no-slip boundaries. Right: vertical velocity (u2) through line x2 = 0.5 and horizontal
velocity (u1) through line x1 = 0.5. Datapoints are benchmark results from [56] (circles)
and [57] (triangles). Solid line: UP-AC and CNF-AC results; dashed line: CBS-AC with
global timestepping; dotted line: CBS-AC with local timestepping.

two-dimensional box with no-slip boundary conditions and a lid which moves
at a horizontal velocity of 1. The geometry and mesh used are shown on the
left-hand side of Fig. 3. As shown a hybrid-unstructured mesh containing
5046 elements is employed. This is to highlight the invariance of the devel-
oped methodology to element type. Here we consider the problem with a
Reynolds number of 5 000.

To verify the spatial accuracy of the schemes we consider the steady-
state solution; temporal discretisation will be validated by application to an
FSI problem. The solutions predicted via the two schemes were found to
be within 0.1% of each other, with selected vertical and horizontal velocity
profiles comparing well to benchmark data [56, 57] (Fig. 3, solid line). As
a comparison, results generated using the CBS-AC method are also shown
in Fig. 3. For the CBS-AC scheme, the results show a dependence on time-
step size due to the characteristic-based stabilisation term. When using local
timestepping to accelerate convergence (dotted line), the results are not as
accurate as the UP-AC or CNF-AC schemes for this mesh spacing; however,
when using global timestepping, the value of ∆τ is dramatically reduced in
most regions, due to the very small cell size present near the boundaries. This

20

Mesh Refinement Minimum centreline velocity (u1)
cells factor r UP-AC CNF-AC
8722 -0.443098 -0.444031
18254 1.447 -0.445640 -0.446006
36354 1.411 -0.446824 -0.446916
Convergence order p 1.94 1.97
Grid Convergence Index 0.0035 0.0026

Table 1: Results of mesh independence study for lid-driven cavity, verifying second-order
spatial accuracy of the UP-AC and CNF-AC schemes.

results in a much more accurate solution, but at the expense of a significant
reduction in speed of convergence. The UP-AC and CNF-AC methods, by
contrast, do not suffer from this restriction.

Further, in order to verify the order of convergence of the spatial discreti-
sation, a detailed mesh-independence study has been performed with three
refined versions of the mesh in Fig. 3. Each mesh was refined by a factor
of approximately

√
2, resulting in a doubling of the number of nodes. The

exact refinement factor in each case was calculated as the square root of the
ratio of the number of nodes in the two meshes. The order of convergence
was then calculated based on measurement of the maximum negative velocity
over the vertical centre-line of the cavity (the ‘nose’ at the bottom-left in Fig.
3). These values are given in Table 1, together with the order of convergence
calculated by solving

u2 − u3

rp
23 − 1

= rp
12

u1 − u2

rp
12 − 1

for p as per Roache [58], where f1,2,3 are the measured values on the fine,
medium and coarse meshes respectively, and r12,23 are the associated mesh
refinement factors as given in Table 1. Also given are the Grid Convergence
Indices [59] for the finest meshes, whose small values indicate that the asymp-
totic mesh refinement region has indeed been reached. As shown, the order of
convergence calculated is very close to 2, validating the claimed second-order
spatial accuracy of the methods.

6.2. FSI accuracy assessment

The FSI problem we consider comprises a block with a flexible tail in
cross-flow as shown in Fig. 4. This is a popular problem for testing new
FSI algorithms [4, 36, 15, 60, 20]. In these publications, various different
combinations of material properties, initial conditions and Reynolds numbers

21

Slip boundary condition

Slip boundary condition

0.06 cm1 cm

uin = 31.5 cm s−1
Outflow
boundary
condition

12 cm

4 cm1 cm 10 cm4.5 cm

Figure 4: Block with flexible tail: geometry and boundary conditions

Figure 5: Block with flexible tail: Meshes at maximum deformation shaded according to
element quality. Left: 6 000 cell mesh; max equiangle skew = 0.786, mean = 0.205. Right:
Close-up of 50 000 cell mesh at beam tip. Max equiangle skew = 0.751, mean = 0.204.

have been considered. For the purpose of this work, we select a variant from
[15]. The material properties are as follows: Incompressible fluid density is
1.18 × 10−3 g cm−3 and viscosity µ = 1.82 × 10−4 g cm−1 s−1. For the tail,
density = 2.0 g cm−3, Young’s modulus E = 2.0 × 106 g cm−1 s−2, and
Poisson’s ratio ν is 0.35.

