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Abstract We describe the Lwazi corpus for automatic speech recognition (ASR), a new
telephone speech corpus which contains data from the elevenofficial languages of South
Africa. Because of practical constraints, the amount of speech per language is relatively
small compared to major corpora in world languages, and we report on our investigation of
the stability of the ASR models derived from the corpus. We also report on phoneme distance
measures across languages, and describe initial phone recognisers that were developed using
this data. We find that a surprisingly small number of speakers (fewer than 50) and around 10
to 20 hours of speech per language are sufficient for the purposes of acceptable phone-based
recognition.

Keywords speech recognition· Lwazi corpus· resource-scarce languages· South African
languages

1 Introduction

There is a widespread belief that spoken dialog systems (SDSs) will have a significant im-
pact in the developing countries of Africa [Tucker & Shalonova, 2004], where the avail-
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ability of alternative information sources is often low. Traditional computer infrastructure is
scarce in Africa, but telephone networks (especially cellular networks) are spreading rapidly.
In addition, speech-based access to information may empower illiterate or semi-literate peo-
ple, 98% of whom live in the developing world.

SDSs can play a useful role in a wide range of applications. Ofparticular importance in
Africa are applications such as education, using speech-enabled learning software or kiosks
and information dissemination through media such as telephone-based information systems.
Significant benefits can be envisioned if information is provided in domains such as agricul-
ture [Nasfors, 2007], health care [Sherwani et al., 2007; Sharma et al., 2009] and government
services [Barnard et al., 2003]. Recent years have seen extensive research on the application
of speech technology in the developing world - for a recent review, see [Patel et al., 2010].
In order to make SDSs a reality in Africa, technology components such as text-to-speech
(TTS) systems and automatic speech recognition (ASR) systems are required. The latter
category of technologies is the focus of the current contribution.

Speech recognition systems exist for only a handful of African languages [Roux et al.,
2000; Seid & Gamb̈ack, 2005; Abdillahi et al., 2006], and to our knowledge no service
available to the general public currently uses ASR in an indigenous African language. A
significant reason for this state of affairs is the lack of sufficient linguistic resources in
the African languages. Most importantly, modern speech recognition systems use statistical
models which are trained on corpora of relevant speech (i.e.appropriate for the recognition
task in terms of the language used, the profile of the speakers, speaking style, etc.) This
speech generally needs to be curated and transcribed prior to the development of ASR sys-
tems, and for most applications speech from a large number ofspeakers is required in order
to achieve acceptable system performance. On the African continent, where infrastructure
such as computer networks is less developed than in countries such as USA, Japan and the
European countries, the development of such speech corporais a significant hurdle to the
development of ASR systems.

The complexity of speech corpus development is strongly correlated with the amount
of data that is required, since the number of speakers that need to be canvassed and the
amount of speech that must be curated and transcribed are major factors in determining the
feasibility of such development. In order to minimise this complexity, it is important to have
tools and guidelines that can be used to assist in designing the smallest corpora that will be
sufficient for typical applications of ASR systems. As minimal corpora can be extended by
sharing data across languages, tools are also required to indicate when data sharing will be
beneficial and when detrimental.

In this paper we describe and evaluate a new speech corpus of South African languages
recently developed (the Lwazi corpus) and evaluate the extent in which computational analy-
sis tools can provide further guidelines for ASR corpus design in resource-scarce languages.

2 Project Lwazi

The goal of Project Lwazi is to provide South African citizens with information and infor-
mation services in their home language (that is, the language that the speaker identifies with
most strongly), over the telephone, in an efficient and affordable manner. Commissioned by
the South African Department of Arts and Culture, the activities of the first stage of this
project (2006-2009) included the development of core language technology resources and
components for all the official languages of South Africa, where, for the majority of these,
no prior language technology components were available.
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The core linguistic resources that were developed include phoneme sets, electronic pro-
nunciation dictionaries and the speech and text corpora required to develop ASR and TTS
systems for all eleven official languages of South Africa. The usability of these resources
were demonstrated during a national pilot in 2009. All outputs from the project have since
been released as open source software and open content [Meraka-Institute, 2009].

Resources were developed for all eleven languages that are recognised as official lan-
guages in South Africa (SA) and contribute to the available HLT components [Grover et al.,
this volume]. These languages are:

1. isiZulu (ISO 639-3: zul) and isiXhosa (ISO 639-3: xho), the two Nguni languages most
widely spoken in SA. Together these form the home language of41% of the SA popu-
lation.

2. The three Sotho languages: Sepedi (ISO 639-3: nso), Setswana (ISO 639-3: tsn), Sesotho
(ISO 639-3: sot), together the home language of 26% of the SA population.

