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Abstract

The statistical distributions of optical vortices or topgical charge in stochastic optical fields can be inhomogesén both

transverse directions. Such two-dimensional inhomogesgortex or topological charge distributions evolve in anptex way

during free-space propagation. While the evolution of direensional topological charge densities can be deschiyetlinear

diffusion process, the evolution of two-dimensional topolabiharge densities exhibit some additional nonlinear dying. Here

we propose a phase drift mechanism as a partial explanatiohié additional nonlinear dynamics. Numerical resulesesented
in support of this proposal.
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1. Introduction field is still homogeneous, but by observing the vortex dgnsi
for instance, one can see that the resulting optical fieldhizra
When a coherent optical beam is scattered from a rough suequilibrium stochastic optical field evolving as a functagfithe
face the scattered light forms a speckle field. The phase fun@ropagation distance toward a new state of equilibriumgtvhi
tion of such a speckle field contains several phase singularagain resembles a speckle field [12, 13]. On the other hand
ties [1, 2] that propagate along with the field as opticaliced  one can generate an artificial stochastic field with inhomoge
[3, 4]. The handedness of the phase variation around thesingneous vortex distributions by modulating the phase of aglan
larities divide the vortices that are found in such speckdielf  wave or a Gaussian beam with a phase-onfiratitive optical
into two types according to their topological chatgke These element or a spatial light modulator that contains a splgcial
two types of vortices are therefore generally referred foca$-  designed phase function [14]. Another way to generate such
tive and negative vortices. During propagation, pairs ofiges  inhomogeneous stochastic fields is through the coherent and
with opposite charges (vortex dipoles) often meet and dlatéh  incoherent combination of speckle beams [15]. In both these
each other. On the other hand, vortex dipoles are also createases one can produce inhomogeneous stochastic field$y whic
during propagation. The neffect is to keep the vortex density will evolve during propagation, eventually returning totate
more or less constant af 2A.n, WhereAqq, is the coherence  of equilibrium where it will resemble a speckle field.

area of the speckle field [1, 5]. o Non-equilibrium stochastic fields exist in many practidgl s
The constant vortex density implies that the annihilat@®r ations, such as where a light beam becomes scintillateté whi
equals the creation rate. This is reminiscent of a dynamse sy propagating though a turbulent atmosphere, or where highly
tem in equilibrium, which begs the question, what happens iomplex difractive optical elements are used for optical pro-

the non-equilibrium equivalent of a speckle field? To braade cessing. An understanding of the evolution of optical e

the concept of optical speckle fields to include non-equiiln 54 topological charge distributions can be of great beirefit
scenarios, we'll refer to any optical field that contain seghe  hese applications.

ement of randomness as a stochastic optical field. A speckle
field, which is also called a random optical field, is then & spe

cial stochastic optical field that is in equilibrium. o A
P d Ocharge densities. The general aim is to work towards a com-

The vortices in fully developed speckle fields have receive ) o
much attention [L, 2, 6, 7, 5, 8, 9]. These studies include inTplete theory for the evolution of such distributions, exysed

vestigations of the distribution of the optical vortex paeters in terms of diferential equations that only contain the vortex

[7, 8] and also the topology of the vortex trajectories [10, 1 distributions under consideration. This work builds orviras

Here we are more interested in stochastic optical fields th%vtvork [14] where we investigated theftlision dfect in stochas-

. e . Ic optical fields with one-dimensional inhomogeneousahit
are not in equilibrium. There are various ways to producet

non-equilibrium stochastic optical fields. One can stathwi opological charge densities. The focus of the current pape

a speckle field and remove the continuous phase. The reg;ultiﬁs a phase d.”ﬁ.ﬁeCt that appears when the initial topological
charge density is a two-dimensional function.

