Carbon supported Pd-Ni and Pd-Ru-Ni nanocatalysts for the alkaline direct ethanol fuel cell (DEFC)

Mmalewane Modibedi

ASSAF-DST-NRF 2011, Pretoria

Outline

- Background and Introduction
- Synthesis of nanocatalysts
- Characterization and Electrochemical Evaluation of the nanocatalysts
- DEFC Performance measurement in alkaline medium
- Concluding remarks
- Acknowledgements

What is a fuel cell (FC)?

What is a FC? (cont'd)

• Categorized *based on the type of electrolyte* used.

Fuel Cell Type	Current Density (mA/cm ²)	System Efficiency	Fuel Proc. Complexity	Stack Power Density	Transient Capability
Alkaline	60 - 120	35 - 50	Medium	Medium	High
PAFC	100 - 400	35 - 45	Medium	Medium	Medium
MCFC	100 - 200	45 - 55	Low	Low	Low
SOFC	100 - 300	45 - 50	Low	Medium	Low
PEMFC	400 - 900	32 - 40	High	High	High

- Electrolyte is sandwiched between anode and cathode.
- Anode catalyst: fuel oxidation
- Cathode catalyst: oxygen reduction

Proton exchange membrane Fuel cell (PEMFC): Challenges

- Catalysts: slow electrode kinetics, CO poisoning of Pt at low temp.
- Membrane: high fuel permeability, high cost

Alkaline Anion exchange membrane Fuel cell (AEMFC): Alternative

- Catalysts: use non-noble metals, faster kinetics of oxygen reduction and alcohol oxidation
- Membrane: reduced or no alcohol crossover

DAFC vs alkaline DAFC

Synthesis of nanocatalysts

reducing agent: mixture NaBH₄ and ethylene glycol Pd-Ni PdCl₂ Pd-Ni/C $\frac{Na^{+}B^{-}(OCH_{2}CH_{2}OH)_{4}}{Stir. 4h. rt}$ Carbon Carbon + NICl₂ Ru-Ni RuCl₃ Ru-Ni/C $\frac{\text{Na}^{+}\text{B}^{-}(\text{OCH}_{2}\text{CH}_{2}\text{OH})_{4}}{\text{Stir, 4h, 80}^{\circ}\text{C}}$ Carbon Carbon NiCl₂ + Pd-Ru-Ni PdCl₂ Pd-Ru-Ni/C (co-Carbon Carbon Na⁺B⁻(OCH₂CH₂OH), + **RuCl**₃ Stir. 4h. 80°C reduction) NICl₂ Low ethanol oxidation performance vs Pd+Ru-Ni/C RΠ.Ν

Na⁺B⁻(OCH₂CH₂OH)₄ Stir, 4h, rt

+

Ru-Ni

Carbon

Ru-Ni

Ru-N

Carbon

Pd + Ru-Ni/C CSIR

Characterization of nanocatalysts TEM micrographs

Binary: 7+- 0.8 nm

Ternary

6+- 0.5nm

www.csir.co.za

Modibedi et al, International J. Hydrogen Energy 36 (8) 2011 4664-4672

© CSIR 2011

XRD micrographs of nanocatalysts

Electrochemical Evaluation

cyclic voltammograms in 0.5 M NaOH

Electrochemical evaluation

cyclic voltammograms in ethanol

Concentration studies effect on current density PdNi/C PdRuNi/C

Alkaline DEFC performance: passive state

Cathode: 0.1mg/cm2 FeCo (ACTA-SpA)

Conclusions

- Pd-Ni/C and Pd-Ru-Ni/C were prepared by chemical reduction method
- nanocatalysts higher activities towards ethanol electrooxidation
- effect of ethanol concentration variation current density
- binary Pd-Ni/C performs better than ternary nanocatalyst current density

Acknowledgements

- The CSIR for funding
- Prof. Kenneth Ozoemena: Research group leader
- Dr Mkhulu Mathe: Competence center manager
- ASSAF-NRF-DST

Thank You