3. Afrikaans (ISO 639-3: afr), a Germanic language, which isthe home language of ap-
proximately 13% of the SA population.

4. South English (ISO 639-3: eng), the home language of only 8% of the population, but
widely spoken as an additional language.

5. The two Nguni languages less widely spoken in SA: Siswati (ISO 639-3: ssw) and isiN-
debele (ISO 639-3: nbl), together the home language of 4% of the SA population.

6. Xitsonga (ISO 639-3: tso) and Tshivenda (ISO 639-3: ven),the home languages of 4%
and 2% of the SA population, respectively [Lehohla, 2003].

For all these languages, new pronunciation dictionaries, text and speech corpora were
developed. ASR speech corpora consist of approximately 200speakers per language, pro-
ducing read and elicited speech, recorded over a telephone channel. Each speaker produced
approximately 30 utterances, 16 of these were randomly selected from a phonetically bal-
anced corpus and the remainder consist of short words and phrases: answers to open ques-
tions, answers to yes/no questions, spelt words, dates and numbers. The speaker population
was selected to provide a balanced profile with regard to age,gender and type of telephone
(cellphone or landline). Table 1 provides a summary of the amount of speech for the different
languages.

Table 1 The official languages of South Africa, their ISO 639-3:2007language codes, and the amount of
speech contained in the Lwazi corpus [van Heerden et al., 2009].

Language code # total # speech # distinct
minutes minutes phonemes

isiZulu zul 525 407 46
isiXhosa xho 470 370 52
Afrikaans afr 213 182 37
Sepedi nso 394 301 45
Setswana tsn 379 295 34
Sesotho sot 387 313 44
SA English eng 304 255 44
Xitsonga tso 378 316 54
siSwati ssw 603 479 39
Tshivenda ven 354 286 38
isiNdebele nbl 564 465 46
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3 Related work

Below, we review earlier work relevant to the development ofspeech recognisers for lan-
guages with limited resources. This includes both ASR system design (Section 3.1) and
ASR corpus design (Section 3.2). In Section 3.3, we also review the analytical tools that we
utilise in order to investigate corpus design systematically.

3.1 ASR for resource-scarce languages

The main linguistic resources required when developing ASRsystems for telephone based
systems are electronic pronunciation dictionaries, annotated audio corpora (used to con-
struct acoustic models) and recognition grammars. An ASR audio corpus consists of record-
ings from multiple speakers, with each utterance carefullytranscribed orthographically and
markers used to indicate non-speech and other events important from an ASR perspective.
Both the collection of appropriate speech from multiple speakers and the accurate annotation
of this speech are resource-intensive processes, and therefore corpora for resource-scarce
languages tend to be very small (1 to 10 hours of audio) when compared to the speech cor-
pora used to build commercial systems for world languages (hundreds to thousands of hours
per language).

Different approaches have been used to best utilise limitedaudio resources when devel-
oping ASR systems. Bootstrapping has been shown to be a very efficient technique for the
rapid development of pronunciation dictionaries, even when utilising linguistic assistants
with limited phonetic training [Davel & Barnard, 2004; Kominek & Black, 2006; Maskey
et al., 2004].

Small audio corpora can be used efficiently by utilising techniques that share data across
languages, either by developing multilingual ASR systems (a single system that simultane-
ously recognises different languages), or by using additional source data to supplement the
training data that exists in the target language. Various data sharing techniques for language-
dependant acoustic modelling have been studied, includingcross-language transfer, data
pooling, language adaptation and bootstrapping [Wheatleyet al., 1994; Schultz & Waibel,
2001; Byrne et al., 2000]. Both [Wheatley et al., 1994] and [Schultz & Waibel, 2001] found
that useful gains could be obtained by sharing data across languages with the size of the
benefit dependent on the similarity of the sound systems of the languages combined. In the
only cross-lingual adaptation study using African languages [Niesler, 2007], similar gains
have not yet been observed.

3.2 ASR corpus design

Corpus design techniques for ASR are generally aimed at specifying or selecting the most
appropriate subset of data from a larger domain in order to optimise recognition accuracy,
often while explicitly minimising the size of the selected corpus. This is achieved through
various techniques that aim to include as much variability in the data as possible, while
simultaneously ensuring that the corpus matches the intended operating environment as ac-
curately as possible.

Three directions are primarily employed: (1) explicit specification of phonotactic,
speaker and channel variability during corpus development, (2) automated selection of in-
formative subsets of data from larger corpora, with the smaller subset yielding comparable
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results, and (3) the use of active learning to optimise existing speech recognition systems.
All three techniques provide a perspective on the sources ofvariation inherent in a speech
corpus, and the effect of this variation on speech recognition accuracy.

