One- and two-dimensional topological charge distributions in stochastic optical fields

F. Stef Roux

CSIR National Laser Centre, South Africa

Presented at the Workshop on Singular Optics The Abdus Salam International Centre for Theoretical Physics Trieste, Italy 30 May - 3 June 2011

Statistical approach

It is <u>not</u> possible to formulate a general theory that can predict vortex trajectories $\mathbf{x}_n(z)$ from arbitrary initial vortex parameters

<u>Reason</u>: the vortex degrees of freedom are inseparable from other degrees of freedom in optical beams

However:

- Vortex dynamics may be predictable in a <u>statistical</u> sense
- Quantities would be defined in terms of probability distributions
- Justification: the other degrees of freedom average out
- Different perspective in terms of the kind of questions that are addressed

Definitions

Vortex number density: Number of vortices per cross-section area.

 \rightarrow function of transverse coordinates (*x*, *y*) that can changes as a function of propagation distance *z*

- ▷ Positive vortex density $n_p(x, y, z) \ge 0$
- ▷ Negative vortex density $n_n(x, y, z) \ge 0$
- ▷ Combined vortex density $V(x, y, z) = n_p(x, y, z) + n_n(x, y, z) \ge 0$
- ▷ Topological charge density $T(x, y, z) = n_p(x, y, z) - n_n(x, y, z)$

Speckle fields

Speckle field contains a random vortex field in equilibrium

- Globally: neutral topological charge
 (⇔ adjacent topological charges are anti-correlated)
- \triangleright Annihilation rate = creation rate (\Rightarrow equilibrium!)
- Equilibrium vortex density is determined by the properties of the speckle field^a

$$V_{eq} = -\frac{\mathcal{C}_{\mathbf{x}=0}''}{4\pi} = \frac{A_c}{2}$$

 A_c — coherence area C — autocorrelation function

^aMV Berry, *J. Phys. A: Math. Gen.* **11**, 27-37 (1978);

N Shvartsman, I Freund, Phys. Rev. Lett. 72, 1008-1011 (1994).

Topological charge density

Analytic calculation^a

$$T_{A} = \frac{1}{A} \int_{A} \delta(\psi_{r}) \delta(\psi_{i}) \left(\partial_{x} \psi_{r} \partial_{y} \psi_{i} - \partial_{x} \psi_{i} \partial_{y} \psi_{r}\right) \, \mathrm{d}x \mathrm{d}y$$

$$T(\mathbf{x}) = \int \frac{\exp\left(-\mathbf{Q}^{\dagger} \mathbf{M}^{-1} \mathbf{Q}\right)}{\pi^{3} \det(\mathbf{M})} \left(q_{3}q_{6} - q_{5}q_{4}\right) \, \mathrm{d}^{4}q \Big|_{q_{1}=q_{2}=0}$$
with
$$\mathbf{M} = \begin{bmatrix} \langle \psi\psi^{*} \rangle & \langle \psi_{x}\psi^{*} \rangle & \langle \psi_{y}\psi^{*} \rangle \\ \langle \psi\psi^{*}_{x} \rangle & \langle \psi_{x}\psi^{*}_{x} \rangle & \langle \psi_{y}\psi^{*}_{x} \rangle \\ \langle \psi\psi^{*}_{y} \rangle & \langle \psi_{x}\psi^{*}_{y} \rangle & \langle \psi_{y}\psi^{*}_{y} \rangle \end{bmatrix} \quad \text{and} \quad \mathbf{Q} = \begin{bmatrix} q_{1} + iq_{2} \\ q_{3} + iq_{4} \\ q_{5} + iq_{6} \end{bmatrix}$$

$$T(\mathbf{x}) = \frac{i\left(\langle \psi_{y}\psi^{*}_{x} \rangle - \langle \psi_{x}\psi^{*}_{y} \rangle\right)}{2\pi\langle \psi\psi^{*} \rangle} + \frac{i\left(\langle \psi\psi^{*}_{y} \rangle\langle \psi_{x}\psi^{*} \rangle - \langle \psi_{y}\psi^{*} \rangle\langle \psi\psi^{*}_{x} \rangle\right)}{2\pi\langle \psi\psi^{*} \rangle^{2}}$$

^aMV Berry and MR Dennis, *Proc. R. Soc. London A* **456**, 2059-2079 (2000); FS Roux, *J. Opt. Soc. Am. A* **28**, 621-626 (2011).