For the purpose of assessing accuracy, we compare the results obtained
by the UP-AC and CNF-AC schemes to those of [15] via a mesh indepedence
study. Three meshes with varying density were employed in the interest of
demonstrating a mesh-independent solution. The fluid meshes consisted of
6 000, 25 000 and 50 000 fluid cells respectively. For the first series of analy-

22

Figure 6: Block with flexible tail: Pressure contours showing primary and secondary
vortices forming and detaching.

Time (s): 0–0.1 0.1–0.15 0.15–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6
Force (g cm s−2): 0 0.35 1.5 2.3 3.1 4.2 6.5
Time (s): 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0 1.0–1.1 1.1–1.2 1.2–1.3
Force (g cm s−2): 6.5 5.5 5.0 4.0 3.0 2.0 1.0

Table 2: Piecewise-constant force as a function of time applied to tip of beam to reproduce
initial deflection in results of [15].

ses, structured solid meshes consisting of 12 elements through the thickness
were employed. The number of elements along the length of the beam was
respectively selected as 40, 120 and 160 for the three different fluid meshes,
in order to line up with the fluid nodes. In addition, to evaluate solution in-
dependence with respect to the solid mesh, another analysis was performed
with a 320×24 solid mesh – i.e. half the mesh spacing in both directions – in
conjunction with the 50 000-element fluid mesh. The time-step size used in
the aforementioned analyses was ∆t = 0.005 s, and the accuracy of this was
verified by comparing with an additional analysis with ∆t = 0.01 s.

To allow the flow field to form without large transient shocks to the solid,
the fluid inflow velocity was linearly ramped up to its final value of 31.5 cm s−1

within the first 0.02 s. In order to reproduce the initial deflection of the

23

50 000 elements
25 000 elements
6 000 elements

(a)

Time (s)

V
er

tic
al

tip
di

sp
la

ce
m

en
t(

cm
)

14121086420

3

2

1

0

-1

-2

Results of Hübneret al.
Fine mesh results

(b)

Time (s)

14121086420

3

2

1

0

-1

-2

CBS-AC
CNF-AC

UP-AC
(c)

Time (s)

V
er

tic
al

tip
di

sp
la

ce
m

en
t(

cm
)

14121086420

3

2

1

0

-1

-2

CBS-AC
CNF-AC

UP-AC
(d)

Time (s)

14121086420

3

2

1

0

-1

-2

∆t = 0.005
∆t = 0.01

(e)

Time (s)

V
er

tic
al

tip
di

sp
la

ce
m

en
t(

cm
)

14121086420

3

2

1

0

-1

-2

320×24 solid elements
160×12 solid elements

(f)

Time (s)

14121086420

3

2

1

0

-1

-2

Figure 7: Tip deflection of block with flexible tail with initial tip load given in Table 2.
(a) 6 000, 25 000 and 50 000 element fluid meshes with 40 × 12, 120 × 12 and 160 × 12
solid elements respectively, using ∆t = 0.005 s and the UP-AC algorithm. (b) The same
50 000-element result compared with that of Hübner et al. [15]. (c-d) The two alternative
pseudo-temporal discretisation schemes compared to CBS-AC, on (c) 6 000 and (d) 25 000
element fluid meshes respectively with solid mesh densities and ∆t as in (a). (e) ∆t = 0.01
and ∆t = 0.005 s with 50 000 fluid elements and 160× 12 solid elements. (f) 160× 12 and
320 × 24 element solid meshes, 50 000 fluid elements and ∆t = 0.005 s.

24

Fluid Solid Timestep Solution Amplitude Frequency
elements elements (s) method (cm) (Hz)

6 000 40×12 0.005

{

UP-AC 1.987 0.85896
CNF-AC 2.152 0.85398
CBS-AC 1.634 0.84354

25 000 120×12 0.005

{

UP-AC 2.219 0.83087
CNF-AC 2.226 0.83017
CBS-AC 2.061 0.83052

50 000 160×12 0.01 UP-AC 2.212 0.82922

50 000 160×12 0.005

{ UP-AC 2.214 0.82863
CNF-AC 2.214 0.82877
CBS-AC 2.127 0.82911

50 000 160×12 0.0025 UP-AC 2.219 0.82846
50 000 320×24 0.005 UP-AC 2.199 0.82512

Table 3: Amplitude and frequency of block-tail limit-cycle oscillation for various meshes
and timestep sizes. These are calculated as the average values of the last seven cycles of
oscillation.

