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Abstract

The statistical distributions of optical vortices or topological charge in stochastic optical fields can be inhomogeneous in both
transverse directions. Such two-dimensional inhomogeneous vortex or topological charge distributions evolve in a complex way
during free-space propagation. While the evolution of one-dimensional topological charge densities can be describedby a linear
diffusion process, the evolution of two-dimensional topological charge densities exhibit some additional nonlinear dynamics. Here
we propose a phase drift mechanism as a partial explanation for this additional nonlinear dynamics. Numerical results are presented
in support of this proposal.
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1. Introduction

When a coherent optical beam is scattered from a rough sur-
face the scattered light forms a speckle field. The phase func-
tion of such a speckle field contains several phase singulari-
ties [1, 2] that propagate along with the field as optical vortices
[3, 4]. The handedness of the phase variation around the singu-
larities divide the vortices that are found in such speckle fields
into two types according to their topological charge±1. These
two types of vortices are therefore generally referred to asposi-
tive and negative vortices. During propagation, pairs of vortices
with opposite charges (vortex dipoles) often meet and annihilate
each other. On the other hand, vortex dipoles are also created
during propagation. The net effect is to keep the vortex density
more or less constant at 1/2Acoh, whereAcoh is the coherence
area of the speckle field [1, 5].

The constant vortex density implies that the annihilation rate
equals the creation rate. This is reminiscent of a dynamic sys-
tem in equilibrium, which begs the question, what happens in
the non-equilibrium equivalent of a speckle field? To broaden
the concept of optical speckle fields to include non-equilibrium
scenarios, we’ll refer to any optical field that contain someel-
ement of randomness as a stochastic optical field. A speckle
field, which is also called a random optical field, is then a spe-
cial stochastic optical field that is in equilibrium.

The vortices in fully developed speckle fields have received
much attention [1, 2, 6, 7, 5, 8, 9]. These studies include in-
vestigations of the distribution of the optical vortex parameters
[7, 8] and also the topology of the vortex trajectories [10, 11].

Here we are more interested in stochastic optical fields that
are not in equilibrium. There are various ways to produce
non-equilibrium stochastic optical fields. One can start with
a speckle field and remove the continuous phase. The resulting
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field is still homogeneous, but by observing the vortex density,
for instance, one can see that the resulting optical field is anon-
equilibrium stochastic optical field evolving as a functionof the
propagation distance toward a new state of equilibrium, which
again resembles a speckle field [12, 13]. On the other hand
one can generate an artificial stochastic field with inhomoge-
neous vortex distributions by modulating the phase of a plane
wave or a Gaussian beam with a phase-only diffractive optical
element or a spatial light modulator that contains a specially
designed phase function [14]. Another way to generate such
inhomogeneous stochastic fields is through the coherent and
incoherent combination of speckle beams [15]. In both these
cases one can produce inhomogeneous stochastic fields, which
will evolve during propagation, eventually returning to a state
of equilibrium where it will resemble a speckle field.

Non-equilibrium stochastic fields exist in many practical sit-
uations, such as where a light beam becomes scintillated while
propagating though a turbulent atmosphere, or where highly
complex diffractive optical elements are used for optical pro-
cessing. An understanding of the evolution of optical vortices
and topological charge distributions can be of great benefitin
these applications.

In this paper we study the evolution of stochastic optical
fields with two-dimensional inhomogeneous initial topological
charge densities. The general aim is to work towards a com-
plete theory for the evolution of such distributions, expressed
in terms of differential equations that only contain the vortex
distributions under consideration. This work builds on previous
work [14] where we investigated the diffusion effect in stochas-
tic optical fields with one-dimensional inhomogeneous initial
topological charge densities. The focus of the current paper
is a phase drift effect that appears when the initial topological
charge density is a two-dimensional function.