The free-space propagation of light is a linear process.-How
Email address: fsroux@csir.co.za (Filippus S. Roux) ever, if the quantity of interest is a nonlinear functiontod bp-

In this paper we study the evolution of stochastic optical
fields with two-dimensional inhomogeneous initial topatad
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tical field, as is the case with the vortex distributions ¢desed  resent the local expectation value for the number of craatial
here, it is not surprising that one would find that such quigsti  annihilation events per unit volume, aNo= 9xX + 9,¥.

evolve nonlinearly. This is indeed what we find. It is impaita The equivalent conservation equations for the vortex dgnsi
that we distinguish between the free-space propagatiasepso and the topological charge density follow directly from E({9
that deals with optical fields and the, as yet unknown, dynamand (2),

igal equationg that govern the evolutionl of the vortex dstr ON(XY,2) + Y - (XY, 2) 20— 24 3)
tions. In the linear free-space propagation process evanep

wave propagates independently. As a result, if the initahe 0, (4)
plex amplitude that represents the optical field does naa@on  where Jy(X,y,2) = Jp(X.¥,2) + Jn(X,y,2) and Ir(X,y,2) =

a particular spatial frequency, then free-space propagatill  J,(X, Y, 2)—Jn(X, Y, 2). The fact that the right-hand side of Eq. (4)
not generate this spatial frequency in the output. This is a dis zero, is an expression of the local conservation of tagiokd
rect result of the linearity of the free-space propagatimeess. charge. It also implies that the topological charge derisigy
If, on the other hand, we find that new spatial frequencies argimpler quantity to work with and therefore it is the one that
generated in the final vortex distribution that were not enés focus on here.

0T(XY,2) +V-J1(xy.2)

in the initial vortex distribution, then this is an unambays The exact nature of the currents and the creation and anni-
indication that the dynamics that describe the evolutiothef hilation events, and how they depend on the densities are not
vortex distribution is nonlinear. currently known. As a result, apart from the conceptual pic-

The paper is organized as follows. First we provide someure they provide, the conservation equation in Egs. (1rd) a
background and describe our notation in Sec. 2. The mecharot very useful. Itis necessary to unravel the dynamicsedeh
nism for phase drift is explained in Sec. 3. Part of the phaséensities through detailed investigations of their betravi
drift term contains a convolution process, which is consde
in more detail in Sec. 4. In Secs. 5 and 6 we, respectively, prog  ppase drift mechanism
vide analytical solutions and numerical simulation resddir
comparison. The results are discussed in Sec. 7 and we endTo determine the dependence of the currents on the number
with some conclusions in Sec. 8. densities, one can investigate the motion of individualaaht

vortices in the beam. We are particularly interested in Hosv t
] motion of a vortex is influenced during propagation by preper
2. Notation and background ties of the beam in the vicinity of the vortex. Fluctuationstie

There are two equivalent ways to represent vortex distribu.phase and amplitude in the region surrounding a vortex, avoul

. ) . o in general influence the motion of the vortex. These fluctua-
tions. One way is to represent the positive and negativécesrt . . . )

) ; L tions can be caused by other vortices in the region or by the
by their respective number densitieg(Xx, y, 2) andn,(X,y, 2).

L . continuous variations in the beam itself.
The number density gives the local expectation value for the . L .
Inspired by the successes of statistical physics, one can as

number .Of vc_th|ces per unit area on any plan_e perpendlculasrume that changes in the vortex number densities on the trans
to the direction of propagation, which is defined by the

. . . . verse plane can either be produced by tHeudion of the vor-
coordinate here. On a given plane the number density varies . ) )

. ) . ices or due to a drift caused by some ‘force.” One can thegefo
as a function of the transverse coordinateandy, and this

. ’ replace the divergence of the current in Eq. (4) by the sum of a
function can vary from plane to plane as a functiorz.of N . .
. o . diffusion term and a drift term. The result is a Fokker-Planck
The alternative way to represent the vortex distributierei