Nagroski et al. [2003] use Principle Component Analysis (PCA) to cluster data acousti-
cally. These clusters then serve as a starting point for selecting the optimal utterances from a
training database. As a consequence of the clustering technique, it is possible to characterise
some of the acoustic properties of the data being analysed, and to obtain an understanding of
the major sources of variation, such as different speakers and genders. Interestingly, the ef-
fect of utterance length has also been analysed as a significant source of variation [Riccardi
& Hakkani-Tur, 2003].

Active and unsupervised learning methods can be combined tocircumvent the need
for transcribing massive amounts of data [Riccardi & Hakkani-Tur, 2003]. The most infor-
mative untranscribed data is selected for a human to label, based on acoustic evidence of
a partially and iteratively trained ASR system. From such work, it soon becomes evident
that the optimisation of the amount of variation inherent totraining data is needed, since
randomly selected additional data does not necessarily improve recognition accuracy. By
focusing on the selection (based on existing transcriptions) of a uniform distribution across
different speech units such as words and phonemes, improvements are obtained [Wu et al.,
2007].

In our focus on resource-scarce languages, the main aim is tounderstand the amount
of data that needs to be collected in order to achieve acceptable accuracy. This is achieved
through the use of analytic measures of data variability, which we describe next.

3.3 Evaluating phoneme stability

In [Badenhorst & Davel, 2008; Badenhorst, 2009] a techniqueis developed that estimates
how stable a specific phoneme model is, given a specific set of training data. This statisti-
cal measure provides an indication of the effect that additional training data will have on
recognition accuracy: the higher the stability, the less the benefit of additional speech data.

The model stability measure utilises the Bhattacharyya bound [Fukunaga, 1990], a
widely-used upper bound of the Bayes error. The Bayes error provides an indication of the
separability between two probability distributions. If a probability distribution is calclulated
for two phonemes, say /a/ and /e/, then the ease with which a new audio sample can be
classified as being an /a/ or an /e/ depends on how separable (’different’) the two distributions
are. The more similar the distributions, the more miss-classifications are expected, and the
higher the minimum expected miss-classification rate or Bayes error. When two distributions
are identical, it becomes impossible to determine to which of the two classes a new sample
should belong, apart from guessing. The expected miss-classification rate then becomes 0.5
(50%).

By determining how close to identical the probability distributions are of the same
phoneme calculated using different sections of the training corpus, it is possible to deter-
mine whether the developed models are stable. If the probability distribution of phoneme
/a/ trained on one section of the corpus is quite different tothe probability distribution of
the same phoneme /a/ trained on another section of the corpus, then the training subset is
still too small to produce stable acoustic models. When these probability distributions are
very similar (and the Bayes error approaches 0.5) then the training data were sufficient,
and the acoustic models are stable: adding additional data will not influence the estimated
probability density significantly.
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Since the Bayes error itself cannot always be calculated analytically (depending on the
complexity of the probability distributions being compared) an upper bound provides a
’close-enough’ estimate of the value itself. The Bhat boundis such an estimate, and pro-
vides the assurance that the true error will never be larger than the bound calculated.

If Pi and pi(X) denote the prior probability and class-conditional density function for
classi, respectively, the Bhattacharyya boundε is calculated as:

ε =
√

P1P2

∫

√

p1(X)p2(X)dX (1)

When both density functions are Gaussian with meanµi and covariance matrixΣi , integra-
tion of ε leads to a closed-form expression forε:

ε =
√

P1P2e−µ(1/2) (2)
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T
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2

]−1
(µ2−µ1)

+
1
2

ln

∣

∣

Σ1+Σ2
2

∣

∣

√

|Σ1||Σ2|
(3)

is referred to as the Bhattacharyya distance.
In order to estimate the stability of an acoustic model, the training data for that model

is separated into a number of disjoint subsets. All subsets are selected to be mutually exclu-
sive with respect to the speakers they contain. For each subset, a separate acoustic model
is trained, and the Bhattacharyya bound between each pair ofmodels calculated. By cal-
culating both the mean of this bound and the standard deviation of this measure across the
various model pairs, a statistically sound measure of modelestimation stability is obtained.

4 Computational analysis of the Lwazi corpus

We now report on our analysis of the Lwazi speech corpus, using the stability measure
described in section 3.3. Here, we focus on four languages (isiNdebele, Siswati, isiZulu and
Tshivenda) for reasons of space; later, we shall see that theother languages behave quite
similarly.