tail seen in the results of Hübner et al. [15], we determined empirically the
piecewise-constant tip-force as a function of time shown in Table 2. Figure
5 shows the coarse mesh in a state of maximum deflection and a close-up of
the fine mesh near the tip of the beam. Shading is applied according to mesh
quality of the deformed meshes, measured using the equiangle-skew metric
defined as

Q = max

(

θmax − θe

180◦ − θe

,
θe − θmin

θe

)

,

where θmax and θmin are the maximum and minimum cell internal angles and
θe is the angle for which all internal angles are equal (60◦ for a triangle). Fig-
ure 6 shows snapshots of the pressure field. The large vortex underneath the
tail is seen detaching and forming a secondary vortex of opposite rotational
direction at the tip as it does so.

The calculated time-history of vertical tip displacement for the various
meshes and time-step sizes is depicted in Fig. 7, with measurements of the
steady-state amplitude and frequency give in Table 3. First, to evaluate mesh
independence of our solution, the same simulations carried out on all three
fluid meshes are compared in Fig. 7(a). The solution changes markedly when
the mesh is refined from 6 000 to 25 000 elements (limit-cycle amplitude and
frequency changing by 8.5% and 4% respectively), with little further change
as the number of elements is doubled to 50 000 (<0.5% change in limit-
cycle amplitude and frequency). Figure 7(b) compares the above results

25

on the finest mesh with those of Hübner et al. [15], showing a discrepancy
at first but similar steady-state amplitude and frequency (differing by 10%
and 3.6% respectively). Figures 7(c) and (d) compare the UP-AC, CNF-AC
and existing CBS-AC solution methods on the 6 000 and 25 000 element fluid
meshes respectively. As seen, the three methods converge in the limit of mesh
refinement – for the 25 000 element mesh, the amplitude and frequency of the
UP-AC and CNF-AC methods are within 0.5% of each other, while on the
50 000 element mesh (not shown) they are within 0.2%. CBS-AC also appears
to converge to the same values but is less accurate for a given mesh spacing;
since local timestepping is being used in the interest of computational speed,
this conclusion is in agreement with the that of the previous section.

To assess temporal accuracy the finest fluid mesh was used with the UP-
AC algorithm and the analysis repeated with the time-step doubled from
0.005 s to 0.01 s and halved to 0.0025 s. As seen in Fig. 7(e), this has a negli-
gible effect on the solution (the change in limit-cycle amplitude and frequency
are again less than 0.5%). To assess the temporal order of convergence of
the algorithm, measurements are taken of the average frequency of the last
seven cycles of oscillation as shown in Table 3. The order of convergence is
established from

p = ln

(

f3 − f2

f2 − f1

)

/ ln(r)

where r = 2 in this case and f1, f2 and f3 are the frequency values for the
smallest, intermediate and largest ∆t values respectively [58]. This yields a
convergence rate of p = 1.85, consistent with the time-discretisation being
second-order accurate. The Grid Convergence Index for the medium timestep
∆t = 0.005 is 0.00041, indicating that time-step-size convergence has been
achieved to a good accuracy [59]. Since the form of the time discretisation is
identical for the CNF-AC algorithm, we only consider UP-AC here. Finally,
mesh independence of the solid mesh is ascertained by repeating the same
analysis using the 50 000 node fluid mesh with a solid mesh of half the mesh
spacing (320×24). Figure 7(f) shows that solid-mesh independence is likely,
with a <1% change in limit-cycle amplitude and frequency. The above results
are summarised in Table 3.

6.3. GMRES performance speedup

In this section, we analyse the performance improvement effected by the
preconditioned GMRES solver in the context of the fully-coupled FSI prob-
lem considered above. As mentioned previously, the implicit solution of the

26

Mesh (fluid, solid) 6 000, 40×12 25 000, 120×12 50 000, 160×12
Parallel subdomains fluid+solid 2+2 12+4 24+8

UP-AC
Jacobi 216.4 s (29937) 285.9 s (52070) 366.1 s (65223)
GMRES 4.26 s (233) 3.55 s (211) 4.48 s (248)
Speedup 50.8 × 80.5 × 81.7 ×

CNF-AC
Jacobi 209.4 s (33383) 193.5 s (41263) 218.3 s (44693)
GMRES 3.92 s (251) 3.19 s (221) 3.28 s (262)
Speedup 53.4 × 60.7 × 66.6 ×

Table 4: Computation time and speedups for a representative timestep of the block-tail
problem with various mesh densities. Number of iterations to convergence is shown in
brackets.

pressure equation yields faster (but more costly) convergence per iteration
of the fluid as compared to the solid mesh (for which Jacobi iteration is em-
ployed). To alleviate this bottleneck, we employ solid sub-iteration in such
a manner that the fluid and solid residuals reduce at similar rates (to yield
optimal convergence). For the block-tail problem considered here we have
used 30 solid sub-iterations.

