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Abstract We describe the Lwazi corpus for automatic speech recagn{\SR), a new
telephone speech corpus which contains data from the efeffieral languages of South
Africa. Because of practical constraints, the amount okespeper language is relatively
small compared to major corpora in world languages, and pert®n our investigation of
the stability of the ASR models derived from the corpus. VEe atport on phoneme distance
measures across languages, and describe initial phorgnisets that were developed using
this data. We find that a surprisingly small number of speafewer than 50) and around 10
to 20 hours of speech per language are sufficient for the pagof acceptable phone-based
recognition.

Keywords speech recognitionLwazi corpus resource-scarce languageSouth African
languages
1 Introduction

There is a widespread belief that spoken dialog systems{pDi8 have a significant im-
pact in the developing countries of Africa [Tucker & Shaleap2004], where the avail-
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ability of alternative information sources is often lowaditional computer infrastructure is
scarce in Africa, but telephone networks (especially tailnetworks) are spreading rapidly.
In addition, speech-based access to information may emplbitezate or semi-literate peo-

ple, 98% of whom live in the developing world.

SDSs can play a useful role in a wide range of applicationgagticular importance in
Africa are applications such as education, using speeabted learning software or kiosks
and information dissemination through media such as teleptibased information systems.
Significant benefits can be envisioned if information is jiied in domains such as agricul-
ture [Nasfors, 2007], health care [Sherwani et al., 200@y®h et al., 2009] and government
services [Barnard et al., 2003]. Recent years have seenstxteesearch on the application
of speech technology in the developing world - for a receviere see [Patel et al., 2010].
In order to make SDSs a reality in Africa, technology compigesuch as text-to-speech
(TTS) systems and automatic speech recognition (ASR) mystee required. The latter
category of technologies is the focus of the current coutidio.

Speech recognition systems exist for only a handful of Afitcanguages [Roux et al.,
2000; Seid & Gamaéck, 2005; Abdillahi et al., 2006], and to our knowledge novee
available to the general public currently uses ASR in angedous African language. A
significant reason for this state of affairs is the lack offisignt linguistic resources in
the African languages. Most importantly, modern speecbgsition systems use statistical
models which are trained on corpora of relevant speechafpgropriate for the recognition
task in terms of the language used, the profile of the speakpesking style, etc.) This
speech generally needs to be curated and transcribed ptioe tlevelopment of ASR sys-
tems, and for most applications speech from a large numbspezkers is required in order
to achieve acceptable system performance. On the Africatinemt, where infrastructure
such as computer networks is less developed than in cosistich as USA, Japan and the
European countries, the development of such speech coiparaignificant hurdle to the
development of ASR systems.

The complexity of speech corpus development is stronglyetated with the amount
of data that is required, since the number of speakers thet teebe canvassed and the
amount of speech that must be curated and transcribed aoe faeiors in determining the
feasibility of such development. In order to minimise thasrplexity, it is important to have
tools and guidelines that can be used to assist in designengnallest corpora that will be
sufficient for typical applications of ASR systems. As miairoorpora can be extended by
sharing data across languages, tools are also requireditaia when data sharing will be
beneficial and when detrimental.

In this paper we describe and evaluate a new speech corpasithf African languages
recently developed (the Lwazi corpus) and evaluate thenextevhich computational analy-
sis tools can provide further guidelines for ASR corpusgtesi resource-scarce languages.

2 Project Lwazi

The goal of Project Lwazi is to provide South African citisemith information and infor-
mation services in their home language (that is, the langtizaf the speaker identifies with
most strongly), over the telephone, in an efficient and dfible manner. Commissioned by
the South African Department of Arts and Culture, the atiéisi of the first stage of this
project (2006-2009) included the development of core lagguechnology resources and
components for all the official languages of South Africagweh for the majority of these,
no prior language technology components were available.



The core linguistic resources that were developed inclim@eme sets, electronic pro-
nunciation dictionaries and the speech and text corponginetjto develop ASR and TTS
systems for all eleven official languages of South Africae Tisability of these resources
were demonstrated during a national pilot in 2009. All otgduom the project have since
been released as open source software and open contenkfMasditute, 2009].

Resources were developed for all eleven languages thaeeognised as official lan-
guages in South Africa (SA) and contribute to the availall@& Eomponents [Grover et al.,
this volume]. These languages are:

1. isiZulu (ISO 639-3: zul) and isiXhosa (ISO 639-3: xhok tiwvo Nguni languages most
widely spoken in SA. Together these form the home languadgd @f of the SA popu-
lation.