The free-space propagation of light is a linear process. How-
ever, if the quantity of interest is a nonlinear function of the op-
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tical field, as is the case with the vortex distributions considered
here, it is not surprising that one would find that such quantities
evolve nonlinearly. This is indeed what we find. It is important
that we distinguish between the free-space propagation process
that deals with optical fields and the, as yet unknown, dynam-
ical equations that govern the evolution of the vortex distribu-
tions. In the linear free-space propagation process every plane
wave propagates independently. As a result, if the initial com-
plex amplitude that represents the optical field does not contain
a particular spatial frequency, then free-space propagation will
not generate this spatial frequency in the output. This is a di-
rect result of the linearity of the free-space propagation process.
If, on the other hand, we find that new spatial frequencies are
generated in the final vortex distribution that were not present
in the initial vortex distribution, then this is an unambiguous
indication that the dynamics that describe the evolution ofthe
vortex distribution is nonlinear.

The paper is organized as follows. First we provide some
background and describe our notation in Sec. 2. The mecha-
nism for phase drift is explained in Sec. 3. Part of the phase
drift term contains a convolution process, which is considered
in more detail in Sec. 4. In Secs. 5 and 6 we, respectively, pro-
vide analytical solutions and numerical simulation results for
comparison. The results are discussed in Sec. 7 and we end
with some conclusions in Sec. 8.

2. Notation and background

There are two equivalent ways to represent vortex distribu-
tions. One way is to represent the positive and negative vortices
by their respective number densities,np(x, y, z) andnn(x, y, z).
The number density gives the local expectation value for the
number of vortices per unit area on any plane perpendicular
to the direction of propagation, which is defined by thez-
coordinate here. On a given plane the number density varies
as a function of the transverse coordinatesx and y, and this
function can vary from plane to plane as a function ofz.

The alternative way to represent the vortex distributions is to
define two distinct quantities: the vortex densityV(x, y, z) =
np(x, y, z) + nn(x, y, z) and the topological charge density
T (x, y, z) = np(x, y, z) − nn(x, y, z). The vortex densityV(x, y, z)
is a positive function just likenp(x, y, z) and nn(x, y, z). The
topological charge density, on the other hand, can also be neg-
ative. The latter is the local expectation value for the net topo-
logical charge per unit area on a transverse plane.

Topological charge is locally conserved. As a result one can
formulate conservation equations for all the distributions. Con-
sidering only vortices with a particular topological charge one
finds that they are only conserved up to creation and annihila-
tion events. Therefore one can express their conservation equa-
tions as [14]

∂znp(x, y, z) + ∇ · Jp(x, y, z) = C − A (1)

∂znn(x, y, z) + ∇ · Jn(x, y, z) = C − A, (2)

whereJp(x, y, z) andJn(x, y, z) are the currents associated with
np(x, y, z) andnn(x, y, z), respectively;C andA respectively rep-

resent the local expectation value for the number of creation and
annihilation events per unit volume, and∇ = ∂x x̂ + ∂yŷ.

The equivalent conservation equations for the vortex density
and the topological charge density follow directly from Eqs. (1)
and (2),

∂zV(x, y, z) + ∇ · JV(x, y, z) = 2C − 2A (3)

∂zT (x, y, z) + ∇ · JT (x, y, z) = 0, (4)

where JV (x, y, z) = Jp(x, y, z) + Jn(x, y, z) and JT (x, y, z) =
Jp(x, y, z)−Jn(x, y, z). The fact that the right-hand side of Eq. (4)
is zero, is an expression of the local conservation of topological
charge. It also implies that the topological charge densityis a
simpler quantity to work with and therefore it is the one thatwe
focus on here.

The exact nature of the currents and the creation and anni-
hilation events, and how they depend on the densities are not
currently known. As a result, apart from the conceptual pic-
ture they provide, the conservation equation in Eqs. (1-4) are
not very useful. It is necessary to unravel the dynamics of these
densities through detailed investigations of their behavior.

3. Phase drift mechanism

To determine the dependence of the currents on the number
densities, one can investigate the motion of individual optical
vortices in the beam. We are particularly interested in how the
motion of a vortex is influenced during propagation by proper-
ties of the beam in the vicinity of the vortex. Fluctuations in the
phase and amplitude in the region surrounding a vortex, would
in general influence the motion of the vortex. These fluctua-
tions can be caused by other vortices in the region or by the
continuous variations in the beam itself.