) L U ; ~ " equation for the topological charge density.
ﬂe(f;(ne :)N(i_ drl]St('QCt guir;[g'efﬁetrlﬁ \;okr)te;((:::er;ﬁifgx,ey, zl)er:sit The ditusion term has, to some extent, been unraveled previ-
Tp(x ’y’z) - (r)w( ,)g) (% y.2 Thg vogrgtex densitgd(x 2 y ously by considering one-dimensional topological charge-d
(X Y>2) = NplX. Y, 2) = TnlX. Y. 2). Y- sities [14]. The resulting diusion equation, generalized to two-
is a positive function just like,(X,y,2) andnu(x,y,2). The

topological charge density, on the other hand, can also e ned|menS|ons 'S given b2y
ative. The latter is the local expectation value for the npbt 07T (% Y,2) — k0ZVT (X Y,2) = 0, (5)

logical charge per unit area on a transverse plane. wherexg is a dimensionless flusion parameter and? is the
Topological charge is locally conserved. As a result one cafyansverse Laplacian. Note that thigfdsion equation diers
formulate conservation equations for all the distribusioBon-  fom the more familiar equivalent from statistical physicthat
sidering only vortices with a particular topological chamne  the difusion ‘constant’ is not a constant, but depends linearly
finds that they are only conserved up to creation and annihilagp the propagation distaneeas discussed in [14]. Theftli-
tion events. Therefore one can express their conservagioire gjon parametex; is proportional to1?/L2, whered is the wave-
tions as [14] length andL, is the transverse coherence length & Acpn).
C-A 1) Although some gstimate for the proport.ionality constard ha
been made previously [14], we'll treat this constant as an un
C-A, (2)  known. The one-dimensional solutions of Eq. (5) are of the

O Np(X,Y,2) + V- Jp(X Y, 2
0M(X,Y,2) + V- In(XY,2)

whereJy(X, Y, 2) andJa(X, Y, 2) are the currents associated with form
np(X, ¥, 2) andnn(X, Y, 2), respectivelyC andA respectively rep- T(x,2) = cos(ZragX) exp(-2«on’a3z). (6)
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A drift term is usually associated with an external forcet tha atz = z, then after a small distance of propagation atz, + Az
acts on the particles. One can also have interactions atleart this function will look more or less the same apart from a lat-
on themselves in a collective fashion. There is a way in whicteral shift. Hencef(x,y,zy + A2) ~ f(X— AX,y — Ay, Zy). The
optical vortices can produce such a collective self-irdéoa.  amount of shift Ax, Ay) is determined by the angle between the
In a region where the topological charge density is nonZezo t propagation vectdk and thez-axis. Locally, the phase function
number of optical vortices of one handedness exceeds that of the optical field can be approximated by that of a plane wave
the other. In this case the phase functions of the vortickseo  (without loss of generality we assume the propagation vecto
tively produce regions of high spatial frequency with parar  lies in thexz-plane)
orientations as shown in Fig. 1. Such a region therefore has
a wavefront that is tilted with respect to a plane perpendicu  6(X.Y,2) » -k - x = =K [Xsin(a) + zcosg)], (8)
lar to the general direction of propagation. This tilt cause
sideways drift motion for the vortices in that region. A one-
dimensional sinusoidal topological charge density witiguce
a phase function that contains such regions with high dedia
qguencies, as shown in Fig. 1. However, if, for argument sake, AX
the one-dimensional topological charge density is a fonaif x0 = —ka ~ —k—, )

X (as in Fig. 1), then the drift that it produces will be in thesdi

tion of y. So the drift will not be able to change the topological where we use Fig. 2 for the final expression. By solving Eq. (9)
charge density. It therefore follows that this drift mecisam  for Ax, we obtain an expression for the lateral drift. For the
does not have anyffect in the case of a one-dimensional distri- general paraxial case, the lateral dik is given by

bution.

wherea is the angle betweek and thez-axis, andk is the
wavenumber. The derivative of the phase function with respe
to x in the paraxial limit gives

—-V6Az
AX ~
k

whereVe represents the gradient of the phase function on the
transverse plane. The approximation is valid in the paftaxia
limit.

for k< |Vé|, (10)

Az ]
=,

Figure 2: A wave propagating at some nonzero angle with rtdpehez-axis
produces a lateral drift of its transverse amplitude.