2. The three Sotho languages: Sepedi (ISO 639-3: nso), Seasff50 639-3: tsn), Sesotho
(ISO 639-3: sot), together the home language of 26% of the @Alation.

3. Afrikaans (ISO 639-3: afr), a Germanic language, whictheshome language of ap-
proximately 13% of the SA population.

4. South English (ISO 639-3: eng), the home language of o¥lyo8the population, but
widely spoken as an additional language.

5. The two Nguni languages less widely spoken in SA: Sisu@®(639-3: ssw) and isiN-
debele (ISO 639-3: nbl), together the home language of 4%e0SA population.

6. Xitsonga (ISO 639-3: tso) and Tshivenda (ISO 639-3: vii®) home languages of 4%
and 2% of the SA population, respectively [Lehohla, 2003].

For all these languages, new pronunciation dictionareg,and speech corpora were
developed. ASR speech corpora consist of approximatelyspé@kers per language, pro-
ducing read and elicited speech, recorded over a telephmrmel. Each speaker produced
approximately 30 utterances, 16 of these were randomlgteeldrom a phonetically bal-
anced corpus and the remainder consist of short words ardgdiranswers to open ques-
tions, answers to yes/no questions, spelt words, dateswanters. The speaker population
was selected to provide a balanced profile with regard togeyejer and type of telephone
(cellphone or landline). Table 1 provides a summary of thewamhof speech for the different
languages.

Table 1 The official languages of South Africa, their ISO 639-3:208Yguage codes, and the amount of
speech contained in the Lwazi corpus [van Heerden et al.9R00

Language code #total #speech  # distinct
minutes  minutes phonemes

isiZulu zul 525 407 46

isiXhosa xho 470 370 52

Afrikaans afr 213 182 37

Sepedi nso 394 301 45

Setswana tsn 379 295 34

Sesotho sot 387 313 44

SA English  eng 304 255 44

Xitsonga tso 378 316 54

siSwati SSW 603 479 39

Tshivenda ven 354 286 38

isiNdebele nbl 564 465 46




3 Related work

Below, we review earlier work relevant to the developmensméech recognisers for lan-
guages with limited resources. This includes both ASR syddesign (Section 3.1) and
ASR corpus design (Section 3.2). In Section 3.3, we als@vettie analytical tools that we
utilise in order to investigate corpus design systemdyical

3.1 ASR for resource-scarce languages

The main linguistic resources required when developing AgRems for telephone based
systems are electronic pronunciation dictionaries, atadtaudio corpora (used to con-
struct acoustic models) and recognition grammars. An ASRoezorpus consists of record-
ings from multiple speakers, with each utterance carefudgscribed orthographically and
markers used to indicate non-speech and other events iampdrdm an ASR perspective.
Both the collection of appropriate speech from multiplesdq@es and the accurate annotation
of this speech are resource-intensive processes, anddieeoorpora for resource-scarce
languages tend to be very small (1 to 10 hours of audio) wherpeced to the speech cor-
pora used to build commercial systems for world languagasdieds to thousands of hours
per language).

Different approaches have been used to best utilise linaitelib resources when devel-
oping ASR systems. Bootstrapping has been shown to be a ffeigmrt technique for the
rapid development of pronunciation dictionaries, evenmwhglising linguistic assistants
with limited phonetic training [Davel & Barnard, 2004; Konak & Black, 2006; Maskey
etal., 2004].

Small audio corpora can be used efficiently by utilising teghes that share data across
languages, either by developing multilingual ASR systeansirigle system that simultane-
ously recognises different languages), or by using additisource data to supplement the
training data that exists in the target language. Variots slaaring techniques for language-
dependant acoustic modelling have been studied, inclucliogs-language transfer, data
pooling, language adaptation and bootstrapping [Wheatiey., 1994; Schultz & Waibel,
2001; Byrne et al., 2000]. Both [Wheatley et al., 1994] anchi8tz & Waibel, 2001] found
that useful gains could be obtained by sharing data acroggidéges with the size of the
benefit dependent on the similarity of the sound systemseofaiilguages combined. In the
only cross-lingual adaptation study using African langsfNiesler, 2007], similar gains
have not yet been observed.

3.2 ASR corpus design

Corpus design techniques for ASR are generally aimed aifgperor selecting the most
appropriate subset of data from a larger domain in order tionige recognition accuracy,
often while explicitly minimising the size of the selectearpus. This is achieved through
various techniques that aim to include as much variabititghie data as possible, while
simultaneously ensuring that the corpus matches the iateagerating environment as ac-
curately as possible.
Three directions are primarily employed: (1) explicit sfieation of phonotactic,

speaker and channel variability during corpus develop@htautomated selection of in-
formative subsets of data from larger corpora, with the Emalibset yielding comparable



results, and (3) the use of active learning to optimise exjstpeech recognition systems.
All three techniques provide a perspective on the sourcesaridtion inherent in a speech
corpus, and the effect of this variation on speech recagnaccuracy.

