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La Nifa and Rainfall

La Nifia conditions in the tropical Pacific are known to shift rainfall patterns in many different parts of the world. Although varying somewhat from
one La Nifia to the next, the strongest shifts are fairly consistent in the regions and seasons shown on the map below.
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The evolution of the science of seasonal
forecasting in southern Africa

Model/system development started in early 1990s —
SAWS, UCT, UP, Wits (statistical forecast systems)

South African Long-Lead Forecast Forum

SARCOF started in 1997 — consensus through
discussions

Late 1990s — started to use AGCMs and post-processing
— At SAWS (COLA T30, then ECHAMA4.5)

— At UCT (HadAM3)

— At UP (CSIRO-II/1Il, then CCAM)

Global Forecasting Centre for Southern Africa — 2003
Objective multi-model forecast systems — 2008
Coupled model considerations — 2010 onwards



Deterministicstatistical model (antecedent SST as predictor):
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The seasonal forecast
systems of the SAWS use
the slow evolution of SSTs
to make forecasts. In fact,
improvements in the
forecast systems have
occurred owing to the
better understanding of
the coupled ocean-
atmosphere system
obtained through research
at the SAWS and
elsewhere.
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MO5=PP: ABONE DJF

DJF 2005/06 forecast made
early December

L. e R Assessment of Rainfall for @
MOS-FP: NORMAL DUF December 2005 to February 2006  j2u Alrieer

Weather Service

Legend
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“Normalto below-normal” most likely

The MOS-PP-ECHAMA.5 system was successful in predicting enhanced probabilities of

e e — above-normal over the central-western parts and enhanced probabilitiesin below-

normal over the south-western parts, but predicted only small probabilities of above-
normal over the north-eastern parts



DJF forecasts using RCM

rmal rainfall DJF ens2,ReqCM

== ° First ever operational
AL ‘“" regional climate model
.~ ~@  forecast for southern

W SO Africa

* ECHAM4.5-RegCM3

Initiative lead by Mary-Jane Bopape
and Maluta Mbedzi



RCM - MOS

MOS - GCM

Figure 12. Correlation differences between the (a) ECHAM4.5-RegCM3 system and the ECHAM4.5-MOS system (24-member mean), the

(b) ECHAM4.5-RegCM3 system and the baseline model (using SSTs to simulate rainfall), the (c) ECHAM4.5-MOS and the raw ECHAM4.5

systems (24-member mean), and the (d) ECHAM4.5-MOS (24-member mean) and the baseline system (using SSTs to simulate rainfall) over
the 10-year test period. Negative values are masked out.



HRR calculated from 970 stations - Dec 2004

Operational Forecast Skill

Expected Total Rainfall for the period
August-September-October 2008
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Assessment of Rainfall for @

South African

New objective multi-model forecast April to June 2008

Probability Rainfall Forecast for ABOVE-normal
for April-May-June 2008 g

Legend

["] Below Normal
[1 Near Normal

[] Above Normal

Old subjective consensus forecast

Expected Total Rainfall for the period
April-May-June 2008

Probability Rainfall Forecast for BELOW-normal
for April-May-June 2008
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Area-averaged ROC scroes (retroactive)

Reliability: MMcca
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Figure 3. ROC scores, averaged over the southern African domain, for
the above-normal and below-normal rainfall categories. Scores for the
single models and for the two multi-models are shown.

Forecast probability

Forecast probability

Figure 6. As in Figure 5, but for the two multi-models.
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Figure 5. Reliability diagrams and frequency histograms for above- and below-normal DIJF rainfall forecasts produced by the single models.

The thick black curves and black bars of the histogram represent the below-normal rainfall category, while the thick black dotted curves and

white bars of the histogram represent the above-normal rainfall category. For perfect reliability the curves should fall on top of the thick black

diagonal line. The thin solid and dotted lines are respectively the weighted least-squares regression lines of the above-normal and below-normal
reliability curves.

Figure 7. ROC scores, averaged over the southern African domain, for

the above-normal and below-normal rainfall categories during El Niiio,

La Niiia and neutral seasons. Scores for the MMcca multi-model are
shown.