Since the complex amplitude as a whole experiences a lateral
shift after a small propagation, the topological chargesign
Figure 1: A phase function produced by a one-dimensionabsidal topologi- il experience the same lateral shift after the same distanf

cal charge density along theaxis. Note the high spatial frequencies generated . . .
between regions of opposite topological charges. propagatlgn. We expand the resulting equation as a truthcate
Taylor series,

The influence of phase on the motion of a vortex is deter-  7(xy 7+ A7)
mined by the general observation that any wavelet tends to
propagate perpendicular to the local wavefront. Consider f

T(X— AX Y — Ay, 2)
T(XY,2 - AX-VT(X,Y, 2. (12)

X

instance a beam with a complex amplitude given by Substituting Eq. (10) into Eq. (11) and taking the lim — O,
one obtains,
f(x.y.2) = A(x.y. 2) explio(x.y. 2)], Q)
S N : : VO-VT(XV,2)
propagating in the direction of the propagation vegtowhich 0 T(%y,2) = ————=——. (12)

makes a small non-zero angle with tkexis, as shown in k
Fig. 2. Due to this small angle the beam will shift lateraliy-d The gradient of the phase function that is produced by the
ing propagation. If the complex amplitude is givent{y, y, Zp) distribution of vortice/0s is given by the convolution between



the topological charge density and the gradient of the phasehere Re{-} takes the real part of the argument. Applying

function of a single optical vortex [16], Eq. (18) to the gradient of the vortex phase function in E@),(1
one obtains,
VOs = T(X,Y,2 ® Vo, (13)
SN (x+1iy) i

where ¢ represents the phase function of a single positve  (X+19) - Vé(xy) = 'm = X<y’ (20)
canonical vortex ane denotes the convolution operation. Sub- . . S
stituting Eq. (13) into Eq. (12), one obtains the expreséiosn  The expression for the convolution then simplifies to,
the drift term, = iT(X= Uy —V.2)

F= f f u—?'v dudv. 1)

0, T(X,Y,2) = % [T(XY,2® Vo] - VT (XY, 2. (14)

) . o Now consider the case wheile = cos(Zax), with a rep-
The topological charge densify(x, y,2) appears twice in this resenting the spatial frequency alomg We ignore thez-

term. Itis also nonlocal because of the convolution pracess g ution process. Following the above procedure one finds,

Note that the dfusion dfect is not included in Eq. (14). In A
other words, we fectively setkp = O to obtain the expression cos(2rax) ® Vo = y
for the drift term. By adding the €usion term, as it appears a

in the difusion equation in Eq. (5), back into Eq. (14), one 0b-gne can repeat this calculation for siné®), generalize these
tains a Fokker-Planck equation for the topological cha@ d  ogits for arbitrary directions and combine them to obtain

sin(2rax). (22)

sity, given by, expression for all the Fourier components,
1 . .
3,1 — koZV?T — E (TeVep)-VT =0. (15) ZlexpCi2ra-x)} = expi2ra-x)® Ve
igxa)
We do not currently believe that Eq. (15), provides a com- = Tap exp(-i2ra- x), (23)

plete description for the evolution of two-dimensionalanino-

geneous topological charge distributions, because solsihf ~ Wherea = aX+ by.

this equation do not exactly match results from numericatsi ~ So for a Fourier expansion af(x, y, 2), given by,

ulations (see Sec. 6). The missing part may be due to ottfer dri oo

mechanisms that are not currently understood. T(X,Y,2 = ff T(a, b, 2) exp(-i2ra- x) dadb, (24)