Nagroski et al. [2003] use Principle Component AnalysisAIP® cluster data acousti-
cally. These clusters then serve as a starting point focsegethe optimal utterances from a
training database. As a consequence of the clusteringitpahyit is possible to characterise
some of the acoustic properties of the data being analysddpabtain an understanding of
the major sources of variation, such as different speaketganders. Interestingly, the ef-
fect of utterance length has also been analysed as a signiicarce of variation [Riccardi
& Hakkani-Tur, 2003].

Active and unsupervised learning methods can be combin&it¢comvent the need
for transcribing massive amounts of data [Riccardi & Hakkeur, 2003]. The most infor-
mative untranscribed data is selected for a human to lahskdon acoustic evidence of
a partially and iteratively trained ASR system. From suchikyvé@ soon becomes evident
that the optimisation of the amount of variation inherentroning data is needed, since
randomly selected additional data does not necessarilyoveprecognition accuracy. By
focusing on the selection (based on existing transcripjioha uniform distribution across
different speech units such as words and phonemes, impesusrare obtained [Wu et al.,
2007].

In our focus on resource-scarce languages, the main aimuederstand the amount
of data that needs to be collected in order to achieve addepaacuracy. This is achieved
through the use of analytic measures of data variabilitychvive describe next.

3.3 Evaluating phoneme stability

In [Badenhorst & Davel, 2008; Badenhorst, 2009] a technigudeveloped that estimates
how stable a specific phoneme model is, given a specific seaiofrtg data. This statisti-
cal measure provides an indication of the effect that amfuti training data will have on
recognition accuracy: the higher the stability, the lesstibinefit of additional speech data.

The model stability measure utilises the Bhattacharyyadldsukunaga, 1990], a
widely-used upper bound of the Bayes error. The Bayes erosiges an indication of the
separability between two probability distributions. Ifpability distribution is calclulated
for two phonemes, say /a/ and /e/, then the ease with whictwaanelio sample can be
classified as being an /a/ or an /e/ depends on how sepadifflerént’) the two distributions
are. The more similar the distributions, the more misssif@stions are expected, and the
higher the minimum expected miss-classification rate oeBayror. When two distributions
are identical, it becomes impossible to determine to whidgh®two classes a new sample
should belong, apart from guessing. The expected missiitaion rate then becomes0
(50%).

By determining how close to identical the probability distitions are of the same
phoneme calculated using different sections of the trgimiorpus, it is possible to deter-
mine whether the developed models are stable. If the prbtyathistribution of phoneme
/al trained on one section of the corpus is quite differertheoprobability distribution of
the same phoneme /a/ trained on another section of the ¢dhmrsthe training subset is
still too small to produce stable acoustic models. Whenelpesbability distributions are
very similar (and the Bayes error approachés) @hen the training data were sufficient,
and the acoustic models are stable: adding additional diitaovinfluence the estimated
probability density significantly.



Since the Bayes error itself cannot always be calculatelytécely (depending on the
complexity of the probability distributions being compdyean upper bound provides a
‘close-enough’ estimate of the value itself. The Bhat boisnguch an estimate, and pro-
vides the assurance that the true error will never be latgar the bound calculated.

If B and pi(X) denote the prior probability and class-conditional dgnfihction for
classi, respectively, the Bhattacharyya bouni calculated as:

€= \/@/ p1(X) p2(X)dX 1)

When both density functions are Gaussian with mgaand covariance matriX;, integra-
tion of € leads to a closed-form expression for

£ = /PiPe 12 )
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is referred to as the Bhattacharyya distance.

In order to estimate the stability of an acoustic model, taaing data for that model
is separated into a number of disjoint subsets. All subsetsalected to be mutually exclu-
sive with respect to the speakers they contain. For eactesubseparate acoustic model
is trained, and the Bhattacharyya bound between each panodgls calculated. By cal-
culating both the mean of this bound and the standard dewiafi this measure across the
various model pairs, a statistically sound measure of mest&hation stability is obtained.

4 Computational analysis of the Lwazi corpus

We now report on our analysis of the Lwazi speech corpus,gutie stability measure
described in section 3.3. Here, we focus on four languagésdebele, Siswati, isiZulu and
Tshivenda) for reasons of space; later, we shall see thaitties languages behave quite
similarly.