The multi-model seasonal rainfall and surfacetemperature
forecasting system for SADC under development through ACCESS
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Some MM Combination Schemes

"ALL" Nino3 4 Muk-Nodel (ECWWF, Meteo France, UKMO)
T T T T T T T

Each modal recalbrated, then avemged

1-tailed prior prob of exremes = 33%

B1 B2 ©C1 C2 @ E1 G G2 G OMi1 M2 mMB 51 52 53

With assistance from Simon Mason

Bayesian optimal weighting (B1)
Bayesian sequential optimal weighting (B2)
Canonical variateanalysis

— using members (C1)

— using PCs (C2)

— using moments (C3)
Equal weighting (E1)
Generalizedlinearmodel 1. Models

— using members (G1) recalibrated and
— using PCs (G2) combined at the
— using moments (G3) sametime

Multiple linearregression

— using members (M1) 2. Eachmodel

— using PCs (M2) recalibrated,

— using moments (M3) then averaged
Stepwise regression

— using members (S1)

— using PCs (S2)

— using moments (S3)



Seasonal forecast examples: Issued Nov 2010
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ToR 1: To facilitate cooperation between the centres within southern Africa that run an
operational global scale long-range forecasting (LRF - from 30 days up to 2 years) system

ToR 2: To produce global forecasts from dynamical forecasting systems
ToR 3: To establish a web based environment for non commercial product dissemination

ToR 4: The consortium will be managed by a committee

ToR 5: To compile archived hindcasts UCT: HadAM3
SAWS: ECHAMA4.5 (AGCM and CGCM)
ToR 6: To apply standard verification tools CSIR: CCAM, VCM, UTCM
“ToshioGeorge”
ToR 7: To assistin training and capacity building for LRF (multi-node machine)

ToR 8: To actively pursue the development and improvement of global scale LRF techniques



http://www.gfcsa.net/

Example of coupled model work:
The state-of-the-art

Coupled GCM Implementation: Positive — - ElNifo
« ECHAMA4.5-MOM3 running at the CHPC with 10 ensemble size 10 Ui = '
 Readyfor operational use (pending for suitable HPC)
Coupling procedure:

e Anomalously coupledto the AGCM side and fully coupled to the ~
OGCM side

e OGCM SST relaxed toward climatology at high latitudesin order to
suppress spuriousice (no sea-ice model)

-0.4-03-02-01 0 01 02 03 04 05 08 07

e AGCM and OGCM are coupled using the multiple-program multiple-
data (MPMD) paradigm.

 Exchangeinformation via data files every model simulation day.
Initialization strategy:

 Initialized using best available information of the ocean and
atmosphere state

 Each hindcast run involves 9 months integration (0-8 lead tlmes) ‘
and mimics truly operational set-up

Significant support from Dave DeWitt



Lead-time (in months)

ROC Scores: Coupled vs. 2-tiered systems
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Lead-time (in months)

> 75th %tile: AMIP - Forecast
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Minimum temperatures
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Initiative lead by Melissa Lazenby
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Model data supplied by Dave DeWitt
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JANUARY NINO3.4 MULTI-MODEL
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Model Predictions of ENSQ from Aug 2011
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Empirical correction and
verification should be part
of the forecast system
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Seamless forecast products

Multi-month forecast for the Pretoria area; Forecasts were initialized using a LAF approach
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Figure 7.17: ECMWEF 3-month lead time hindcasts of global 2 m
temperature for August-October without (upper panel) and with
(lower panel) time-varying anthropogenic greenhouse gases (GHG). In
the upper panel the correlation between the ensemble mean and the
observations is only 0.29, whereas this increases to 0.68 with variable
GHGs, indicating that including vanable greenhouse gas
concentrations improves the seasonal forecast/hindcast skill of global
mean surface air temperature (after Doblas-Reyes et al., 2006).
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Strong anthropogenically forced warming
trends have been observed over southern
Africa and are projected to continue to
rise, consequently justifying the
investigationintohow the annual update
of greenhouse gas (GHG) concentrations
in a global model may affect seasonal
forecast performance over the region.



Applications Modelling

FEBRUARY — MARCH - APRIL 2011
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To summarize

From empirical to physical

MOS > RCM

Objective combination > subjective consensus
CGCMs have great potential

AGCMs should continue to be optimized

Downscaling and verification important
components of forecast system

System improvement still continuing, including
applications model development



