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Abstract  
 

A facile method has been utilized to synthesize a hydrophobic form of nano-

scaled iron (II) tetrasulfophthalocyanine (nanoFeTSPc), integrated with 

functionalized multi-walled carbon nanotubes (fMWCNT-nanoFeTSPc). The 

nanocomposite was characterized by UV-visible spectra, EDX, FESEM, and 

TEM. The electrocatalytic properties of the film on a glassy carbon electrode 

were investigated using cyclic voltammetry, electrochemical impedance 

spectroscopy, chronoamperometry and square wave voltammetry. The 

fMWCNT-nanoFeTSPc modified electrode demonstrated higher catalytic 

performance in terms of electron transport and current response compared 

to the other electrodes studied towards Dopamine (DA) detection giving a 

sensitivity of 0.314 µA µM-1 and a limit of detection of 9.86 x 10-8 mol L-1. A 

selective detection was realized in elimination of ascorbic acid response on 

the film of fMWCNT-nanoFeTSPc. The detection limit in the presence of a 

high concentration of ascorbic acid was 3.5 x 10-7 mol L-1. 

 

Keywords: Hydrophobic iron (II) tetrasulfophthalocyanine; MWCNTs; 

Electrocatalysis; Dopamine; Ascorbic Acid. 
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1. Introduction 
 

Iron (II) tetrasulfophthalocyanine (FeTSPc, Figure 1) belongs to the N4-

macrocyclic metal compounds related to the metalloporphyrins. Like every 

other sulfonated metallophthalocyanine (MTSPc) complex, FeTSPc is a highly 

water-soluble molecule and very well recognized for its unique physico-

chemical properties and wide range of applications ranging from catalysis 

[1,2] to sensing [3,4] and photocatalysis [5-7]. The major handicap to the 

use of FeTSPc film in heterogeneous electrocatalysis is its high water-

solubility [8-11]. The ease with which MTSPc complexes are washed away 

from electrodes during electrochemical studies has long been a major 

setback and has limited their fundamental studies and potential applications 

to heterogeneous electrocatalysis in aqueous environment. From example, 

the main problems usually associated with physical anchorage (such as drop-

casting method) of FeTSPc films onto an electrode are poor stability (i.e., 

washing off into the aqueous electrolyte / analytical solution) as well as the 

difficulty in controlling the amount of film deposited. To curb the solubility 

problems, researchers have resorted to several techniques. For example, in 

1992, Rusling’s group [12] immobilized MTSPc (M = Fe, Cu, Ni) complexes 

by electrodepositing them from their aqueous solutions onto pyrolytic 

graphite electrode surface pre-modified with dioctadecyldimethylammonium 

salt (DODA). Since then, other workers have also used layer-by-layer self-

assembly electrode modification strategy involving the use of polycationic 

and/or highly branched polymeric complexes such as polyamidoamine [13], 
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dendrimers [14], chitosan [15], and dimethylaminoethanethiol/carbon 

nanotubes [16]. These techniques are often laborious, use expensive and/or 

toxic reagents, and sometimes give semi-stable films. There is need 

therefore to explore means of making MTSPc complexes hydrophobic without 

compromising on their electrocatalytic activity towards the detection of 

analytes in aqueous conditions. Importantly, an ideal synthetic technique for 

such hydrophobic MTSPc should be easy to perform, produce large-surface 

area FeTSPc (nanostructures) for enhanced catalytic activity, and offer the 

possibility of mass production.  

(Figure 1) 

To our knowledge, nanostructured FeTSPc has never been reported, 

thus their electrocatalytic properties still remain unknown. The synthesis of 

hydrophobic MTSPc complexes is hugely limited [17], and neither their 

structural morphology nor their electrochemical properties were reported. In 

this work, we report the first synthesis of hydrophobic nanostructured 

FeTSPc complex assisted by hexadecyltrimethylammonium bromide (CTAB). 