4.1 Experimental design

For each phoneme in each of our target languages, we exlirtfee @honeme occurrences
from the 150 speakers with the most utterances per phonemeatilige the technique de-
scribed in Section 3.3 to estimate the Bhattacharyya boottdwhen evaluating phoneme
variability and model distance. In both cases we separateldla for each phoneme into
5 disjoint subsets. We calculate the mean of the 10 distaviatasned between the various
intra-phoneme model pairs when measuring phoneme syahititl the mean of the 25 dis-
tances obtained between the various inter-phoneme moitelvygaen measuring phoneme
distance.
In order to be able to control the number of phoneme obsemnstiised to train our

acoustic models, we first train a speech recognition systehtteen use forced alignment to



label all of the utterances using the systems describedaiidBes. 1. Mel-frequency cepstral
coefficients (MFCCs) with cepstral mean and variance ndsaébn are used as features,
as described in Section 5.1.

4.2 Analysis of phoneme variability

In an earlier analysis of phoneme variability of an Englisipus [Badenhorst & Davel,
2008], it was observed that similar trends are observed wiiksing different numbers of
mixtures in a Gaussian mixture model. (That is, a model witméed number of mixtures
is a good predictor of the behaviour of a more complex mo&silarly, it was found that
context dependent and context independent models alsaggdccomparable behaviour.
(Asymptotes occur later, but trends remain similar.) Bseanf the limited size of the Lwazi
corpus, we therefore only report on single-mixture contagependent models in the cur-
rent section and the phone model topology can thus be viewsihgle-state HMMs.

As we also observe similar trends for phonemes within theeshiroad categories, we
report on a couple of examples from several broad categatiésh occur in most of our
target languages. Using X-SAMPA notation, the followingppbmes are selected: /a/ (vow-
els), /m/ (nasals), /b/ and /g/ (voiced plosives) and /s¥diged fricatives), after verifying
that these phonemes are indeed representative of the tameps.
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Fig. 1 Effect of number of phoneme utterances per speaker on meBlnattacharyya bound for different
phoneme groups using data from 30 speakers

Figures 1 and 2 demonstrate the effects of variable numtb@fsomemes and speakers,
respectively, on the value of the mean Bhattacharyya botihid. value should approach
0.5 for a model fully trained on a sufficiently represent&tet of data, since a value of 0.5
corresponds to indistinguishable distributions (with 586-class error rates). In Figure
1 we see that the various broad categories of sounds apptohadsymptotic bound in
different ways. The vowels and nasals require the largesityen of phoneme occurrences



to reach a given level, whereas the fricatives and plosieeserge quite rapidly (With 10
observations per speaker, both the fricatives and plositlkeigve values of 0.48 or better for
all languages, in contrast to the vowels and nasals whichire@0 observations to reach
similar stability). Note that we employed 30 speakers p@&mngime group, since that is the
largest number achievable with our protocol.
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Fig. 2 Effect of number of speakers on mean of Bhattacharyya baurdifferent phoneme groups using 20
utterances per speaker

For the results in Figure 2, we keep the number of phonemermwes per speaker
fixed at 20 (this ensures that we have sufficient data for ahpmes, and corresponds with
reasonable convergence in Figure 1). It is clear that awditispeakers would still improve
the modelling accuracy for especially the vowels and na¥sés observe that the voiced
plosives and fricatives quickly achieve high values forltbend (close to the ideal 0.5).

Figures 1 and 2 — as well as similar figures for the other phengasses and languages
we have studied — suggest that all phoneme categories eeafuigast 20 training speakers
to achieve reasonable levels of convergence (bound le¥€lgiB or better). The number
of phoneme observations required per speaker is more \@ri@mging from less than 10
for the voiceless fricatives to 30 or more for vowels, liai@hd nasals. We return to these
observations in section 5.

For large-vocabulary systems, requiring context-depetnh@deling, the picture is un-
fortunately much more complicated. In that case, one alsadieonsider the impact of state
tieing, and the trade-off between the number of clustersla@@mount of training data per
cluster becomes an important issue.

4.3 Distances between languages

In Section 3.1 it was pointed out that the similarities beawthe same phonemes in different
languages are important predictors of the benefit achieedrh pooling the data from those
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Fig. 3 Effective distances in terms of the mean of the Bhattachavgynd between a single phone (/n/-nbl
top and /a/-nbl bottom) and each of its closest matches mitie set of phonemes investigated

languages. Armed with the knowledge that stable models eastimated with 30 speakers
per phoneme and between 10 and 30 phoneme occurrences akerspee now turn to the
task of measuring distances between phonemes in varioggdges.