4.1 Experimental design

For each phoneme in each of our target languages, we extract all the phoneme occurrences
from the 150 speakers with the most utterances per phoneme. We utilise the technique de-
scribed in Section 3.3 to estimate the Bhattacharyya bound both when evaluating phoneme
variability and model distance. In both cases we separate the data for each phoneme into
5 disjoint subsets. We calculate the mean of the 10 distancesobtained between the various
intra-phoneme model pairs when measuring phoneme stability, and the mean of the 25 dis-
tances obtained between the various inter-phoneme model pairs when measuring phoneme
distance.

In order to be able to control the number of phoneme observations used to train our
acoustic models, we first train a speech recognition system and then use forced alignment to



7

label all of the utterances using the systems described in Section 5.1. Mel-frequency cepstral
coefficients (MFCCs) with cepstral mean and variance normalisation are used as features,
as described in Section 5.1.

4.2 Analysis of phoneme variability

In an earlier analysis of phoneme variability of an English corpus [Badenhorst & Davel,
2008], it was observed that similar trends are observed whenutilising different numbers of
mixtures in a Gaussian mixture model. (That is, a model with alimited number of mixtures
is a good predictor of the behaviour of a more complex model.)Similarly, it was found that
context dependent and context independent models also produced comparable behaviour.
(Asymptotes occur later, but trends remain similar.) Because of the limited size of the Lwazi
corpus, we therefore only report on single-mixture context-independent models in the cur-
rent section and the phone model topology can thus be viewed as single-state HMMs.

As we also observe similar trends for phonemes within the same broad categories, we
report on a couple of examples from several broad categorieswhich occur in most of our
target languages. Using X-SAMPA notation, the following phonemes are selected: /a/ (vow-
els), /m/ (nasals), /b/ and /g/ (voiced plosives) and /s/ (unvoiced fricatives), after verifying
that these phonemes are indeed representative of the largergroups.

Fig. 1 Effect of number of phoneme utterances per speaker on mean ofBhattacharyya bound for different
phoneme groups using data from 30 speakers

Figures 1 and 2 demonstrate the effects of variable numbers of phonemes and speakers,
respectively, on the value of the mean Bhattacharyya bound.This value should approach
0.5 for a model fully trained on a sufficiently representative set of data, since a value of 0.5
corresponds to indistinguishable distributions (with 50%two-class error rates). In Figure
1 we see that the various broad categories of sounds approachthe asymptotic bound in
different ways. The vowels and nasals require the largest number of phoneme occurrences
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to reach a given level, whereas the fricatives and plosives converge quite rapidly (With 10
observations per speaker, both the fricatives and plosivesachieve values of 0.48 or better for
all languages, in contrast to the vowels and nasals which require 30 observations to reach
similar stability). Note that we employed 30 speakers per phoneme group, since that is the
largest number achievable with our protocol.

Fig. 2 Effect of number of speakers on mean of Bhattacharyya bound for different phoneme groups using 20
utterances per speaker

For the results in Figure 2, we keep the number of phoneme occurrences per speaker
fixed at 20 (this ensures that we have sufficient data for all phonemes, and corresponds with
reasonable convergence in Figure 1). It is clear that additional speakers would still improve
the modelling accuracy for especially the vowels and nasals. We observe that the voiced
plosives and fricatives quickly achieve high values for thebound (close to the ideal 0.5).

Figures 1 and 2 – as well as similar figures for the other phoneme classes and languages
we have studied – suggest that all phoneme categories require at least 20 training speakers
to achieve reasonable levels of convergence (bound levels of 0.48 or better). The number
of phoneme observations required per speaker is more variable, ranging from less than 10
for the voiceless fricatives to 30 or more for vowels, liquids and nasals. We return to these
observations in section 5.

For large-vocabulary systems, requiring context-dependent modeling, the picture is un-
fortunately much more complicated. In that case, one also has to consider the impact of state
tieing, and the trade-off between the number of clusters andthe amount of training data per
cluster becomes an important issue.

4.3 Distances between languages

In Section 3.1 it was pointed out that the similarities between the same phonemes in different
languages are important predictors of the benefit achievable from pooling the data from those
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Fig. 3 Effective distances in terms of the mean of the Bhattacharyya bound between a single phone (/n/-nbl
top and /a/-nbl bottom) and each of its closest matches within the set of phonemes investigated

languages. Armed with the knowledge that stable models can be estimated with 30 speakers
per phoneme and between 10 and 30 phoneme occurrences per speaker, we now turn to the
task of measuring distances between phonemes in various languages.