Carbon nanotubes (CNTs) are known to enhance the electrocatalytic 

properties of metallophthalocyanine (MPc) complexes [18-22], thus in this 

work we also integrated nanostructured FeTSPc with multi-walled carbon 

nanotubes (MWCNTs) with a view to enhancing its electrocatalytic properties. 

We demonstrate that the nanostructured FeTSPc integrated with 

functionalized MWCNTs may be potentially useful as an efficient 

electrocatalyst for the detection of dopamine, a neurotransmitter, in the 

presence of high concentration of ascorbic acid.  
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2. Experimental 

2.1  Materials and reagents 

Tetra-sodium salt of sulfonic acid functionalised iron (II) phthalocyanine 

(Na4[FeTSPc]) (Fig. 1) was synthesized following the established procedure 

described elsewhere [8]. Hexadecyltrimethylammonium bromide 

(C16H33N
+(CH3)2Br-, CTAB) was obtained from Merck. Multi-walled carbon 

nanotubes (MWCNTs, Sigma-Aldrich, purity > 90%, 110-170 nm in diameter, 

5-9 µm in length) were purified [23] and subsequently functionalized with 

sulfonic acid using the established procedure [24], abbreviated herein as 

fMWCNTs. Dopamine (4-(2-aminoethyl) benzene 1,2–diol) hydrochloride  

was purchased from Sigma–Aldrich. N, N-Dimethylformamide (DMF, Sigma-

Aldrich) was distilled and dried before use. Ultra pure water of resistivity 

18.2 MΩcm was obtained from a Milli-Q Water System (Millipore Corp. 

Bedford, MA, USA) and was used throughout for the preparation of solutions. 

KH2PO4 and K2HPO4 were used to prepare phosphate buffer solutions (PBS) 

of the required pH. All electrochemical experiments were carried out in 

nitrogen atmosphere. All other reagents were of analytical grade and were 

used as received from the suppliers without further purification. 

 

2.2 Preparation of nanoFeTSPc and fMWCNT-nanoFeTSPc 

The procedure for the nanoFeTSPc was a modification of the previous work of 

using DODA for making organo-soluble metallophthalocyanines [17]. In a 

typical experiment, 123 g (0.34 mol) of CTAB was dissolved in 5 mL of 



Page 6 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

 6 

deionised water, then subjected to ultra sonication for about 1 h. 80g 

(0.08mol) of Na4FeTSPc was dissolved in 2 ml 10-3 M NaOH solution, both 

solutions were stirred with a magnetic stirrer at ~ 50 oC for 2 h. The 

resulting hot paste-like crude product was dispersed with 20 mL warm water 

(~ 40 oC), suction-filtered and washed with copious amount of warm water 

several times, and finally with pentane. The dark-colored product is oven-

dried at 70 oC, to obtain hydrophobic FeTSPc nanoparticles, abbreviated 

herein as nanoFeTSPc. 

The nanoFeTSPc integrated with fMWCNTs was obtained as follows: In 

a typical experiment, 0.002g nanoFeTSPc was dissolved in 50 mL ethylene 

glycol in a 250 ml Erlenmeyer flask. 40 mg of functionalised-MWCNTs was 

then added into the above solution and ultrasonically dispersed in the 

solution for 1 h. The solution was then transferred into a liner-rotor 16 F100 

TFM vessel, then placed in a microwave (Multiwave 3000 sample preparation 

system, 1400 Watts, Anton Paar) and heated using 1000 Watts at 190 °C for 

60 s. The resulting suspension was separated by filtration and the obtained 

residue washed with acetone and deionised water. The final product, 

abbreviated herein as fMWCNT-nanoFeTSPc, was dried at 110 °C overnight 

in an oven. For comparison, the functionalised MWCNT was mixed with the 

nanoFeTSPc in ethylene glycol, ultrasonicated, and dried as above. The 

mixed product is abbreviated herein as fMWCNT-nanoFeTSPc(mix). 
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2.3  Apparatus and procedure 

The UV–visible spectra were recorded using a Cary 300 UV–Visible 

Spectrophotometer, driven by Varian software version 3.0. Transmission 

electron microscopy (TEM) experiment was carried out using a Model JEOL 

JEM 2100F field emission transmission (FESEM) images were obtained from 

JEOL JSM 5800 LV (Japan). The energy dispersive X-ray spectra (EDX) were 

obtained using NORAN VANTAGE (USA). All electrochemical experiments 

were carried out using an Autolab Potentiostat PGSTAT 100 (Eco Chemie, 

Utrecht, The Netherlands) driven by version 4.9 of GPES and FRA softwares). 