Table 4 shows the computation time, convergence performance and achieved
GMRES speed-ups for both the UP-AC and CNF-AC pressure stabilisation
algorithms. Here we have run the block-tail problem considered above for
1 second so as to reach a representative time-step, and then compared the
time taken to converge the following timestep. Results for the three dif-
ferent mesh densities are shown. Speedups of a factor between 40 and 80
result, with the CNF-AC method converging somewhat faster than the UP-
AC method. This is an interesting result as, although the CNF-AC method
is more computationally efficient per iteration, one might expect it to take
a greater number of iterations to converge due to the fact that it is not a
projection method. However, as seen from Table 4, this is not the case and
indicates that CNF-AC is in fact more efficient overall than UP-AC.

6.4. Parallel efficiency

The strong-scaling performance of the entire coupled solver was evaluated
by assessing the time taken to complete the first time-step of the block-tail
problem with a 50 000 element fluid mesh and a 2 000 element solid mesh.
Calculations were perfomed on a Sun Microsystems Constellation cluster
with 8-core Intel Nehalem 2.9 GHz processors and Infiniband interconnects
at the Centre for High Performance Computing (CHPC), Cape Town.

27

Linear speedup

(a)

Number of processors (fluid domain)

S
pe

ed
up

403020100

40

30

20

10

0
Linear speedup

Speedup per iteration
Number of iterations

(b)

Number of processors (fluid domain)

N
um

be
r

of
ite

ra
tio

ns

500

400

300

200

100

0
403020100

40

30

20

10

0

Figure 8: Parallelisation speed-up for the block-tail problem using the 50 000-element fluid
mesh with (a) Jacobi solver and (b) preconditioned GMRES solver. The right axis of the
latter depicts the increased number of pressure iterations required per time-step.

The results of the study are depicted in Fig. 8, where the number of
iterations achieved per second has been normalised to the value for a single
processor. Note that, as a consequence of the preconditioning being done
separately on each parallel subdomain, the number of iterations taken to
converge the time-step is not constant, as plotted in Fig. 8. As seen, there
is an initial deterioration in the speed of convergence of about 20%, but
this levels off as the number of sub-domains increases further. Also plotted
is the speed-up per iteration, which is linear up to circa 30 processors for
the problem considered, after which inter-core communication cost begins to
dominate. This occurs more quickly for the GMRES than the Jacobi solver
due to the increased communication involved.

7. Conclusion

A fast, strongly-coupled, partitioned, parallel FSI scheme was developed.
Both fluid and solid domains were discretised via an edge-based finite volume
methodology. In the case of the fluid domain, two novel matrix-free implicit
fractional step methods were introduced viz. Upwind Pressure-Projection
Artificial Compressibility (UP-AC) and Consistent Numerical Flux Artificial
Compressibility (CNF-AC) methods. Both were found to be robust and accu-
rate, with CNF-AC being somewhat more computationally efficient. These
methods were shown to effect a significant improvement in accuracy com-

28

pared to the Artificial Compressibility Characteristic-Based Split (CBS-AC)
method. Retaining a small artificial compressibility source-term makes the
methods more robust. It allows for the pressure equation to be approxi-
mately and cheaply solved at every iteration while enhancing convergence
on skewed meshes and in the presence of numerical discontinuities. A dual-
timestepping solution method was proposed where Jacobi iterations for the
momentum equations are performed concurrently with the implicit iterative
solution of pressures. This allowed for simultaneous, fully-coupled but parti-
tioned solution of fluid and solid domains which was stable and robust for the
problem considered. The fast and efficient matrix-free solution of pressure
was done for the first time via a parallel LU-SGS preconditioned GMRES
method. Remarkable FSI modeling performance was demonstrated. The
achieved computational speed-ups ranged between 50 and 80 times, while
preserving linear parallel computing performance.