We again use the mean Bhattacharyya bound to compare phsnamn obtain val-
ues between all possible combinations of phonemes. Reseltshown for the isiNdebele
phonemes /n/ and /a/ in Figure 3. As expected, similar pheseinom the different lan-
guages are closer to one another than different phonemég shine language. However,
the details of the distances are quite revealing: for /&w8&ii is closest to the isiNdebele
model, as would be expected given their close linguistiati@hship, but for /n/, the Tshiv-
enda model is found to be closer than either of the other Nigunguages. For comparative
purposes, we have included one non-Bantu language (Afriyaand we see that its models
are indeed significantly more dissimilar from the isiNdebelodel than any of the Bantu
languages. In fact, the Afrikaans /n/ is about as distambfisiNdebele /n/ as isiNdebele /I/
and isiZulu /I/ are.

Analysis of another isiNdebele vowel /i/ and nasal /m/ amnashin Figure 4. Interest-
ingly all distances are found to be diminished and we corelhat the models for /i/ are
indeed very similar across the investigated language b&rBer /m/ all the Bantu languages
are also even more closely related than for the model /n/.

To complete the picture, an isiNdebele fricative /s/ andipl/g/ are also investigated. It
can be seen in Figure 5 thatimmediately all of the closestinestare non-vowel sounds. We
also find that models are no longer that dissimilar betweerdiffierent plosive phonemes.
For the isiNdebele /g/ it can be seen that /k/ and the Afrikdedhmodels are actually closer
than models for isiZulu /g/ or the Siswati /b/.

The similarity of the fricative /s/ also proves interestiagross language borders. Al-
though the Siswati model is found to be closest, the modeRAfdkaans is very similar.
All of the fricative models are, however, distinct from thiner investigated phones of the
languages.
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Fig. 5 Effective distances in terms of the mean of the Bhattachavpynd between a single phone (/g/-nbl
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5 Recognition results

In this section, we aim to confirm the measurements repont&ection 4 with several ASR
measures. Baseline accuracies for both phone recognitgbaraall vocabulary word recog-
nition are established in Sections 5.1 and 5.2 respectiVédythen measure ASR accuracy
with varying amounts of data, based both on the number ofkgpeand the number of
phones in Section 5.3. In Section 5.4, we use these resgkgher with a heuristic relation-
ship [Schuurmans, 1997] to get a rough estimate of the anuiwata required to achieve a
particular phone recognition accuracy.
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5.1 Phone recognition with the Lwazi corpus

The recognisers we employ are standard HMM-based systemsiS&/HTK 3.4 to build
a context-dependent cross-word HMM-based phone recagmitetriphone models. Each
model has 3 emitting states with 7 mixtures per state. (Thaszmeter choices were deter-
mined to be optimal for phone-recognition accuracy withabmplete corpora during pilot
experiments.) 39 features are used: 13 MFCCs together &t first and second order
derivatives. Cepstral Mean Normalisation (CMN) as well aps€iral Variance Normali-
sation (CVN) are used to perform speaker-specific norntadisaA diagonal covariance
matrix is used; to partially compensate for the implicitaaption of feature independence,
semi-tied transforms are applied. A flat phone-based laggyo@del is employed for phone
recognition.

The optimal values of parameters such as the number of retand the insertion
penalty (during language modelling) will in general dependhe amount of training data
available. Since our values are optimised for the full cerpaur reported accuracies for
reduced corpora are underestimates. Although we have hatustvely evaluated all pa-
rameter options, we have verified that the dependenciesiéeeweak, and that the overall
trends reported below are also observed when the paranaeteasljusted.

As the initial pronunciation dictionaries were developedtovide good coverage of
each language in general, these dictionaries did not cheearitire ASR corpus. Grapheme-
to-phoneme rules are therefore extracted from the genietadhries using the
Default&Refine algorithm [Davel & Barnard, 2008] and usedémerate missing pronunci-
ations. For the reason cited above, tone is not modelleceisyhtem.

For phone recognition, we divided the data into a test seictwbonsists of 30 ran-
domly selected speakers in each language, and a trainir{theatemaining speakers, ap-
proximately 170 per language). The recogniser for eachuiagg was built using all the
training data for that language, using the recognitioniéecture as described above. These
recognisers were then evaluated by performing a Viterhickegan efficient search tech-
nique [Viterbi, 1967]) with a language model that allows estricted transitions between
any pair of phonemes. Dynamic programming was used to maghesulting phoneme
strings against the strings that result from automatic phao transcription of the ortho-
graphic transcriptions of the test utterances. The regpétcuracies are summarised in Ta-
ble 2. Phone-recognition correctness refers to the pexgerdf correctly recognised phone
labels with regard to the total number of expected phonddatile the dynamic program-
ming used to calculate the accuracy values take into acqgiamte label insertions/deletions
as well. The table also lists the phonotactic perplexityaaftelanguage — that is, the perplex-
ity that is measured if a bigram model is used to model the phmensequences that occur
in the training set. Lastly, the table contains word-redtigm results, which are discussed
in Section 5.2 below.