We again use the mean Bhattacharyya bound to compare phonemes, and obtain val-
ues between all possible combinations of phonemes. Resultsare shown for the isiNdebele
phonemes /n/ and /a/ in Figure 3. As expected, similar phonemes from the different lan-
guages are closer to one another than different phonemes of the same language. However,
the details of the distances are quite revealing: for /a/, Siswati is closest to the isiNdebele
model, as would be expected given their close linguistic relationship, but for /n/, the Tshiv-
enda model is found to be closer than either of the other Ngunilanguages. For comparative
purposes, we have included one non-Bantu language (Afrikaans), and we see that its models
are indeed significantly more dissimilar from the isiNdebele model than any of the Bantu
languages. In fact, the Afrikaans /n/ is about as distant from isiNdebele /n/ as isiNdebele /l/
and isiZulu /l/ are.

Analysis of another isiNdebele vowel /i/ and nasal /m/ are shown in Figure 4. Interest-
ingly all distances are found to be diminished and we conclude that the models for /i/ are
indeed very similar across the investigated language borders. For /m/ all the Bantu languages
are also even more closely related than for the model /n/.

To complete the picture, an isiNdebele fricative /s/ and plosive /g/ are also investigated. It
can be seen in Figure 5 that immediately all of the closest matches are non-vowel sounds. We
also find that models are no longer that dissimilar between the different plosive phonemes.
For the isiNdebele /g/ it can be seen that /k/ and the Afrikaans /d/ models are actually closer
than models for isiZulu /g/ or the Siswati /b/.

The similarity of the fricative /s/ also proves interestingacross language borders. Al-
though the Siswati model is found to be closest, the model forAfrikaans is very similar.
All of the fricative models are, however, distinct from the other investigated phones of the
languages.
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Fig. 4 Effective distances in terms of the mean of the Bhattacharyya bound between a single phone (/m/-nbl
top and /i/-nbl bottom) and each of its closest matches within the set of phonemes investigated
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Fig. 5 Effective distances in terms of the mean of the Bhattacharyya bound between a single phone (/g/-nbl
top and /s/-nbl bottom) and each of its closest matches within the set of phonemes investigated

5 Recognition results

In this section, we aim to confirm the measurements reported in Section 4 with several ASR
measures. Baseline accuracies for both phone recognition and small vocabulary word recog-
nition are established in Sections 5.1 and 5.2 respectively. We then measure ASR accuracy
with varying amounts of data, based both on the number of speakers and the number of
phones in Section 5.3. In Section 5.4, we use these results together with a heuristic relation-
ship [Schuurmans, 1997] to get a rough estimate of the amountof data required to achieve a
particular phone recognition accuracy.
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5.1 Phone recognition with the Lwazi corpus

The recognisers we employ are standard HMM-based systems. We use HTK 3.4 to build
a context-dependent cross-word HMM-based phone recogniser with triphone models. Each
model has 3 emitting states with 7 mixtures per state. (Theseparameter choices were deter-
mined to be optimal for phone-recognition accuracy with thecomplete corpora during pilot
experiments.) 39 features are used: 13 MFCCs together with their first and second order
derivatives. Cepstral Mean Normalisation (CMN) as well as Cepstral Variance Normali-
sation (CVN) are used to perform speaker-specific normalisation. A diagonal covariance
matrix is used; to partially compensate for the implicit assumption of feature independence,
semi-tied transforms are applied. A flat phone-based language model is employed for phone
recognition.

The optimal values of parameters such as the number of mixtures and the insertion
penalty (during language modelling) will in general dependon the amount of training data
available. Since our values are optimised for the full corpus, our reported accuracies for
reduced corpora are underestimates. Although we have not exhaustively evaluated all pa-
rameter options, we have verified that the dependencies are quite weak, and that the overall
trends reported below are also observed when the parametersare adjusted.

As the initial pronunciation dictionaries were developed to provide good coverage of
each language in general, these dictionaries did not cover the entire ASR corpus. Grapheme-
to-phoneme rules are therefore extracted from the general dictionaries using the
Default&Refine algorithm [Davel & Barnard, 2008] and used togenerate missing pronunci-
ations. For the reason cited above, tone is not modelled in the system.

For phone recognition, we divided the data into a test set, which consists of 30 ran-
domly selected speakers in each language, and a training set(the remaining speakers, ap-
proximately 170 per language). The recogniser for each language was built using all the
training data for that language, using the recognition architecture as described above. These
recognisers were then evaluated by performing a Viterbi search (an efficient search tech-
nique [Viterbi, 1967]) with a language model that allows unrestricted transitions between
any pair of phonemes. Dynamic programming was used to match the resulting phoneme
strings against the strings that result from automatic phonemic transcription of the ortho-
graphic transcriptions of the test utterances. The resulting accuracies are summarised in Ta-
ble 2. Phone-recognition correctness refers to the percentage of correctly recognised phone
labels with regard to the total number of expected phone labels, while the dynamic program-
ming used to calculate the accuracy values take into accountphone label insertions/deletions
as well. The table also lists the phonotactic perplexity of each language – that is, the perplex-
ity that is measured if a bigram model is used to model the phoneme sequences that occur
in the training set. Lastly, the table contains word-recognition results, which are discussed
in Section 5.2 below.