Inspired by the successes of statistical physics, one can as-
sume that changes in the vortex number densities on the trans-
verse plane can either be produced by the diffusion of the vor-
tices or due to a drift caused by some ‘force.’ One can therefore
replace the divergence of the current in Eq. (4) by the sum of a
diffusion term and a drift term. The result is a Fokker-Planck
equation for the topological charge density.

The diffusion term has, to some extent, been unraveled previ-
ously by considering one-dimensional topological charge den-
sities [14]. The resulting diffusion equation, generalized to two-
dimensions is given by

∂zT (x, y, z) − κ0z∇2T (x, y, z) = 0, (5)

whereκ0 is a dimensionless diffusion parameter and∇2 is the
transverse Laplacian. Note that this diffusion equation differs
from the more familiar equivalent from statistical physicsin that
the diffusion ‘constant’ is not a constant, but depends linearly
on the propagation distancez, as discussed in [14]. The diffu-
sion parameterκ0 is proportional toλ2/L2

c , whereλ is the wave-
length andLc is the transverse coherence length (L2

c = Acoh).
Although some estimate for the proportionality constant has
been made previously [14], we’ll treat this constant as an un-
known. The one-dimensional solutions of Eq. (5) are of the
form

T (x, z) = cos(2πa0x) exp(−2κ0π2a2
0z2). (6)
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A drift term is usually associated with an external force that
acts on the particles. One can also have interactions of particles
on themselves in a collective fashion. There is a way in which
optical vortices can produce such a collective self-interaction.
In a region where the topological charge density is nonzero the
number of optical vortices of one handedness exceeds that of
the other. In this case the phase functions of the vortices collec-
tively produce regions of high spatial frequency with particular
orientations as shown in Fig. 1. Such a region therefore has
a wavefront that is tilted with respect to a plane perpendicu-
lar to the general direction of propagation. This tilt causes a
sideways drift motion for the vortices in that region. A one-
dimensional sinusoidal topological charge density will produce
a phase function that contains such regions with high spatial fre-
quencies, as shown in Fig. 1. However, if, for argument sake,
the one-dimensional topological charge density is a function of
x (as in Fig. 1), then the drift that it produces will be in the direc-
tion of y. So the drift will not be able to change the topological
charge density. It therefore follows that this drift mechanism
does not have any effect in the case of a one-dimensional distri-
bution.

x

y

Figure 1: A phase function produced by a one-dimensional sinusoidal topologi-
cal charge density along thex-axis. Note the high spatial frequencies generated
between regions of opposite topological charges.

The influence of phase on the motion of a vortex is deter-
mined by the general observation that any wavelet tends to
propagate perpendicular to the local wavefront. Consider for
instance a beam with a complex amplitude given by

f (x, y, z) = A(x, y, z) exp[iθ(x, y, z)], (7)

propagating in the direction of the propagation vectork, which
makes a small non-zero angle with thez-axis, as shown in
Fig. 2. Due to this small angle the beam will shift laterally dur-
ing propagation. If the complex amplitude is given byf (x, y, z0)

atz = z0 then after a small distance of propagation atz = z0+∆z
this function will look more or less the same apart from a lat-
eral shift. Hence,f (x, y, z0 + ∆z) ≈ f (x − ∆x, y − ∆y, z0). The
amount of shift (∆x,∆y) is determined by the angle between the
propagation vectork and thez-axis. Locally, the phase function
of the optical field can be approximated by that of a plane wave
(without loss of generality we assume the propagation vector
lies in thexz-plane)

θ(x, y, z) ≈ −k · x = −k [x sin(α) + z cos(α)], (8)

whereα is the angle betweenk and thez-axis, andk is the
wavenumber. The derivative of the phase function with respect
to x in the paraxial limit gives

∂xθ ≈ −kα ≈ −k
∆x
∆z
, (9)

where we use Fig. 2 for the final expression. By solving Eq. (9)
for ∆x, we obtain an expression for the lateral drift. For the
general paraxial case, the lateral drift∆x is given by

∆x ≈
−∇θ∆z

k
for k ≪ |∇θ|, (10)

where∇θ represents the gradient of the phase function on the
transverse plane. The approximation is valid in the paraxial
limit.