Acknowledgements

The authors wish to thank the Centre for High Performance Comput-
ing (CHPC) in Cape Town for access to computing hardware. This work
was funded by the Council for Scientific and Industrial Research (CSIR) on
Thematic Type A Grant nr. TA-2009-013.

References

[1] R. M. Bennet, J. W. Edwards, An overview of recent developments in
computational aeroelasticity, in: Proceedings of the 29th AIAA fluid
dynamics conference, Albuquerque, NM, 1998.

[2] R. van Loon, F. N. van de Vosse, Special Issue: Fluid–structure inter-
action in biomedical applications, Int. J. Numer. Meth. Biomed. Engng.
26 (3-4) (2010) 273–275, doi:10.1002/cnm.1371.

[3] C. Taylor, C. Figueroa, Patient-Specific Modeling of Cardiovascular
Mechanics, Annu. Rev. Biomed. Eng. 11 (1) (2009) 109–134, doi:
10.1146/annurev.bioeng.10.061807.160521.

[4] W. A. Wall, E. Ramm, Fluid–structure interaction based upon a stabi-
lized (ALE) finite element method, in: S. Idelsohn, E. Oñate, E. Dvorkin
(Eds.), Computational mechanics – new trends and applications, Pro-
ceedings of WCCM IV, CIMNE, Barcelona, 1998.

29

[5] K. J. Bathe, H. Zhang, S. Ji, Finite element analysis of fluid flows fully
coupled with structural interactions, Comput. Struct. 72 (1-3) (1999)
1–16, doi:10.1016/S0045-7949(99)00042-5.

[6] E. H. Dowell, K. C. Hall, Modeling of fluid–structure inter-
action, Annu. Rev. Fluid Mech. 33 (1) (2001) 445–490, doi:
10.1146/annurev.fluid.33.1.445.

[7] R. Ohayon, C. E. Felippa, Special Issue: Advances in Computa-
tional Methods for Fluid–Structure Interaction and Coupled Problems,
Comput. Method Appl. M. 190 (2001) 2977–3292, doi:10.1016/S0045-
7825(00)00376-5.

[8] T. Tezduyar, Y. Bazilevs, Special issue on fluid–structure interaction,
Comput. Mech. 43 (2008) 1–189, doi:10.1007/s00466-008-0317-8.

[9] A. G. Malan, R. W. Lewis, P. Nithiarasu, An Improved Unsteady, Un-
structured, Artificial Compressibility, Finite Volume Scheme for Viscous
Incompressible Flows: Part I. Theory and Implementation, Int. J. Nu-
mer. Meth. Engng. 54 (5) (2002) 695–714.

[10] A. G. Malan, R. W. Lewis, P. Nithiarasu, An Improved Unsteady, Un-
structured, Artificial Compressibility, Finite Volume Scheme for Viscous
Incompressible Flows: Part II. Application, Int. J. Numer. Meth. Engng.
54 (5) (2002) 715–729.

[11] A. G. Malan, R. W. Lewis, Modeling Coupled Heat and Mass Transfer
in Drying Non-Hygroscopic Capillary Particulate Materials, Commun.
Numer. Meth. Engng. 19 (9) (2003) 669–677.

[12] J. Pattinson, A. G. Malan, J. P. Meyer, A Cut-cell non-conforming
Cartesian Mesh Method for Compressible and Incompressible Flow, Int.
J. Numer. Meth. Engng. 72 (11) (2007) 1332–1354.

[13] A. G. Malan, J. P. Meyer, R. W. Lewis, Modelling Non-Linear Heat
Conduction via a Fast Matrix-Free Implicit Unstructured-Hybrid Algo-
rithm, Comput. Method Appl. M. 196 (45-48) (2007) 4495–4504.

[14] A. G. Malan, R. W. Lewis, An artificial compressibility CBS method
for modelling heat transfer and fluid flow in heterogeneous porous ma-
terials, Int. J. Numer. Meth. Engng. 87 (1–5) (2011) 412–423, doi:
10.1002/nme.3125.

30

[15] B. Hübner, E. Walhorn, D. Dinkler, A monolithic approach to fluid–
structure interaction using spacetime finite elements, Comput. Method
Appl. M. 193 (2004) 2087–2104.

[16] C. J. Greenshields, H. G. Weller, A unified formulation for continuum
mechanics applied to fluid-structure interaction in flexible tubes, Int. J.
Numer. Meth. Engng. 64 (2005) 1575–1593.