The working electrode was a modified glassy carbon disk electrode (GCE, 

Bioanalytical systems, diameter = 3.0 mm). A Pt rod and Ag|AgCl (saturated 

3 M KCl) were used as a counter and reference electrode, respectively. 

Electrochemical impedance spectroscopy (EIS) measurements were 

performed with Autolab Frequency Response Analyzer (FRA) software 

between 100 kHz and 10 mHz with the amplitude (rms value) of the ac 

signal of 10 mV.  All solutions were de-aerated by bubbling pure nitrogen 

prior to each electrochemical experiment. All experiments were performed at 

room temperature.  

 

2.4  Electrode modification 

Prior to the experiments, the bare GCE was first cleaned using slurries of 

aluminum oxide nano-powder (Sigma-Aldrich), mirror finished on a Buehler 

felt pad and then subjected to ultrasonic vibration in ethanol and acetone to 

remove residual alumina nano-powder at the surface. The drop cast 
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technique was utilized for the modification of the electrode. 1 mg 

nanoFeTSPc was dispersed in 1 mL Ethanol containing 100 µL 5% Nafion and 

ultrasonicated for some minutes. Thereafter, 10 µL was dropped on the 

electrode, and allowed to dry in an oven at 80 oC. The electrode obtained is 

abbreviated as GCE-nanoFeTSPc. The above procedure was adopted for 

making electrodes containing the MWCNTs alone (i.e., GCE-fMWCNT), and 

the microwave-synthesized MWCNT-nanoFeTSPc alone (i.e., GCE-fMWCNT-

nanoFeTSPc) as well as the mixture of fMWCNT and nanoFeTSPc, i.e., GCE-

fMWCNT-nanoFeTSPc(mix).  

 

3.  Results and Discussion 

3.1 UV-Vis, SEM, TEM and EDX characterisation 

Unlike the highly hydrophilic FeTSPc, the nanoFeTSPc complex is 

hydrophobic, soluble in organic solvents such as the DMF, DMSO and 

ethanol. As will be seen from the following discussion, the preparation 

protocol adopted in this work led to changes in the physico-chemical 

properties of the nanoFeTSPc complex. Figure 2 shows the comparative UV–

visible spectra for the FeTSPc, nanoFeTSPc and MWCNT-nanoFeTSPc in DMF. 

The observed spectra exhibited the characteristic Q-band typical of 

monomeric species of metallophthalocyanine complexes. There is no 

detectable difference between the spectra of the FeTSPc and nanoFeTSPc, 

which is an indication that the synthetic protocol adopted here did not impact 

on the structural properties of the FeTSPc. The FeTSPc and nanoFeTSPc show 
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the characteristic absorption bands at 350 nm (B-band) and 685 nm (Q-

band). The weak band at about 430 nm is typical of a low-spin six-coordinate 

Fe(II)Pc species and are usually associated with Fe(II)-to-ligand transfer 

transition [25,26]. Hence its presence is a good indication that the central 

metal ion remains in the +2 oxidation state.  

(Figure 2) 

Figure 3 compares the FESEM images of fMWCNT-nanoFeTSPc(mix) (a) and 

fMWCNT-nanoFeTSPc (b). Evidently, nanoFeTSPc show a tendency to have a 

strong interaction with the fMWCNTs (Figure 3b) compared with the direct 

mixing of nanoFeTSPc with fMWCNTs (Figure 3a). The size of the 

nanoFeTSPc is not uniform, it varies between 20 and 60 nm. EDX spot 

analysis provided semi-quantitative information on elemental concentrations 

of the FeTSPc at different locations in the film. For example, a typical atomic 

percent gave the following result: S 24.95±0.23% and Fe 5.85±0.22%, 

which is the expected atomic ratio of Fe:4S, suggesting that the 4 sulfonate 

groups of the FeTSPc molecule are associated with the ammonium head 

groups of the CTAB via ionic exchange reaction. The EDX result also gave 

trace amount of Br (~ 7%) impurity from CTAB.  