4. Convolution we have,

As noted in Eqg. (13), the gradient of the phase function that i =T} = ff T(ab,2) exp(—i2ra- x) dadb, (25)

produced by the distribution of optical vortices is giventhg —o

convolution of the topological charge density and the gratli  for the general solution of the convolution process.

of the phase of a single vortex, Since the convolution in the drift term always produces vec-

— tor components orthogonal to the spatial dependence, while
Vos T(X’g’ 2@ Vg =E(T(xY.2) the gradient produces vector components parallel to thiaspa

ff T(X—=Uu,y -V, 2)Ve(u,V) dudv. (16) dependence, it may appear to be impossible to get situations
—c0 where the drift term is not zero. However figrent Fourier

Here we define this convolution process as an opet@tgy ~ COMponents can interact with each other and thereby praguce

operating on a topological charge density to produce a twotonzero drift term. To see this, we consider an initial togd!

dimensional vector field. The gradient of the phase of a singl cal charge density given by,

positive canonical optical vortex is given by, T(x,2= 0) = expli2nay - X) + expli2ras - X) (26)
s L — - - 1 - 2 * s

i(Zx a)
ER

(17)  ignoring for the moment the fact that is supposed to be a
real-valued function. This topological charge densityduces
Since the topological charge density is real-valued, ome caa drift term given by,
simplify the convolution expression. We define
27 2+ (ag x &) (Jaul? - [agl?)

F=(X+1iy)- Vos, (18) (TeVe)-VT ENEENE
so that the real (imaginary) part df represents thex- xexp[-i2r (a1 + az) - X] . (27)
componenty-component) oVds. One can then recovéids . )
through It thus follows that, to have a nonzero drift term, the togidal
charge density must contain at least two Fourier components
Re{(X—1Y) F} = Vs, (19) with different spatial frequencies that obey the following two



requirements. Due to the factda{? — |a,|?) the spatial fre- where
quencies must haveftitrent magnitudes and due to the cross-

product &; xay) the spatial frequencies must also hav@etent (2 = Fiexp2rkoag?)
directions. The drift term will then introduce new Fourienc- F2a2(a2 — b2)
; h . 238 — g 2, 272
ponents resulting from the product of the initial Fouriengm- T a2 L [1 — exp(-4n°koby )]
4koby(ag + bg)
nents.
The convolution operation has some interesting properties  f2(2) = Fzexp(-2r’kobZ)
If one computes the divergence of the resulting vector fielel o F2p2(a2 — b2)
. o 1% — 5 2, 227
finds thatV - Z{T} = 0. This is related to the fact that phase 1 o222 1 D) [1 — exp(-4n“kody )]
singularities don’t survive a Laplacian operation. Acéongto 2°a0 fo 0
its definition={T} = Vs, whereds is the singular part of the _ mFiFo(ag - bp) 2 12 12
phase function, it follows thal - Z{T} = V%0s = 0. The fact fs(2) = aobg ZEXp[_Zﬂ Ko(ap + bO)ZZ] (32)
that the divergence &{T} vanishes, means that the drift term ] ) ] )
can be expressed as This predicted evolution can now be compared with numerical
simulations.
(TVY) - VT =V-[T(TeVe)] =V (TE(T)). (28) Note that, substituting = 0 in Eq. (32), we geff3(0) = 0.

Hence, the mixed term is not present in the initial vortex dis
Using this information one can then obtain a partial expogss tribution. Yet, due to the nonlinearity of the interactiarrh
for the transverse topological charge current in Eq. (4emi  in Eq. (15), the mixed spatial frequency term is generated du
by, ing the propagation of the optical field. The appearance of a
new spatial frequency that was not present in the initiatidis
bution is a clear indication that the dynamics which govem t
evolution of the vortex distribution is nonlinear. So, altigh
free-space propagation is a linear process acting on theabpt
field, the evolution of vortex distribution that is embedded
that optical field is nonlinear. This is not really as inctddi
as it may sound, because the vortex distribution is obtalyed
extracting the phase of the optical field, which requires &no
finear calculation. The nonlinearity therefore enters assalt
of the particular quantity that is being considered.