[17] M. W. Gee, U. Küttler, W. A. Wall, Truly monolithic algebraic multigrid
for fluid–structure interaction, Int. J. Numer. Meth. Engng. 85 (8) (2011)
987–1016, doi:10.1002/nme.3001.

[18] P. L. Tallec, J. Mouro, Fluid structure interaction with large structural
displacements, Comput. Method Appl. M. 190 (2001) 3039–3067.

[19] D. P. Mok, W. A. Wall, Partitioned analysis schemes for the transient
interaction of incompressible flows and nonlinear flexible structures, in:
W. A. Wall, K.-U. Bletzinger (Eds.), Trends in computational structural
mechanics, Barcelona: CIMNE, 689–698, 2011.

[20] W. Dettmer, J. D. Peric, A computational framework for fluid–structure
interaction: Finite element formulation and application, Comput.
Method Appl. M. 195 (2006) 5754–79.

[21] W. A. Wall, S. Genkinger, E. Ramm, A strong coupling partitioned ap-
proach for fluid–structure interaction with free surfaces, Comput. Fluids
36 (2007) 169–183.

[22] U. Küttler, W. A. Wall, Fixed-point fluid–structure interaction solvers
with dynamic relaxation, Comput. Mech. 43 (2008) 61–72.

[23] M. von Scheven, E. Ramm, Strong coupling schemes for interaction of
thin-walled structures and incompressible flows, Int. J. Numer. Meth.
Engng. 87 (2011) 214–231.

[24] A. Jameson, Time dependent calculations using multigrid, with appli-
cations to unsteady flows past airfoils and wings, AIAA Paper 91-1596.

[25] V. Venkatakrishnan, D. J. Mavriplis, Implicit Method for the Compu-
tation of Unsteady Flows on Unstructured Grids, J. Comput. Phys. 127
(1996) 380–397.

31

[26] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill,
New York, 1980.

[27] A. J. Chorin, A Numerical Method for Solving Incompressible Viscous
Flow Problems, J. Comput. Phys. 2 (1967) 12–26.

[28] P. Nithiarasu, An efficient artificial compressibility (AC) scheme based
on the characteristic based split (CBS) method for incompressible flow,
Int. J. Numer. Meth. Engng. 56 (13) (2003) 1815–1845.

[29] P. Nithiarasu, An arbitrary Lagrangian Eulerian (ALE) formulation for
free surface flows using the characteristic-based split (CBS) scheme, Int.
J. Numer. Meth. Fl. 48 (2005) 1415–1428.

[30] R. Löhner, A fast finite element solver for incompressible flows, AIAA
Paper 90-0398.

[31] R. Löhner, C. Yang, J. Cebral, F. Camelli, O. Soto, J. Waltz, Improving
the speed and accuracy of projection-type incompressible flow solvers,
Comput. Method Appl. M. 195 (2006) 3087–3109.

[32] P. Nithiarasu, C.-B. Liu, An artificial compressibility based characteris-
tic based split (CBS) scheme for steady and unsteady turbulent incom-
pressible flows, Comput. Method Appl. M. 195 (2006) 2961–2982.

[33] N. Massarotti, F. Arpino, R. W. Lewis, P. Nithiarasu, Explicit and semi-
implicit CBS procedures for incompressible viscous flows, Int. J. Numer.
Meth. Engng. 66 (2006) 1618–1640.

[34] P. I. Crumpton, P. Moinier, M. B. Giles, An Unstructured Algorithm for
High Reynolds Number Flows on Highly Stretched Meshes, in: C. Tay-
lor, J. T. Cross (Eds.), Numerical Methods in Laminar and Turbulent
Flow, Pineridge Press, 561–572, 1997.

[35] Y. Zhao, B. Zhang, A High-Order Characteristics Upwind FV Method
for Incompressible Flow and Heat Transfer Simulation on Unstructured
Grids, Int. J. Numer. Meth. Engng. 37 (1994) 3323–3341.

[36] G. Xia, C.-L. Lin, An unstructured finite volume approach for structural
dynamics in response to fluid motions, Comput. Struct. 86 (2008) 684–
701.

32

[37] R. Suliman, O. Oxtoby, A. G. Malan, S. Kok, An enhanced matix-
free edge-based finite volume approach to model structures, in: 7th
South African Conference on Computational and Applied Mechanics
(SACAM10), Pretoria, 399–406, 10-13 January 2010.