Interestingly, the correctness and accuracy of all other languages are higher than that of
English, despite the fact that most languages have more phonemes than English. One possi-
ble explanation for this observation is the fact that English has fewer phonotactic constraints
than any of the other languages, as can be deduced from the perplexity values in Table
2. (The Southern Bantu languages employ CV (consonant-vowel) or V syllable structures
predominantly.) Overall, however, phonotactic perplexity does not correlate well with cor-
rectness or accuracy in our results, so other explanations for the relative accuracies should
also be investigated. Finally, the relatively high recognition accuracies obtained with these
small corpora confirm the observations summarized in Figures 1 and 2.
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Table 2 Phone and Word-recognition results. Phone-recognition correctness (“Corr”) and accuracy (“Acc”)
achieved are listed for each of the languages in the Lwazi corpus. “Ave # phones” refers to the average
number of occurrences of each phone for each speaker, and thefinal column lists the phonotactic perplexity
of each language in our corpus. NTIMIT results from [Moraleset al., 2008] are provided for comparative
purposes. Small vocabulary word recognition accuracies are given for10 languages. Each system is required
to distinguish between ten different semantic categories,with each category represented by one to three
different lexical items.

Phone recognition Word recognition

Language % Corr % Acc Ave # Phone Lwazi English Recognisers
phones ppl models Lwazi Ntimit WSJ

Afrikaans 71.76 63.14 16.55 14.45 96.11 90.35 60.36 79.15
SA English 62.51 54.26 14.61 15.80 91.94 91.94 82.86 81.95
isiNdebele 74.21 65.41 28.66 10.26
isiXhosa 69.25 57.24 17.79 10.67 95.29 77.78 34.34 61.28
isiZulu 71.18 60.95 23.42 11.20 90.53 80.00 37.57 69.19
Tshivenda 76.37 66.78 19.53 9.99 97.74 66.37 57.56 52.14
Sepedi 66.44 55.19 16.45 11.54 89.49 83.72 54.91 43.41
Sesotho 68.17 54.79 18.57 10.40 97.14 79.48 30.65 50.65
Setswana 69.00 56.19 20.85 11.15 87.66 76.95 39.02 52.09
Siswati 74.19 64.46 30.66 10.38 96.62 77.01 46.46 61.09
Xitsonga 70.32 59.41 14.35 10.34 97.90 77.58 54.99 60.60
NTIMIT 64.07 55.73

5.2 Small-vocabulary speech recognition with the Lwazi corpus

Phone recognition is a useful benchmark to employ for recognition in new languages, since
extensive intuition exists on phone-recognition accuracies achieved on standard corpora.
However, initial applications of ASR in the developing world will in practice require accu-
rate small-vocabulary recognition (as described in Section 1). We therefore describe experi-
ments aimed at estimating our performance on such tasks next.

During the collection of the Lwazi ASR corpus, callers were asked several questions, of
which some resulted in only a small set of responses. These included the following:

– Are you married?
– Are you speaking on a landline or a cellphone?
– What is your gender?
– What is your mother tongue?
– Where do you live? / Where were you born?

Since these same questions were asked of all speakers acrossall languages, they form a
suitable basis for small-vocabulary experiments. Mother tongue speakers were then asked
to label all answers that were semantically equivalent. In this fashion, answers such “Egoli”
(isiZulu name for Johannesburg, meaning “place of gold”) and “Johannesburg” were con-
sidered equivalents.

This resulted in 10 distinct semantic concepts for each language, with approximately
one to three different lexical items corresponding to the same concept in a language. Be-
cause of the similar questions, similar meanings are attached to the matching concepts in
each language, except for minor variations because of cultural differences. (For example,
the majority of English and Afrikaans speakers would simplyanswer “yes” or “no” to the
first question. In contrast, the majority of Xitsonga, Sepedi and Tshivenda speakers would
answer the question in different ways depending on their gender. A Xitsonga man would
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for example say “ni tekile / a ni tekangi” (I have taken / I haven’t taken), whereas a woman
would say “ni tekiwile / a ni tekiwangi” (I have been taken / I haven’t been taken).) Our
small vocabulary task was constructed by removing all utterances that contain any of the
phrases corresponding to any of these concepts from the training set, since such vocabulary-
independent performance is the realistic goal for application in SDSs. For testing purposes,
all utterances that contain only these phrases were employed; recognition was deemed cor-
rect if the phrase was placed into the correct semantic category. Because of the relatively
small set of test utterances (five or fewer per speaker), we employed ten-fold cross valida-
tion to estimate recognition accuracy.