(Figure 3) 

 

3.2 Cyclic voltammetry at electrode-immobilized Films  

Figure 4 is a comparative cyclic voltammetric evolutions of the GCE-

immobilized films of (i) fMWCNT,  (ii) nanoFeTSPc (iii)  fMWCNT-nanoFeTSPc, 
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(iv) fMWCNT-nanoFeTSPc(mix)  and  (v) bare GCE in 0.01 M PBS (pH 7.0) at 

50 mVs-1.  

(Figure 4) 

 

The voltammetric parameters in terms of  the ratio of the anodic to cathodic 

peak current heights (Ipa/Ipc), peak-to-peak separation potential (ΔEp), and 

the half-peak potential (E1/2) are summarized in Table 1.  

(Table 1) 

The results suggest electrochemical reversibility, and the presence of 

MWCNTs. Unlike the bare GCE, all the modified films showed well-defined 

redox process (I) around the 0.15 V region. This redox process for the 

nanoFeTSPc is attributed to the Fe(II)/Fe(III) redox couple. The two redox 

processes of the fMWCNT (I and II) are due to the presence of the 

phenolic/quinolic species on the edge-plane sites of the MWCNTs. Thus, the 

well-defined redox process of the fMWCNT-nanoFeTSPc is multi-electron 

process arising from the combined redox processes of the fMWCNT and 

Fe(II)/Fe(III). Also, the microwave-synthesized fMWCNT-nanoFeTSPc seems 

to show better redox process than its “mixed” counterpart, possibly due to 

the close association of the nanoFeTSPc with the fMWCNTs (see FESEM 

images). Also note that the capacitive currents (at the ≤ 0.1 V and ≥ 0.35 V 

regions) of the MWCNT-nanoFeTSPc is about twice smaller than observed at 

either the MWCNT-nanoFeTSPc(mix) or the nanoFeTSPc alone. The 

voltammetric responses shown in Figure 4 were repeatable, and showed no 
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significant change in current heights during continuous cycling, indicating 

electrochemical stability. 

 

3.3 Electrocatalytic detection of dopamine 

Figure 5 compares the cyclic voltammetric evolutions of the GCE-immobilised 

films of (i) fMWCNT, (ii) nanoFeTSPc (iii) fMWCNT-nanoFeTSPc, (iv) fMWCNT-

nanoFeTSPc(mix)  and  (v) bare GCE in 0.01 M PBS (pH 7.0) containing 10-4 

M dopamine.  

(Figure 5) 

The voltammetric parameters (i.e., Ipa, Ipc, Ipa/Ipc, ΔEp, and E1/2) are 

summarized in Table 2. The fMWCNT-nanoFeTSPc and fMWCNT-

nanoFeTSPc(mix) gave the best reversibility, but the fMWCNT-nanoFeTSPc 

showed the highest dopamine detection current.  

 (Table 2) 

The better electrochemical response exhibited by the fMWCNT-nanoFeTSPc 

film compared to the other films is ascribed to the combined activities 

nanoparticulate nature of the MWCNTs and the FeTSPc, easy diffusion of 

dopamine through the larger surface area of the film, the possibility of 

electrostatic interaction between the negatively-charged fMWCNTs and the 

positively-charged DA (DA is positively charged at pH 7.4 or in neutral 

environment [27]). There are notable differences between the 

voltammograms obtained in the buffer alone (Figure 4) and in solution 

containing DA (Figure 5). For example, the current response of the DA at the 
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fMWCNT-nanoFeTSPc is very huge (Ipa or Ipc ≈ 15 µA) compared to the very 

small current at the buffer (Ipa or Ipc ≈ 1 µA) (see Figure 5 inset). Also, 

importantly, the redox peaks of DA occurred approximately at the same 

positions of the redox couple of fMWCNT and Fe(II)/Fe(III) seen in the buffer 

solution alone. These observations clearly confirm that the voltammetric 

response of the DA is catalytically mediated by the redox processes of 

fMWCNT-nanoFeTSPc modified electrode. 