[38] A. Slone, K. Pericleous, C. Bailey, M. Cross, Dynamic fluid–structure
interaction using finite volume unstructured mesh procedures, Comput.
Struct. 80 (2002) 371–390.

[39] P. D. Thomas, C. K. Lombard, Geometric conservation law and its ap-
plication to flow computations on moving grids, AIAA J. 17 (1979)
1030–1037.

[40] M. Lesoinne, C. Farhat, Geometric conservation laws for flow problems
with moving boundaries and deformable meshes, and their impact on
aeroelastic computations, Comput. Method Appl. M. 134 (1996) 71–90.

[41] K. A. Sørensen, O. Hassan, K. Morgan, N. P. Weatherill, Agglomerated
Multigrid on Hybrid Unstructured Meshes for Compressible Flow, Int.
J. Numer. Meth. Fl. 40 (3-4) (2002) 593–603.

[42] C. Förster, W. A. Wall, E. Ramm, Artificial added mass instabilities in
sequential staggered coupling of nonlinear structures and incompressible
viscous flows, Comput. Method Appl. M. 196 (1997) 1278–1293.

[43] B. van Leer, Towards the Ultimate Conservative Difference Scheme IV:
A New Approach to Numerical Convection, J. Comput. Phys. 23 (1977)
276.

[44] J. Blazek, Computational Fluid Dynamics: Principles and Applications,
Elsevier Science, Oxford, first edn., 2001.

[45] D. Drikakis, P. A. Govatsos, D. E. Papantonis, A characteristic-based
method for incompressible flows, Int. J. Numer. Meth. Fl. 19 (1994) 667.

[46] R. Löhner, C. Yang, E. Oñate, S. Idelssohn, An unstructured grid-based,
parallel free surface solver 31 (1999) 271–293.

[47] Y. Saad, M. H. Schultz, GMRES: A Generalized Mimimal Residual
Algorithm for Solving Nonsymmetric Linear Systems, Siam J. Sci. Stat.
Comp. 7 (3) (1986) 856–869.

33

[48] R. Löhner, Applied CFD Techniques, John-Wiley and Sons Ltd., Chich-
ester, 2001.

[49] H. Luo, J. D. Baum, R. Löhner, A Fast, Matrix-Free Implicit Method
for Compressible Flows on Unstructured Grids, J. Comput. Phys. 146
(1998) 664–690.

[50] A. Jameson, S. Yoon, Lower-upper Implicit Schemes with Multiple Grids
for the Euler Equations, AIAA J. 25 (7).

[51] I. Men’shov, Y. Nakamura, Implementation of the LU-SGS Method for
an Arbritrary Finite Volume Discretization, in: 9th Japanese Sympo-
sium on CFD, Chuo University, Tokyo, Japan, 123–124, 1995.

[52] M. Soetrisno, S. T. Imlay, D. W. Roberts, A Zonal Implicit Procedure
for Hybrid Structured-Unstructured Grids, AIAA Paper 94-0645.

[53] O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method: Volume
1 – The Basis, Butterworth-Heinemann, Oxford, fifth edn., 2000.

[54] G. Karypis, V. Kumar, A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs, SIAM J. Sci. Comput. 20 (1) (1999)
359–392.

[55] D. Sharov, K. Nakahashi, Reordering of Hybrid Unstructured Grids for
Lower–Upper Symmetric Gauss–Seidel Computations, AIAA J. 36 (3)
(1997) 484–486.

[56] U. Ghia, K. N. Ghia, C. T. Shin, High-Re Solutions for Incompressible
Flow using the Navier-Stokes Equations and a Multigrid Method, J.
Comput. Phys. 48 (1982) 387–411.

[57] E. Erturk, T. C. Corke, C. Gökçöl, Numerical solutions of 2-D steady
incompressible driven cavity flow at high Reynolds numbers, Int. J. Nu-
mer. Meth. Fl. 48 (2005) 747–774.

[58] P. Roache, Verification of codes and calculations, AIAA J. 36 (1998)
696–702.

[59] P. Roache, Quantification of uncertianty in computational fluid mechan-
ics, Annu. Rev. Fluid Mech. 29 (1997) 123–60.

34

[60] P. R. F. Teixeira, A. M. Awruch, Numerical simulation of fluid–structure
interaction using finite element method, Appl. Math. Model. 34 (2005)
249–273.

35