Dz

Dx

k

z

a

Figure 2: A wave propagating at some nonzero angle with respect to thez-axis
produces a lateral drift of its transverse amplitude.

Since the complex amplitude as a whole experiences a lateral
shift after a small propagation, the topological charge density
will experience the same lateral shift after the same distance of
propagation. We expand the resulting equation as a truncated
Taylor series,

T (x, y, z + ∆z) = T (x − ∆x, y − ∆y, z)

≈ T (x, y, z) − ∆x · ∇T (x, y, z). (11)

Substituting Eq. (10) into Eq. (11) and taking the limit∆z→ 0,
one obtains,

∂zT (x, y, z) =
∇θ · ∇T (x, y, z)

k
. (12)

The gradient of the phase function that is produced by the
distribution of vortices∇θS is given by the convolution between
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the topological charge density and the gradient of the phase
function of a single optical vortex [16],

∇θS = T (x, y, z) ⊗ ∇φ, (13)

where φ represents the phase function of a single positive
canonical vortex and⊗ denotes the convolution operation. Sub-
stituting Eq. (13) into Eq. (12), one obtains the expressionfor
the drift term,

∂zT (x, y, z) =
1
k
[

T (x, y, z) ⊗ ∇φ
]

· ∇T (x, y, z). (14)

The topological charge densityT (x, y, z) appears twice in this
term, which means that the drift term is a nonlinear interaction
term. It is also nonlocal because of the convolution process.

Note that the diffusion effect is not included in Eq. (14). In
other words, we effectively setκ0 = 0 to obtain the expression
for the drift term. By adding the diffusion term, as it appears
in the diffusion equation in Eq. (5), back into Eq. (14), one ob-
tains a Fokker-Planck equation for the topological charge den-
sity, given by,

∂zT − κ0z∇2T −
1
k

(T ⊗ ∇φ) · ∇T = 0. (15)

We do not currently believe that Eq. (15), provides a com-
plete description for the evolution of two-dimensional inhomo-
geneous topological charge distributions, because solutions of
this equation do not exactly match results from numerical sim-
ulations (see Sec. 6). The missing part may be due to other drift
mechanisms that are not currently understood.

4. Convolution

As noted in Eq. (13), the gradient of the phase function that is
produced by the distribution of optical vortices is given bythe
convolution of the topological charge density and the gradient
of the phase of a single vortex,

∇θS = T (x, y, z) ⊗ ∇φ = Ξ{T (x, y, z)}

=

∫∫ ∞

−∞

T (x − u, y − v, z)∇φ(u, v) dudv. (16)

Here we define this convolution process as an operatorΞ{·},
operating on a topological charge density to produce a two-
dimensional vector field. The gradient of the phase of a single
positive canonical optical vortex is given by,

∇φ(x, y) =
xŷ − yx̂
x2 + y2

. (17)

Since the topological charge density is real-valued, one can
simplify the convolution expression. We define

F = (x̂ + iŷ) · ∇θS , (18)

so that the real (imaginary) part ofF represents thex-
component (y-component) of∇θS . One can then recover∇θS
through

Re {(x̂ − iŷ) F} = ∇θS , (19)

whereRe{·} takes the real part of the argument. Applying
Eq. (18) to the gradient of the vortex phase function in Eq. (17),
one obtains,

(x̂ + iŷ) · ∇φ(x, y) = i
(x + iy)
x2 + y2

=
i

x − iy
. (20)

The expression for the convolution then simplifies to,

F =
∫∫ ∞

−∞

iT (x − u, y − v, z)
u − iv

dudv. (21)

