Crystalline Thin Films: The Electrochemical Atomic Layer Deposition (ECALD) view

MMALEWANE MODIBEDI mmodibedi@csir.co.za

Outline

- Acknowledgements
- **Context: Crystalline Thin films**
- What is ECALD?
 - Mechanism
- Instrumental set-up
- Applications
 - Electrocatalysis
 - Deposition on various substrates: work done @ EaP
 - Compound semiconductor -
- Conclusions

© CSIR 2011

www.csir.co.za

Acknowledgements

- Dr. Tumaini Mkwizu, PhD work on ECALD
- Ms. Nikiwe Kunjuzwa, PhD student- ECALD and batteries
- Prof. Kenneth Ozoemena, Research group leader and electrochemist
- Dr Mkhulu Mathe, Competence area manager, electrochemist and ECALD expert

Crystalline Thin Films

Application

- Historical: light absorber material CdTe, crystalline Si
- Modern: light absorber material Solar cells
 Cu, In, Ga, Se (CIGS)- developed by Vivian Alberts and UJ
- low material cost in 2011- potentially low fabrication costs

Growth methodologies

- Molecular beam epitaxy/ chemical vapour deposition Disadvantages: expensive equipment, use toxic precursors, Vacuum and High Temperature
- Electrochemical methods: co-deposition, precipitation
 Disadvantages: lack of control during deposition

What is ECALD?

• Definition:

alternated electrodeposition of atomic layers of elements on a substrate, employing under-potential deposition (UPD) in which one element deposits onto another element at a voltage prior to that necessary to deposit the element onto itself.

• Advantages:

- ambient temperature,
- use small concentrations of precursor solutions,
- optimized solutions and potential separately

Offers atomic layer control- fundamental for controlled growth processes

Mechanism-Sequential deposition

Instrumental set-up – Pumping system, Potentiostat and Flow-Cell Connectivity

APPLICATIONS

Electrocatalysis

Noble-Metals studied = Pt, Ru, Au, Pd **Substrates =** Carbon materials-fuel cell carbon paper, Gold films

T.S.Mkwizu, M.K. Mathe, and I. Cukrowski, <u>ECS Transactions</u>, Vol.19, 97-113 (2009) T.S.Mkwizu, M.K. Mathe, and I. Cukrowski, <u>Langmuir</u>, Vol. 26, 570 - 580 (2010) T.S Mkwizu, M.R. Modibedi, and M. K. Mathe, 219th ECS Meeting (2011)

Sequential electrodeposition coupled to Surface-limited Redoxreplacement reactions: Synthesis of multilayered bimetallic RuPt electrocatalyst

Tuning Electrocatalysis: Electrochemical Characterisation

T.S.Mkwizu, M.K. Mathe, and I. Cukrowski, <u>ECS Transactions</u>, Vol.19, 97-113 (2009) *T.S.Mkwizu, M.K. Mathe,* and I. Cukrowski, <u>Langmuir</u>, Vol. 26, 570 - 580 (2010) $0.1M HCIO_4 + 0.5 M CH_3OH$

Tuning Electrocatalysis on Fuel Cell gas diffusion layer: SEM micrographs and EDX profile

Tuning Electrocatalysis on Fuel Cell gas diffusion layer: Electrochemical Characterisation

Compound Semiconductors

Group II - VI, Group III - V, Group IV - VI: Optoelectronic materials

CdTe, CdSe, GaAs, HgSe - photovoltaics, photon sensors, lasers etc.

• **Substrates =** Gold, carbon material

Mkhulu K. Mathe et al. J. Electrochem. Soc., Volume 152, Issue 11, C751-C755 (2005) Mkhulu K. Mathe et al. <u>J. Crystal Growth Volume 271, Issues 1-2</u>, 55-64 (2004)

Energy storage

- Physical form (capacitors) and Electrochemical form (batteries)
- Obstacle to increasing thin film battery storage capacity: limited diffusion path length of ions and electrons
- Solution: area enhancement- 3D thin films
 - Increases total amount of active material while maintaining short diffusion path
 - Results- high power and energy density

Conclusions

- ECALD:
 - controlled growth of thin film deposits
 - atomic layer control is key to reducing the amount of PEMFC catalysts
 - possibility of a 3D battery stack

Thank You