A vocabulary of ten words (actually, concepts) is a good testof typical recognition tasks
in an SDS which is aimed at Interactive Voice Response (IVR) applications, where the di-
alogue is structured to contain mostly menu items and command words. Common tasks
such as yes/no recognition require even smaller vocabularies, and larger tasks with highly
distinctive vocabularies may in fact give comparable accuracies to those achieved with our
artificially-constructed grammar.

As a baseline for comparison, we have also measured the accuracies that can be achieved
with the cross-language transfer procedure described, forexample, in Sherwani et al. [2007,
2009]. That procedure, which is often a starting point for resource-scarce languages, utilises
a well-trained recogniser in a world language such as English. All the words in the recog-
nition task are transcribed using the phonemes of this well-trained recogniser, mapping the
phonemes in the actual target language to the closest world-language phonemes where nec-
essary. This cross-language dictionary is then used for recognition. Three English recognis-
ers were investigated for our baseline, namely recogniserstrained on the NTIMIT and Wall
Street Journal corpora (the latter band-limited and downsampled to match our telephone
corpus), and one trained on the English part of the Lwazi corpus.

Table 2 contains recognition results obtained with these baseline systems, as well as
with our language-specific recognisers. (We were not able tocarry out this experiment for
isiNdebele, for lack of access to a mother-tongue speaker who could perform the semantic
mappings.)

We see that accuracies above 90% are achieved in all languages except Sepedi and
Setswana. With careful dialogue design [Cohen et al., 2004], this should be sufficient for
a usable SDS. Of the three baseline systems that use phoneme mappings, the Lwazi English
model is easily the most accurate. This is to be expected, since the acoustic conditions of
NTIMIT and WSJ are somewhat dissimilar to those in Lwazi; however, the magnitude of the
differences in accuracy is somewhat surprising. Even this best baseline system is, however,
much less accurate than the language-specific acoustic models in most cases. Excluding
English, the languages with the smallest absolute difference between baseline and trained
models are Afrikaans, which is linguistically quite similar to English, and Sepedi, which
also performed worst in the phone-recognition experiments(Section 5.1).

Given the similarities between the semantic categories in the different languages, it is
interesting to compare the accuracies achieved in this taskacross languages (with error rates
ranging between 2.1% and 12.3%). The quality of the phone recognisers partially explains
these differences – in particular, the relatively poor performance of Sepedi and Setswana at
both phone recognition and small-vocabulary word recognition is notable. However, Sesotho
(with relatively accurate word recognition) and isiZulu (relatively accurate phone recogni-
tion) point to other relevant factors, such as the acoustic confusibility of words in semanti-
cally distinct classes that happens to occur in some languages but not others.
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5.3 The number of training speakers
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(a) Afrikaans
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(b) Sesotho

14520 27560 40600 53640 66680 79720 92760

120

110

100

90

80

70

60

50

40

30

Number of phones

N
um

be
r 

of
 s

pe
ak

er
s

(c) isiZulu
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(d) isiNdebele

Fig. 6 Phone accuracy as a function of both the number of speakers and the total amount of training data.
The dots represent the measured accuracy, with bigger dots for higher accuracies and empty blocks (no dots)
where no values are given.

To analyse the influence of the number of training speakers onthe recognition accuracy
achieved, we investigate phone-recognition accuracy as a function of both the number of
training speakers and the total number of phones used for training. (We use the number of
phones rather than the number of words or utterances as measure of the amount of training
data employed because of the significant differences in wordand utterance lengths between
the various languages – the phone count is therefore a bettermeasure of the actual amount
of speech employed.) The training sets are selected in such away that the number of phones
per speaker remains balanced.

Figure 6 shows typical results. (The empty blocks without dots in the upper right-hand
corner of each figure represent experiments that could not beperformed because sufficient
data was not available for each individual speaker.) It is clear that the number of training
speakers has little or no influence on the accuracy achieved,in the range that we have in-
vestigated. Whereas the figures show systematically increasing accuracy as the number of
training phones is increased (from left to right), increasing the number of speakers contribut-
ing to a given set of training data has little effect (top to bottom). This same behaviour is
observed for all eleven languages, and is confirmed by representations such as that shown in
Figure 7(a) which shows the phone accuracy as a function of the number of training speak-
ers, when about a quarter of the training data is used in each language. A similar insensitivity
to the number of speakers was also observed for the training of context-dependent models
[Barnard et al., 2009].
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Fig. 7 Phone accuracy as a function of the number of speakers as wellas a function of the amount of data
in the training set, when data from all 120 training speakersis combined. In all cases, approximately25%of
the available training data is used to generate results for the number of speaker case. When all 120 training
speakers is combined, the total amount of training data differs between the languages - the horizontal axis
therefore indicates the number of segments used in each language, where the number of phone tokens per
segment is (approximately) constant within a language, butdifferent across languages.