Now consider the case whereT = cos(2πax), with a rep-
resenting the spatial frequency alongx. We ignore thez-
dependence for the moment, since it has no effect in the con-
volution process. Following the above procedure one finds,

cos(2πax) ⊗ ∇φ =
ŷ
a

sin(2πax). (22)

One can repeat this calculation for sin(2πax), generalize these
results for arbitrary directions and combine them to obtainthe
expression for all the Fourier components,

Ξ{exp(−i2πa · x)} = exp(−i2πa · x) ⊗ ∇φ

=
i(ẑ × a)
|a|2

exp(−i2πa · x), (23)

wherea = ax̂ + bŷ.
So for a Fourier expansion ofT (x, y, z), given by,

T (x, y, z) =
∫∫ ∞

−∞

T̃ (a, b, z) exp(−i2πa · x) dadb, (24)

we have,

Ξ{T } =
∫∫ ∞

−∞

T̃ (a, b, z)
i(ẑ × a)
|a|2

exp(−i2πa · x) dadb, (25)

for the general solution of the convolution process.
Since the convolution in the drift term always produces vec-

tor components orthogonal to the spatial dependence, while
the gradient produces vector components parallel to the spatial
dependence, it may appear to be impossible to get situations
where the drift term is not zero. However, different Fourier
components can interact with each other and thereby producea
nonzero drift term. To see this, we consider an initial topologi-
cal charge density given by,

T (x, z = 0) = exp(−i2πa1 · x) + exp(−i2πa2 · x), (26)

ignoring for the moment the fact thatT is supposed to be a
real-valued function. This topological charge density produces
a drift term given by,

(T ⊗ ∇φ) · ∇T =

2π ẑ · (a1 × a2)
(

|a1|
2 − |a2|

2
)

|a1|
2|a2|

2

× exp [−i2π (a1 + a2) · x] . (27)

It thus follows that, to have a nonzero drift term, the topological
charge density must contain at least two Fourier components
with different spatial frequencies that obey the following two

4



requirements. Due to the factor (|a1|
2 − |a2|

2) the spatial fre-
quencies must have different magnitudes and due to the cross-
product (a1×a2) the spatial frequencies must also have different
directions. The drift term will then introduce new Fourier com-
ponents resulting from the product of the initial Fourier compo-
nents.

The convolution operation has some interesting properties.
If one computes the divergence of the resulting vector field one
finds that∇ · Ξ{T } = 0. This is related to the fact that phase
singularities don’t survive a Laplacian operation. According to
its definitionΞ{T } = ∇θS , whereθS is the singular part of the
phase function, it follows that∇ · Ξ{T } = ∇2θS = 0. The fact
that the divergence ofΞ{T } vanishes, means that the drift term
can be expressed as

(T ⊗ ∇φ) · ∇T = ∇ ·
[

T (T ⊗ ∇φ)
]

= ∇ · (TΞ{T }) . (28)

Using this information one can then obtain a partial expression
for the transverse topological charge current in Eq. (4), given
by,

JT = −κ0z∇T −
1
k

TΞ{T }. (29)

Moreover, we find that the curl of the resulting vector field
gives∇ × Ξ{T } = 2πT ẑ. This is related to the index integral
for phase singularities, which leads, via the Stokes theorem, to
the fact that∇ × ∇θ = ∇ × ∇θS = 2πT ẑ. In this case it is only
the singular part of the phase function that can make a nonzero
contribution to the right-hand side.

5. Analytical solutions

The simplest form that the initial topological charge density
must have to produce a nonzero drift term is given by,

T (x, y, z = 0) = F1 cos(2πa0x) + F2 cos(2πb0y) , (30)

for any a0 , b0, whereF1 and F2 are constant values. New
Fourier components proportional to cos[2π(a0x + b0y)] and
cos[2π(a0x − b0y)], are expected to be generated by the drift
term. This is a prediction that can be tested with the aid of
numerical simulations. For this purpose we need theoretical
curves against which the numerical result can be compared.