1
Jr =~V T — L TE(T). (29)

Moreover, we find that the curl of the resulting vector field
givesV x E{T} = 27TZ This is related to the index integral
for phase singularities, which leads, via the Stokes thapte
the fact thatV x V6 = V x Vos = 27TZ In this case it is only
the singular part of the phase function that can make a nonze
contribution to the right-hand side.

5. Analytical solutions 6. Numerical ssimulation

The simplest form that the initial topological charge densi  Numerical simulations are used to test the predicted nenlin
must have to produce a nonzero drift term is given by, ear evolution of Eq. (15). The propagation of optical beamas t
contain specific distributions of optical vortices are siated
T(xy.z=0) = F1cos(2raoX) + F2cos(2rboy),  (30)  with a numerical beam propagation algorithm. The input & th
¢ b whereF dF tant val N simulations are sampled complex-valued functions, ctingis
oranyao # bo, wherer, andr aré constant values. New 515, 512 pixels. Each sampled function represents a beam
Fourier components proportional 1o cas{apx + boy)] and ... cross-section in the plane directly behind a phase-oriyadi
COS[ZT(aO).( B boy)l, are gxpected to be generateql by the .d”ft ive optical element or a spatial light modulator that isdis
term. 'Th|s Isa predlct|on thaF can be tested with the ald'o roduce the optical vortex distribution. The complex-ealu
numerical glmulat!ons. For th's. purpose we need theoletic unctions are produced with periodic boundary conditions s
curves against which Fhe numerical result can be compared. that opposite edges of the function match each other continu
~ We use a perturbative approach to solve Eq. (15), where wg,q)y *n this way one avoids aliasingfects and the resulting
insert a small coupling constant for the nonlinear term imt optical field does not expand during propagation.
of which we then expand th_e splution. Atthe end the Cqupling The numerical procedure then propagates the initial func-
constantis removed by s_ettmg itequalto 1. Thereason why th tion through free-space over progressively larger distanthe
approach produce solutions that agrees to some extenthvth tpropagation distance is incremented in steps to deterrhime t

numencgl solutions is becauge the contributions Qer‘*@e effect of the propagation distance on the evolution of the topo-

the nonllnegr term start out being small. The analyticaltsoh logical charge distribution. For each step the topologibarge

thus found is density is obtained by computing the location and topolaigic

charge for every vortex in the beam. Such a topological eharg

T(xy.2) = 1(2)cos(2raox) + 2(2) cos(2rbay) density is a two-dimensional sampled function that is z&ro e
+13(2) {cos[2r(aox + boy)] erywhere except at the locations of the vortices, where it is
— cos[2n(agx — boy)]} (31) equalto either 1 or -1, indicating the topological charg¢hef