Further insights into the electrocatalytic detection of DA were obtained 

using the electrochemical impedance spectroscopy (EIS).  Figure 6 shows 

typical impedance spectra (Nyquist plots) obtained at the GCE-immobilised 

films of (i) fMWCNT, (ii) nanoFeTSPc (iii) fMWCNT-nanoFeTSPc, and (iv) 

fMWCNT-nanoFeTSPc(mix) at the equilibrium potential of ~ 0.18 V vs. Ag|AgCl 

sat’d KCl. 

 (Figure 6) 

The experimental data were satisfactorily fitted with the modified Randles 

electrical equivalent circuit (Fig 6 inset) which incorporates the constant 

phase element (CPE), the solution resistance (Rs), charge transfer resistance 

(Rct), and Warburg impedance (Zw) relating to the semi-infinite linear 

diffusion process. These values are summarized in Table 3. The most 

important parameter, Rct, is lowest at the MWCNT-nanoFeTSPc, indicating 

the higher catalytic properties of this film, and corroborating the CV data. 

Thus, all other studies carried out in this work, unless otherwise stated, were 

focused on MWCNT-nanoFeTSPc electrode. 

(Table 3) 
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Effect of scan rate () was investigated by carrying out cyclic 

voltametry experiment at constant concentration (10-4 M) of the DA in in 

0.01 M PBS (pH 7.0) using the fMWCNT-nanoFeTSPc electrode (Fig. 7a). Fig 

7b is the plot of peak current versus square root of scan rate, showing that 

the DA anodic and cathodic peaks increase simultaneously with increase in 

scan rates (scan rates ranging from 25–1000 mV s-1). The linearity of the 

plot is an indication that the electrochemical interaction between the 

MWCNT-nanoFeTSPc electrode and DA is diffusion-controlled. The plots of 

peak current, Ip for both anodic and cathodic versus square root of scan rate 

(1/2) (Fig. 6b) were linear (R2 = 0.9956 and 0.9939), signifying a diffusion-

controlled redox process. During this study, the electrode maintained stable 

voltammograms when repeated at each scan rate, proving its usability in 

aqueous solution. 

(Figure 7) 

To determine the diffusion coefficient (D) of DA on this film, 

chronoamperometric study was carried out by setting the operating condition 

at a potential of 0.2 V vs Ag|AgCl sat’d KCl. The diffusion coefficient was 

estimated from the Cottrell Equation (1): 

2
1

2
1

2
1

t

CnFAD
I


                    (1)         

where C is the bulk concentration (mol cm−3), A is the area of the electrode 

in cm2 and assuming n  2 [28], from the experimental plots of I versus t−1/2 

at different concentrations (not shown), the diffusion coefficient D of DA was 

calculated as (5.65±0.23)x10-5 cm2s-1. The D value is higher compared to 
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some other electrodes reported in the literature [29-32], indicating that this 

film permits faster DA diffusion.  

 

3.4 Concentration study 

 Figure 8 shows square wave voltammetric current responses at two different 

concentration ranges of DA; (0.0 to 5.6 μM, Fig 8a) and (0.0 to 5.36 μM, Fig 

8b).  

(Figure 8) 

From the plot of current response against concentration (insets in Fig. 8), 

linear relationships were obtained for the two concentration ranges; 0.0 to 

6.0 μM (equation 2) and 0.0 to 54 μM (equation 3): 

 

Ip / μA = (0.3100.003) [DA] / μM + (2001)x10-8 (R2 = 0.9985)   (2)  

Ip / μA = (0.3790.004) [DA] / μM + (301.53)x10-7 (R2 = 0.9984)   (3)  

 

The values of sensitivity (0.3790.004) μA/μM and limit of detection (LoD = 

3 s/m [33], where s is the relative standard deviation of the intercept, and m 

the slope of the linear current versus the concentration of DA) are 

summarized in Table 3. The LoD lower, than many other electrodes reported 

in literature (Table 4) for DA electrocatalysis and detection [34-44].  