We use a perturbative approach to solve Eq. (15), where we
insert a small coupling constant for the nonlinear term in terms
of which we then expand the solution. At the end the coupling
constant is removed by setting it equal to 1. The reason why this
approach produce solutions that agrees to some extent with the
numerical solutions is because the contributions generated by
the nonlinear term start out being small. The analytical solution
thus found is

T (x, y, z) = f1(z) cos(2πa0x) + f2(z) cos(2πb0y)

+ f3(z)
{

cos
[

2π(a0x + b0y)
]

− cos
[

2π(a0x − b0y)
]}

(31)

where

f1(z) = F1 exp(−2π2κ0a2
0z2)

×















1−
F2

2a2
0(a

2
0 − b2

0)

4κ0b4
0(a

2
0 + b2

0)

[

1− exp(−4π2κ0b2
0z2)
]















f2(z) = F2 exp(−2π2κ0b2
0z2)

×















1+
F2

1b2
0(a

2
0 − b2

0)

4κ0a4
0(a

2
0 + b2

0)

[

1− exp(−4π2κ0a2
0z2)
]















f3(z) =
πF1F2(a2

0 − b2
0)

a0b0
z exp

[

−2π2κ0(a2
0 + b2

0)z
2
]

(32)

This predicted evolution can now be compared with numerical
simulations.

Note that, substitutingz = 0 in Eq. (32), we getf3(0) = 0.
Hence, the mixed term is not present in the initial vortex dis-
tribution. Yet, due to the nonlinearity of the interaction term
in Eq. (15), the mixed spatial frequency term is generated dur-
ing the propagation of the optical field. The appearance of a
new spatial frequency that was not present in the initial distri-
bution is a clear indication that the dynamics which govern the
evolution of the vortex distribution is nonlinear. So, although
free-space propagation is a linear process acting on the optical
field, the evolution of vortex distribution that is embeddedin
that optical field is nonlinear. This is not really as incredible
as it may sound, because the vortex distribution is obtainedby
extracting the phase of the optical field, which requires a non-
linear calculation. The nonlinearity therefore enters as aresult
of the particular quantity that is being considered.

6. Numerical simulation

Numerical simulations are used to test the predicted nonlin-
ear evolution of Eq. (15). The propagation of optical beams that
contain specific distributions of optical vortices are simulated
with a numerical beam propagation algorithm. The input to the
simulations are sampled complex-valued functions, consisting
of 512× 512 pixels. Each sampled function represents a beam
cross-section in the plane directly behind a phase-only diffrac-
tive optical element or a spatial light modulator that is used to
produce the optical vortex distribution. The complex-valued
functions are produced with periodic boundary conditions so
that opposite edges of the function match each other continu-
ously. In this way one avoids aliasing effects and the resulting
optical field does not expand during propagation.

The numerical procedure then propagates the initial func-
tion through free-space over progressively larger distances. The
propagation distance is incremented in steps to determine the
effect of the propagation distance on the evolution of the topo-
logical charge distribution. For each step the topologicalcharge
density is obtained by computing the location and topological
charge for every vortex in the beam. Such a topological charge
density is a two-dimensional sampled function that is zero ev-
erywhere except at the locations of the vortices, where it is
equal to either 1 or -1, indicating the topological charge ofthe
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Figure 3: (color online) Decay curves of four different Fourier components as a
function of the propagation distance, obtained from the numerical simulations
of two-dimensional initial topological charge densities.The four Fourier com-
ponents are those associated with cos(ax), cos(by), cos(ax+by) and cos(ax−by),
wherea = 2πa0 andb = 2πb0. The discrete points with the error bars represent
results obtained from the numerical simulations and the solid curves are the
theoretical predictions.

vortex. The Fourier transform of this topological charge den-
sity is used to extract the amplitudes of the pertinent Fourier
components of the topological charge density.