1D inhomogeneous fields

 $\psi_{in} = \tilde{\psi}_1 \sin(\alpha_x x) \exp(-i\alpha_y y) + \tilde{\psi}_2 \cos(\alpha_x x) \exp(i\alpha_y y)$

Numerical simulation:

Beam propagation \rightarrow extract vortex distribution

1D topological charge density

Analytical result:

$$T(x,z) = \frac{\alpha_x \alpha_y}{\pi} \sin(2\alpha_x x) \exp\left(-\frac{1}{2}\lambda^2 \alpha_x^2 W^2 z^2\right)$$

Definition: $\alpha_x = 2\pi a_0$ and $\alpha_y = 2\pi b_0$

Comparison with numerical results: ($a_0 = 2, b_0 = 16, W = 32$)

1D topological charge density

Evolusion of topological charge density with input produced by direct phase modulation (SLM or DOE)

Numerical results:^a

$$\partial_z T - z\kappa_0 \nabla^2 T = 0$$
 $\kappa_0 = \frac{\lambda^2}{\pi d^2}$ $d = \text{coherence length}$

^aF.S. Roux, Opt. Commun. 283, 4855-4858 (2010).

1D dynamics

Analytic result

$$T(x,z) = \frac{\alpha_x \alpha_y}{\pi} \sin(2\alpha_x x) \exp\left(-\frac{1}{2}\lambda^2 \alpha_x^2 W^2 z^2\right)$$

is a solution of: $\partial_z T - z \kappa_0 \nabla^2 T = 0$,

with
$$\kappa_0 = \frac{1}{4} \lambda^2 W^2 \quad \Rightarrow \quad d^2 = A_c = \frac{1}{\pi W^2}$$

which is consistent with the definitions of the equilibrium vortex charge

2D inhomogeneous fields

2D topological charge density

Analytical result:

$$T(\mathbf{x}) = \frac{f_1(z)\sin(2\beta_x x) + f_2(z)\sin(2\beta_y y) + f_3(z)\cos(2\beta_x x)\cos(2\beta_y y)}{\pi[1 + f_4(z)\sin(2\beta_x x)\sin(2\beta_y y)]^2}$$

where

$$f_1(z) = \frac{1}{2} \alpha_x \beta_y \exp\left[-z^2 \eta (\beta_x^2 + 2\beta_y^2)\right] \sin(2zK_y) \sin(zK_x) - \alpha_y \beta_x \exp(-\eta \beta_x^2 z^2) \cos(zK_x)$$

$$f_2(z) = -\frac{1}{2}\alpha_y \beta_x \exp\left[-z^2 \eta (\beta_y^2 + 2\beta_x^2)\right] \sin(2zK_x) \sin(zK_y) + \alpha_x \beta_y \exp(-\eta \beta_y^2 z^2) \cos(zK_y)$$

$$f_3(z) = \exp\left[-z^2 \eta (\beta_x^2 + \beta_y^2)\right] \left[\alpha_y \beta_x \sin(zK_x) \cos(zK_y) - \alpha_x \beta_y \sin(zK_y) \cos(zK_x)\right]$$

$$f_4(z) = \exp\left[-z^2\eta(\beta_x^2 + \beta_y^2)\right]\sin(zK_y)\sin(zK_x)$$

$$K_x = \frac{\lambda \alpha_x \beta_x}{\pi}$$
 $K_y = \frac{\lambda \alpha_y \beta_y}{\pi}$ $\eta = \frac{\lambda^2 W^2}{2}$

Comparison with numerical results

Definitions:
$$\alpha_x = 2\pi a_x$$
, $\alpha_y = 2\pi a_y$, $\beta_x = 2\pi b_x$ and $\beta_y = 2\pi b_y$

Parameters: $a_x = 2, a_y = 4, b_x = 16, b_y = 32$

 $W = 32 \qquad \qquad W = 16$

Topological charge evolusion

(Load tld.mpeg)

Phase drift

Topological charge \rightarrow phase slope \rightarrow sideways drift

$$\begin{split} \Delta \mathbf{x} &\approx \frac{-\nabla \theta \Delta z}{k} \quad \text{for} \quad k \gg |\nabla \theta| \\ \text{for } \Delta z \to 0: \qquad \partial_z T(\mathbf{x}, z) = \frac{\nabla \theta \cdot \nabla T(\mathbf{x}, z)}{k} \\ \text{Gradient of the phase function: } \nabla \theta = T(\mathbf{x}, z) \star \nabla \phi \\ \text{Drift term:} \quad \partial_z T(\mathbf{x}, z) = \frac{1}{k} \left[T(\mathbf{x}, z) \star \nabla \phi \right] \cdot \nabla T(\mathbf{x}, z) \\ \text{where } \star = \text{convolution and} \quad \nabla \phi(x, y) = \frac{y\hat{x} - x\hat{y}}{x^2 + y^2} \end{split}$$

Summary

- Using combination of speckle fields one can produce inhomogeneous vortex distributions that allow both analytical calculations and numerical simulations
- One-dimensional topological charge density:
 - Gaussian decay obeys (modified) diffusion equation
 - Diffusion parameter is related to coherence area
- ▷ Two-dimensional topological charge density:
 - The same diffusion behaviour
 - Additional nonlinear behaviour may be explained by drift mechanisms