Interestingly, the correctness and accuracy of all othegdages are higher than that of
English, despite the fact that most languages have moresgphesmthan English. One possi-
ble explanation for this observation is the fact that Ergtias fewer phonotactic constraints
than any of the other languages, as can be deduced from tpkxysr values in Table
2. (The Southern Bantu languages employ CV (consonantiy@w®/ syllable structures
predominantly.) Overall, however, phonotactic perplexibes not correlate well with cor-
rectness or accuracy in our results, so other explanat@mré relative accuracies should
also be investigated. Finally, the relatively high recaoigni accuracies obtained with these
small corpora confirm the observations summarized in Figylirand 2.
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Table 2 Phone and Word-recognition results. Phone-recognitiameminess (“Corr”) and accuracy (“Acc”)
achieved are listed for each of the languages in the Lwazpowsr “Ave # phones” refers to the average
number of occurrences of each phone for each speaker, arfthtiie€olumn lists the phonotactic perplexity
of each language in our corpus. NTIMIT results from [Mora&sal., 2008] are provided for comparative
purposes. Small vocabulary word recognition accuraciesgiven forlOlanguages. Each system is required
to distinguish between ten different semantic categoriéth each category represented by one to three
different lexical items.

Phone recognition Word recognition

Language % Corr % Acc Ave#  Phone Lwazi English Recognisers

phones pp! models Lwazi Ntimit  WSJ
Afrikaans 7176 6314 1655 1445 9611 9035 6036 7915
SAEnglish 6251 5426 1461 1580 9194 9194 8286 8195
isiNdebele 721 6541 2866 1026
isiXhosa 6925 5724 1779 1067 9529 7778 3434 6128
isiZulu 7118 6095 2342 1120 9053 8000 3757 6919
Tshivenda 787 6678 1953 999 9774 6637 5756 5214
Sepedi 6644 5519 1645 1154 8949 8372 5491 4341
Sesotho 687 5479 1857 1040 9714 7948 3065 5065
Setswana 690 5619 2085 1115 8766 7695 3902 5209
Siswati 7419 6446 3066 1038 9662 7701 4646 6109
Xitsonga 7032 5941 1435 1034 9790 7758 5499 6060
NTIMIT 64.07 5573

5.2 Small-vocabulary speech recognition with the Lwazposr

Phone recognition is a useful benchmark to employ for reitiogrin new languages, since
extensive intuition exists on phone-recognition acc@waechieved on standard corpora.
However, initial applications of ASR in the developing wbwlill in practice require accu-
rate small-vocabulary recognition (as described in SedtjoWe therefore describe experi-
ments aimed at estimating our performance on such tasks next

During the collection of the Lwazi ASR corpus, callers wesked several questions, of
which some resulted in only a small set of responses. Theseled the following:

— Are you married?

— Are you speaking on a landline or a cellphone?
— What is your gender?

— What is your mother tongue?

— Where do you live? / Where were you born?

Since these same questions were asked of all speakers atirsgyuages, they form a
suitable basis for small-vocabulary experiments. Motbague speakers were then asked
to label all answers that were semantically equivalenthisfiashion, answers such “Egoli”
(isizulu name for Johannesburg, meaning “place of goldt) &lohannesburg” were con-
sidered equivalents.

This resulted in 10 distinct semantic concepts for eachuagg, with approximately
one to three different lexical items corresponding to th@mes@oncept in a language. Be-
cause of the similar questions, similar meanings are athth the matching concepts in
each language, except for minor variations because ofralidifferences. (For example,
the majority of English and Afrikaans speakers would simgahgwer “yes” or “no” to the
first question. In contrast, the majority of Xitsonga, Seew Tshivenda speakers would
answer the question in different ways depending on theidgerA Xitsonga man would
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for example say “ni tekile / a ni tekangi” (I have taken / | haiteaken), whereas a woman
would say “ni tekiwile / a ni tekiwangi” (I have been taken /dJen’t been taken).) Our

small vocabulary task was constructed by removing all attees that contain any of the
phrases corresponding to any of these concepts from tinérigaset, since such vocabulary-
independent performance is the realistic goal for apptioaih SDSs. For testing purposes,
all utterances that contain only these phrases were entghlogeognition was deemed cor-
rect if the phrase was placed into the correct semantic egteBecause of the relatively

small set of test utterances (five or fewer per speaker), weagred ten-fold cross valida-

tion to estimate recognition accuracy.