For the comparison with the predicted theoretical curves we
perform numerical simulations of the propagation of several
different quasi-random vortex fields, each containing 820 vor-
tices arranged to produce initial topological charge densities
given by Eq. (30), witha0 andb0 chosen to give exactly 2 and
4 periods, respectively, inside the 512× 512 window. The ini-
tial amplitudesF1 andF2 are both set equal to the maximum
value that the initial vortex density allows. However, due to
the randomness of the topological charge distribution the exact
amplitude that is produced is not knowna priori. We used a
wavelength of 1.5 pixels, which is small enough to avoid the
limitations that exist for topological charge densities [17].

During the simulated propagation we compute the topolog-
ical charge density at regular intervals along the propagation
direction and extract the Fourier components associated with
cos(2πa0x), cos(2πb0y), cos[2π(a0x + b0y)] and cos[2π(a0x −
b0y)] from these topological charge densities. The resulting
curves of the amplitudes of these components are shown in
Fig. 3, as a function of propagation distance. The propagation
distance is measured in terms of the Rayleigh rangezR = πL2

c/λ.
The discrete points in Fig. 3 are the results from the numeri-
cal simulations and the error bars represent their standardde-
viations. The solid curves are the predictions obtained from
Eqs. (31) and (32), which were fitted to the numerical data by
matching the amplitude and position of the peak off3(z) to com-
pensate for the uncertainties in the amplitude and in the value
of κ0.

7. Discussion

Focusing on the numerical curves in Fig. 3, we see that the
two initial Fourier component decay to zero at different rates.
The one with the higher frequency component decays quicker
than the lower frequency component, which is consistent with
the diffusive behaviour found before [14]. We also see that two
new Fourier components are generated as predicted, which con-
firms that the evolution of the topological charge distribution is
nonlinear. Starting from zero, both of these new Fourier com-
ponent reach nonzero values that are several times the standard
deviation, after which they decay away to zero again. We also
notice that the higher frequency component becomes negative
with a magnitude slightly larger than one standard deviation
before it decays to zero. This is also an indication of nonlin-
ear evolution. These results therefore confirm that a nonlinear
process is at work in the evolution of the topological charge
distribution, as predicted by the drift term in Eq. (15).

After fitting the analytical curves to match the peak of the
new Fourier components, one finds that all the curves match the
numerical data remarkably well, accept for the initial Fourier
component with the higher spatial frequency. Even in this case
the discrepancy only lies in the region where the numerical data
becomes negative. This discrepancy points to some additional
drift mechanism(s) that has not yet been identified. On the other
hand, the overall agreement that is seen is interpreted as confir-
mation that the phase drift mechanism, together with the pre-
viously reported diffusion mechanism [14], gives a good par-
tial description of the evolution of a two-dimensional stochastic
topological charge density.

8. Conclusion

We identified and formulated the phenomenon of phase drift
in two-dimensional stochastic topological charge densities. To-
gether with the previously identified diffusion effect, the phase
drift effect is described by a differential equation for the topo-
logical charge density. Containing both a drift term and a diffu-
sion term, this differential equation has the form of a Fokker-
Planck equation. However, due to a slight discrepancy be-
tween numerical simulation results and the theoretical curves,
this Fokker-Planck equation is not yet considered to be a com-
plete description for the evolution of two-dimensional stochas-
tic topological charge densities. Further investigationsare
needed.

The drift term is a nonlinear term, which accounts for part
of the nonlinear evolution that is observed for two-dimensional
stochastic topological charge densities. This nonlinear evolu-
tion is seen in the dynamics of the topological charge density
during free-space propagation, which is in itself a linear process
described by Maxwell’s equations. The emergence of nonlin-
ear dynamics from a fundamentally linear process can be seen
as a result of the fact that the quantities under consideration
have changed from being the full electromagnetic field to the
distribution of phase singularities in the field. To extractthe
latter from the former, one requires a nonlinear operation.In
this sense it is not surprising to see nonlinear dynamics. Onthe
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other hand, it also implies that the dynamics of optical vortex
distributions cannot be directly derived from Maxwell’s equa-
tions. The dynamics of optical vortex distributions is therefore
an emergent phenomenon in the context of complexity theory.
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