(Table 4) 

 

3.5 Interference study 
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Ascorbic acid is the major interferent to DA in physiological fluids. Figure 9 

shows SWV current response of DA concentrations in 0.01 M PBS (pH 7.0) 

solution containing 10-2 M AA. Note that the peak potential of DA showed a 

negative shift (~ 90 mV) compared to its original peak potential of ~ 200 

mV. At the neutral pH used in this study, AA is negatively-charged while the 

DA is positively-charged [49]. Thus, this observed substantial negative shift 

in potential in the presence of AA is related to the electrostatic interaction 

between the negatively-charged AA with the positively-charged DA. The 

linear relationship between the DA peak current and concentration is: 

 

Ip /μA =(0.36 0.001)[DA] / μM + (6584)x10-8 (R2 = 0.9999)   (4)  

 

Indeed, there is no major difference between this SWV result with high 

concentration of AA and the data obtained in the absence of AA (Figure 8b) 

since the sensitivity and LoD of DA are essentially the same. This is very 

interesting considering that an efficient DA sensor is expected to detect DA in 

physiological solution at Millimolar Concentration of AA.   

(Figure 9) 

 

Conclusions 

Hydrophobic nanoparticles of FeTSPc, integrated with MWCNTs, have been 

synthesized and characterized for the detection of dopamine. The MWCNT-

nanoFeTSPc based electrode showed stable and reproducible 
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voltammograms (CV and SWV) for the detection of DA. The fMWCNT-

nanoFeTSPc modified electrode could satisfactorily detect dopamine even at 

very low concentrations in the presence of excess interfering ascorbic acid at 

physiological conditions. The proposed technique of making hydrophobic 

nanoFeTSPc is simple and could open new doors of making related 

metallophthalocyanine complexes for application as electrocatalysts for the 

detection and analysis of several analytes.   
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Table 1: Cyclic Voltammetric parameters obtained for the modified electrodes in 0.1 M PBS (pH 7.0) solution at 

scan rate of 50 mVs-1.  

 

 

 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

GCE modifiers Cyclic voltammetric parameter 

Epa 
(mV) 

Epc 
(mV) 

ΔEp 
(mV) 

Ep½ 
(mV) 

Ipa 
(µA) 

Ipc 
(µA) 

 

Ipa/Ipc 

fMWCNT 228 53 117.5 640 0.619 0.935 0.66 

NanoFeTSPc 244 56 118 150 0.069 0.078 0.88 

fMWCNT-nanoFeTSPcmix 213 144 69 179 0.094 0.081 1.16 

fMWCNT-nanoFeTSPc 211 138 73 175 1.140 1.120 1.02 
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Table 2:  Cyclic Voltammetric parameters obtained for the modified electrodes in 10-4 M DA in 0.1 M PBS (pH 

7.0) solution at scan rate of 25mVs-1. 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

GCE modifiers Cyclic voltammetric parameter 

 
Epa 

(mV) 

Epc 

(mV) 

ΔEp 

(mV) 

Ep½ 

(mV) 

Ipa 

(µA) 

Ipc 

(µA) 

Ipa/Ipc 

fMWCNT 225 119 106 172 9.60 9.80 0.92 

NanoFeTSPc 279 115 164 197 3.20 2.93 1.10 

fMWCNT-nanoFeTSPcmix 223 146 77 184.5 7.60 5.90 1.30 

fMWCNT-nanoFeTSPc 212 142 70 177 14.90 14.7  1.01 
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Table 3: Impedance data obtained for the modified BGE electrodes in 10-4 M DA in 0.1 M PBS (pH7.0) solution 

at 0.17 V (vs Ag/AgCl sat’d KCl). All values were obtained from the fitted impedance spectra after several 

iterations using the circuit in Figure 6 . Note that the values in parenthesis are the estimated percentage errors 

in fitting the experimental impedance spectra. 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