A vocabulary of ten words (actually, concepts) is a gooddéstpical recognition tasks
in an SDS which is aimed at Interactive Voice Response (IMlieations, where the di-
alogue is structured to contain mostly menu items and cordmards. Common tasks
such as yes/no recognition require even smaller vocabslaand larger tasks with highly
distinctive vocabularies may in fact give comparable aacigs to those achieved with our
artificially-constructed grammar.

As a baseline for comparison, we have also measured thesadesithat can be achieved
with the cross-language transfer procedure describeéxaimple, in Sherwani et al. [2007,
2009]. That procedure, which is often a starting point feowece-scarce languages, utilises
a well-trained recogniser in a world language such as Emgh# the words in the recog-
nition task are transcribed using the phonemes of this traited recogniser, mapping the
phonemes in the actual target language to the closest \Wantgltage phonemes where nec-
essary. This cross-language dictionary is then used fogretion. Three English recognis-
ers were investigated for our baseline, namely recogniszireed on the NTIMIT and Wall
Street Journal corpora (the latter band-limited and dompdad to match our telephone
corpus), and one trained on the English part of the Lwaziwsrp

Table 2 contains recognition results obtained with theselb@ systems, as well as
with our language-specific recognisers. (We were not abtatoy out this experiment for
isiNdebele, for lack of access to a mother-tongue speakerosbld perform the semantic

mappings.)

We see that accuracies above 90% are achieved in all lang@agept Sepedi and
Setswana. With careful dialogue design [Cohen et al., 2064 should be sufficient for
a usable SDS. Of the three baseline systems that use phongppégs, the Lwazi English
model is easily the most accurate. This is to be expectede shve acoustic conditions of
NTIMIT and WSJ are somewhat dissimilar to those in Lwazi; begr, the magnitude of the
differences in accuracy is somewhat surprising. Even thét baseline system is, however,
much less accurate than the language-specific acousticlsniodmost cases. Excluding
English, the languages with the smallest absolute differdretween baseline and trained
models are Afrikaans, which is linguistically quite simita English, and Sepedi, which
also performed worst in the phone-recognition experimédestion 5.1).

Given the similarities between the semantic categoriebendifferent languages, it is
interesting to compare the accuracies achieved in thistargss languages (with error rates
ranging between 2.1% and 12.3%). The quality of the phonegresers partially explains
these differences — in particular, the relatively poor periance of Sepedi and Setswana at
both phone recognition and small-vocabulary word recagmit notable. However, Sesotho
(with relatively accurate word recognition) and isiZulel@tively accurate phone recogni-
tion) point to other relevant factors, such as the acoustigusibility of words in semanti-
cally distinct classes that happens to occur in some laregiagt not others.
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5.3 The number of training speakers
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Fig. 6 Phone accuracy as a function of both the number of speaketstentotal amount of training data.
The dots represent the measured accuracy, with bigger dotsgher accuracies and empty blocks (no dots)
where no values are given.

To analyse the influence of the number of training speaketh@necognition accuracy
achieved, we investigate phone-recognition accuracy asetibn of both the number of
training speakers and the total number of phones used fairiga (We use the number of
phones rather than the number of words or utterances as reezfshe amount of training
data employed because of the significant differences in @woddutterance lengths between
the various languages — the phone count is therefore a lpe¢t@sure of the actual amount
of speech employed.) The training sets are selected in swely ¢hat the number of phones
per speaker remains balanced.

Figure 6 shows typical results. (The empty blocks withousdi the upper right-hand
corner of each figure represent experiments that could npelfermed because sufficient
data was not available for each individual speaker.) It éacthat the number of training
speakers has little or no influence on the accuracy achiévebe range that we have in-
vestigated. Whereas the figures show systematically istrgaccuracy as the number of
training phones is increased (from left to right), incregghe number of speakers contribut-
ing to a given set of training data has little effect (top tdgtbm). This same behaviour is
observed for all eleven languages, and is confirmed by reptatons such as that shown in
Figure 7(a) which shows the phone accuracy as a functioreafitimber of training speak-
ers, when about a quarter of the training data is used in eagubge. A similar insensitivity
to the number of speakers was also observed for the trairiingniext-dependent models
[Barnard et al., 2009].
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Fig. 7 Phone accuracy as a function of the number of speakers asawellfunction of the amount of data
in the training set, when data from all 120 training speakisrsombined. In all cases, approximat@y% of

the available training data is used to generate results ffier tumber of speaker case. When all 120 training
speakers is combined, the total amount of training datedifbetween the languages - the horizontal axis
therefore indicates the number of segments used in eacludgieg where the number of phone tokens per
segment is (approximately) constant within a languagegifgrent across languages.