1.2 7. Discussion
cos(ax) ........ num

Eg:ggilby) num Focusing on the numerical curves in Fig. 3, we see that the
cos(ax-by) ... num two initial Fourier component decay to zero afféient rates.
cos(@x) ........ th The one with the higher frequency component decays quicker
cos(by) ...... th than the lower frequency component, which is consistertt wit
cos(ax+by) . th '
cos(ax-by) ... th the ditusive behaviour found before [14]. We also see that two
new Fourier components are generated as predicted, which co
firms that the evolution of the topological charge distribatis
------ nonlinear. Starting from zero, both of these new Fourier-com
ponent reach nonzero values that are several times theasthnd
deviation, after which they decay away to zero again. We also
notice that the higher frequency component becomes negativ
with a magnitude slightly larger than one standard dewatio
before it decays to zero. This is also an indication of nenlin
Figure 3: (color online) Decay curves of foulffirent Fourier components as a ear evolution. These results therefore confirm that a neafin
function of the propagation distance, obtained from the eniral simulations ~ process is at work in the evolution of the topological charge
of two-dimensional initial topological charge densitig$e four Fourier com-  distribution, as predicted by the drift term in Eq. (15).
ponents are those associated with ag(cosby), cosx-+by) and costx-by), After fitting the analytical curves to match the peak of the
wherea = 2rap andb = 27by. The discrete points with the error bars represent . .
results obtained from the numerical simulations and thiel salrves are the ~N€W Fourier components, one finds that all the curves mach th
theoretical predictions. numerical data remarkably well, accept for the initial Reur
component with the higher spatial frequency. Even in thieca
the discrepancy only lies in the region where the numeriatd d
becomes negative. This discrepancy points to some addition
drift mechanism(s) that has not yet been identified. On therot
vortex. The Fourier transform of this topological charge-de hand, the overall agreement that is seen is interpretedrii-co
sity is used to extract the amplitudes of the pertinent Fwuri mation that the phase drift mechanism, together with the pre
components of the topological charge density. viously reported dfusion mechanism [14], gives a good par-
tial description of the evolution of a two-dimensional dtastic
For the comparison with the predicted theoretical curves wéopological charge density.
perform numerical simulations of the propagation of selvera
different quasi-random vortex fields, each containing 820 VOTs  conclusion
tices arranged to produce initial topological charge d@ssi
given by Eg. (30), withag andbo chosen to give exactly 2 and e identified and formulated the phenomenon of phase drift
4 periods, respectively, inside the 54512 window. The ini-  in two-dimensional stochastic topological charge deesitiro-
tial amplitudesF; andF; are both set equal to the maximum gether with the previously identifiedfilision efect, the phase
value that the initial vortex density allows. However, doe t drift effect is described by a fierential equation for the topo-
the randomness of the topological charge distribution #2&® |ogical charge density. Containing both a drift term andfueli
amplitude that is produced is not knowrpriori. We used a sjon term, this dierential equation has the form of a Fokker-
wavelength of 1.5 pixels, which is small enough to avoid thepjanck equation. However, due to a slight discrepancy be-
limitations that exist for topological charge densitieg]{1 tween numerical simulation results and the theoreticalesir
this Fokker-Planck equation is not yet considered to be acom
During the simulated propagation we compute the topologplete description for the evolution of two-dimensionalcétas-
ical charge density at regular intervals along the propagat tic topological charge densities. Further investigatiame
direction and extract the Fourier components associatéd wi needed.
cos(2Zrapx), cos(Zbgy), cos[2r(apX + boy)] and cos[Z(agx — The drift term is a nonlinear term, which accounts for part
boy)] from these topological charge densities. The resultingof the nonlinear evolution that is observed for two-dimensi
curves of the amplitudes of these components are shown istochastic topological charge densities. This nonlineatue
Fig. 3, as a function of propagation distance. The propeagati tion is seen in the dynamics of the topological charge dgnsit
distance is measured in terms of the Rayleigh rangenL?/ 1. during free-space propagation, which is in itself a lineaicess
The discrete points in Fig. 3 are the results from the numeridescribed by Maxwell's equations. The emergence of nonlin-
cal simulations and the error bars represent their stardlewrd ear dynamics from a fundamentally linear process can be seen
viations. The solid curves are the predictions obtainethfro as a result of the fact that the quantities under considerati
Egs. (31) and (32), which were fitted to the numerical data byhave changed from being the full electromagnetic field to the
matching the amplitude and position of the peaks¢f) to com-  distribution of phase singularities in the field. To extrdut
pensate for the uncertainties in the amplitude and in theeval latter from the former, one requires a nonlinear operation.
of xo. this sense it is not surprising to see nonlinear dynamicg¢h@n

Normalized amplitude
o
N

30

Propagation distance [Rayleigh range]



other hand, it also implies that the dynamics of optical ewrt
distributions cannot be directly derived from Maxwell'sueq
tions. The dynamics of optical vortex distributions is #fere

an emergent phenomenon in the context of complexity theory.
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