Electrode Electrochemical Impedance Spectral Parameters 

 Rs /Ω CPE / µF n Rct / kΩ 104 Zw / Ωs-1/2 

 

fMWCNT 141.30 (1.14) 3.75 (2.81) 0.85 (0.48) 7.89 (1.34) 1.81 (3.16)   

NanoFeTSPc 133.20 (1.80) 1.47 (3.04) 0.87 (0.48) 17.0 (1.53) 0.88 (3.90) 

fMWCNT-nanoFeTSPcmix 135.10 (0.99) 2.57 (3.20) 0.89 (0.50) 4.09 (1.51) 0.97 (1.30) 

fMWCNT-nanoFeTSPc 130.40 (1.61) 3.31 (5.40) 0.88 (0.84) 3.41 (2.20) 1.65 (2.41) 
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Table 4: Comparative voltammetric response of dopamine at various electrodes 

Electrode Conditions Detection 

Method 

Linear range  

(µM) 

LoD  

(µM) 
 

Ref 

MWCNT/Q/Nafion modified 

GC 

 

PBS (pH7.0) 

 

Chronoamp 

(FIS) 

 

1.4- 300 1.4 34 

SDS-MWCNT-modified GC 

 

PBS (pH5.5) DPV 20-200 3.75 35 

PPy-CR-modified GC 

 

PBS (pH 5.0) DPV 0.5-100 0.1 36 

SWCNT-Fe2O3 modified EPPG PBS (pH 7.0) SWV 3.2-31.8 0.36 37 

CoNSal/TOAB modified CP Acetate Buffer 

(pH5.0) 
 

DPV 1-100 0.7 38 

PPY doped sulphonated β-
cyclodextrin modified Pt 

 

CPB (pH 6.0) CV - 3.2 39 

LDH modified CILE PBS (pH 7.0) DPV 10-1100 5.0 40 

 

 

G-CA-OPPF screen printed 
electrode 

 

 

PBS (pH 7.0) 

 

DPV 

 

1-2500 

 

0.5 

 

41 
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Pt/Au –L- cystein hybrid  
modified GC 

 

KHP (pH 4.0) DPV 24-384 5.0 42 

Si-TiPH modified CP PBS(pH 7.5)  

 

DPV 2-60 0.043 43 

FeTSPc modified CPME PBS(pH 7.4) CV - 0.45 44 

MWCNT-nanoFeTSPc 

modified GC 
 

PBS (pH 7.0) SWV 0 – 60 0.098 This 

work 

MWCNT-nanoFeTSPc 
modified GC 

PBS (pH 7.0) SWV 20 - 51 0.35 This 
work 

      
 

MWCNT: Multiwalled carbon nanotubes, Q: Quercetin, GC : Glassy Carbon, CPB : Citrate Phosphate Buffer , 
PPY : Polypyrrole, Pt : Platinum, FIS: Flow injection System, LDH: Ni/Al layered double hydroxide, CILE: carbon 

ionic liquid Electrode, Si-TiPH: Titanium phosphate grafted on silica gel, CP: Carbon paste, FeTSPc- Tetrasulfo 
Iron Phthalocyanine, CR: Congo red, CoNSAl: Cobalt – 5- nitrosalophene, TOAB : Tetraoctylammoniumbromide, 

SDS : Sodium duodecylsulfate, G-CA: Graphite cellulose Acetate, OPPF: n-octylpyridinum hexafluorophosphate., 
SWCNT: Single walled carbon nanotubes, Fe203 : Iron (II) oxide, KHP: Potassium hydrogen phosphate , CPME : 

Carbon paste micro electrode.  
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(a) (b)

 
 
   

Figure 3:  
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Figure 4 
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Figure 5          
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Figure 7 
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Figure 9 

 
 

 
 