5.4 The amount of training data

Table 3 Parameter values obtained by fitting measured phone-rétogmates. R is the squared correlation
between the estimated and actual values.

Language A B R

Afrikaans 64.94 549,900 0.9762
SA English 54.16 457,400 0.9650
isiNdebele  65.55 490,800 0.9722

Sepedi 55.35 380,200 0.2770
Sesotho 57.69 325,300 0.9201
Siswati 68.19 526,700 0.9757

Setswana 60.87 544,700 0.7975
Xitsonga 57.26 300,100 0.8839
Tshivenda 67.53 378,500 0.9616
isiXhosa 57.60 331,700 0.9710
isiZulu 59.96 352,100 0.9636

In Figure 7(b) we show the trends of phone recognition acyuas a function of the
amount of training data, when all 120 speakers are usedodédfin the curves for some
languages (especially Sepedi) are quite noisy, it seengs that none of the languages
is approaching asymptotic phone-recognition accuracgrgihe amount of training data
available in our corpus. In order to obtain a rough estimath® amount of training data
required to approach such an asymptote, we employ a heugdditionship that is expected
to hold for a wide range of classifiers [Schuurmans, 1997is Tdlationship states that the
error rate will asymptotically depend on the number of trainsamples ) through the
relationshipA— (B/N), with A andB parameters corresponding to the asymptotic error rate
and the number of training samples required to approachnitto of that error rate, re-
spectively. We have empirically determined that this fetethip provides a reasonable fit to
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our data for values dfl greater than approximately 50,000; we have therefore uiada
least-squares fit to estimateandB values for all our languages, including only measured
accuracies foN > 50,000 in our analysis. Table 3 summarises the results obtaarati
Figure 8 shows a typical fit obtained in this manner. We seteqhige good fits are obtained
for several language®{ > 0.96), and that th& parameter, which is related to the number
of training phones required for accurate training, rangetsvben approximately 300,000
and 550,000 for these languages. (Roe B, phone accuracies within 1% of the asymptotic
value are predicted.) In our corpus, the average phoneidaratapproximately 150 ms -
hence, corpora of approximately 750 to 1,400 minutes pguage are suggested.

65
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45
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Pred bnds (Parametric)

401

2 4 6 8 10 12 14
Number of training phones x1d*

Fig. 8 Example of parametric fit (for Siswati accuracies), with 96émfidence intervals computed from the
fit.

6 Conclusion

Collecting appropriate speech corpora for resource-edarguages can be a challenging
task, especially when financial resources are limited aedlsgr populations are small or
geographically remote, with limited access to informatam communication infrastruc-
ture. When collecting corpora from such environments, agtetstanding of the interplay
between type and amount of data can be of great benefit, byiegghat the collection
effort is made as efficient as possible.

In this paper, we describe the Lwazi corpus for automatiespeecognition (ASR), a
new telephone speech corpus for Sourth African languagesnalyse the data sufficiency
of the corpus from both an analytical and a practical petsgeave measure the stability of
ASR models derived from the corpus and evaluate phonemegmémm accuracy directly.
We find that different phone classes tend to have differetatidgguirements. Voiceless frica-
tives, for example, can be trained accurately with relftif@w tokens per speaker, whereas
nasals and vowels require more data per speaker for conlpamtvergence (stability) of
the acoustic distributions. The number of speakers reqdoe a given level of stability
shows comparable, but not identical, trends.

Our investigation of the practical training of speech-ggdton systems reveals that
the number of training speakers is less of a constraint thammount of data per speaker
(under the circumstances investigated in this study). hiqudar, this investigation reveals
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that systems of this nature can be trained successfullyarithnd 40 to 50 training speakers;
the total amount of speech to approach within 1% of asympémtturacy should be around
750 to 1,400 minutes per language. Clearly, more compliceteognition systems will
benefit from more speakers and larger corpora; it is theeefaportant that work similar
investigations should be carried out on larger multilinguopora where such are available.

Another interesting avenue for future exploration folloin@m our findings that differ-
ent phone classes have different data requirements. Thecdiéction process could con-
ceivably be made more efficient by biasing the recorded nahtemwards the more “data-
hungry” phonetic categories; it remains to be seen, howevieether that benefit can be
obtained without making the recording protocol too unreitur
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