5.4 The amount of training data

Table 3 Parameter values obtained by fitting measured phone-recognition rates. R2 is the squared correlation
between the estimated and actual values.

Language A B R2

Afrikaans 64.94 549,900 0.9762
SA English 54.16 457,400 0.9650
isiNdebele 65.55 490,800 0.9722
Sepedi 55.35 380,200 0.2770
Sesotho 57.69 325,300 0.9201
Siswati 68.19 526,700 0.9757
Setswana 60.87 544,700 0.7975
Xitsonga 57.26 300,100 0.8839
Tshivenda 67.53 378,500 0.9616
isiXhosa 57.60 331,700 0.9710
isiZulu 59.96 352,100 0.9636

In Figure 7(b) we show the trends of phone recognition accuracy as a function of the
amount of training data, when all 120 speakers are used. Although the curves for some
languages (especially Sepedi) are quite noisy, it seems clear that none of the languages
is approaching asymptotic phone-recognition accuracy given the amount of training data
available in our corpus. In order to obtain a rough estimate of the amount of training data
required to approach such an asymptote, we employ a heuristic relationship that is expected
to hold for a wide range of classifiers [Schuurmans, 1997]. This relationship states that the
error rate will asymptotically depend on the number of training samples (N) through the
relationshipA− (B/N), with A andB parameters corresponding to the asymptotic error rate
and the number of training samples required to approach within 1% of that error rate, re-
spectively. We have empirically determined that this relationship provides a reasonable fit to
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our data for values ofN greater than approximately 50,000; we have therefore used alinear
least-squares fit to estimateA andB values for all our languages, including only measured
accuracies forN > 50,000 in our analysis. Table 3 summarises the results obtained, and
Figure 8 shows a typical fit obtained in this manner. We see that quite good fits are obtained
for several languages (R2 > 0.96), and that theB parameter, which is related to the number
of training phones required for accurate training, ranges between approximately 300,000
and 550,000 for these languages. (ForN = B, phone accuracies within 1% of the asymptotic
value are predicted.) In our corpus, the average phone duration is approximately 150 ms -
hence, corpora of approximately 750 to 1,400 minutes per language are suggested.
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Fig. 8 Example of parametric fit (for Siswati accuracies), with 95%confidence intervals computed from the
fit.

6 Conclusion

Collecting appropriate speech corpora for resource-scarce languages can be a challenging
task, especially when financial resources are limited and speaker populations are small or
geographically remote, with limited access to informationand communication infrastruc-
ture. When collecting corpora from such environments, an understanding of the interplay
between type and amount of data can be of great benefit, by ensuring that the collection
effort is made as efficient as possible.

In this paper, we describe the Lwazi corpus for automatic speech recognition (ASR), a
new telephone speech corpus for Sourth African languages. We analyse the data sufficiency
of the corpus from both an analytical and a practical perspective: we measure the stability of
ASR models derived from the corpus and evaluate phoneme recognition accuracy directly.
We find that different phone classes tend to have different data requirements. Voiceless frica-
tives, for example, can be trained accurately with relatively few tokens per speaker, whereas
nasals and vowels require more data per speaker for comparable convergence (stability) of
the acoustic distributions. The number of speakers required for a given level of stability
shows comparable, but not identical, trends.

Our investigation of the practical training of speech-recognition systems reveals that
the number of training speakers is less of a constraint than the amount of data per speaker
(under the circumstances investigated in this study). In particular, this investigation reveals
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that systems of this nature can be trained successfully witharound 40 to 50 training speakers;
the total amount of speech to approach within 1% of asymptotic accuracy should be around
750 to 1,400 minutes per language. Clearly, more complicated recognition systems will
benefit from more speakers and larger corpora; it is therefore important that work similar
investigations should be carried out on larger multilingual corpora where such are available.

Another interesting avenue for future exploration followsfrom our findings that differ-
ent phone classes have different data requirements. The data collection process could con-
ceivably be made more efficient by biasing the recorded material towards the more “data-
hungry” phonetic categories; it remains to be seen, however, whether that benefit can be
obtained without making the recording protocol too unnatural.
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