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Abstract 

 

A unified approach to derivation of different families of differential equations describing the 

longitudinal vibration of elastic rods and based on the Hamilton variational principle is 

outlined. The simplest model of longitudinal vibration of the rods does not take into 

consideration its lateral motion and is described in terms of the wave equation. The more 

elaborated models proposed by Rayleigh, Love, Bishop, Mindlin-Herrmann in which the 

lateral effects play an important role are also considered. The principles of construction of the 

multimode theories, corresponding equations and orthogonality conditions are considered. 

Dispersion curves, representing the eigenvalues versus real and imaginary values of the wave 

number, of these models are compared with the exact dispersion curves of an isotropic 

cylinder and conclusions on accuracy of the models are formulated.   

 

1 Introduction 

 

In what follows, the wave displacements in the rod are described in accordance with the 

assumptions made in various vibration theories. Hamilton’s variational principle is then used 

to derive the equation or system of equations of motion corresponding to each approach. The 

method of finding the analytical solution is based on the separation of variables, the 

investigation of the eigenfunctions from the Sturm-Liouville problem, proof of two kinds of 

the eigenfunction orthogonality conditions by using the equations of the Sturm-Liouville 

problem. In the next stage the solution is assumed to be in the form of a Fourier series and is 

substituted into the Lagrangian which contains the Euler-Lagrange differential equation. The 

solution of the resulting differential equation is used together with the norms corresponding 

to the above orthogonalities to construct the Green functions. 
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2 Classical Theory: Wave Equation 

 

In this case the longitudinal displacement is assumed constant in all points along the cross 

section of the rod and is expressed as ( ),u u x t= . The general or compact form of the 

equation of motion is: 
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is the Lagrangian density, in which )(xA  is the cross-sectional area of the rod, )(xρ  is the 

mass density of the rod )(xE  is the Young modulus of elasticity and ),( txF  is the applied 

external force. 

Substituting (2) into (1) we obtain the explicit form of the equation (1): 
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The eigenfunctions follow from the corresponding Sturm-Liouville problem and satisfy two 

orthogonality conditions:  
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 The solution of the problem is given by the following expression: 
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3 Rayleigh-Love Theory 
 

The effects of the lateral displacement of the rod are taken into consideration in the kinetic 

energy by introducing the Poisson ratio η  and the components of the displacement vector 

are
1
: 

( , ), ( , ) , ( , )
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and the equation of the motion in compact form is given as: 
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with the associated boundary conditions 
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is the Lagrangian density in which: 
pI is the polar moment of inertia (

4
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2
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p
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R
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for the circular cross-section). By substituting (8) into (7) we obtain the Rayleigh-Love 

equation for the vibrating rod: 
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The eigenfunctions ( ),  1, 2,...
n

X x n =  are determined by solving the Sturm-Liouville problem 

corresponding to (9). These eigenfunctions satisfy the two orthogonality conditions: 

2

0
( ) ( ) ( ) ( ) 0

l

n m p n m
AX x X x I X x X x dxρ η ′ ′� �+ =� ��   and  

0
( ) ( ) 0

l

n mEAX x X x dx′ ′ =�   for   m n≠       (10) 

The solution of the problem is given by: 
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eigenvalues associated with the above eigenfunctions. 

 

4 Rayleigh-Bishop Theory 

 

Certain assumptions (longitudinal and transverse displacements inside the excited rod) in the 

previous theory are kept and the vector displacement is the same. But in 1952, in order to 

improve the Rayleigh-Love theory, Bishop showed the contribution of shear stiffness 

accompanying the transverse deformation while calculating the strain energy
1, 2

.  

 The general form of the equation of motion is: 
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is the Lagrangian density of the vibrating rod. By substituting (13) into (12), we obtain the 

explicit form of the equation: 

���



( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 3 2 2
2 2

2 2 2 2

second order wave equation Rayleigh correction Bishop correction

, 0       

p p

u u u u
x A x E x A x x x I x x x I x

t x x x x t x x

A x F x t

ρ ρ η µ η
� � � �∂ ∂ ∂ ∂ ∂ ∂ ∂� �

− − + −� � � �� �
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� � � � � �

− =

��������������� ������������� �������������

                                                                                                                            (14)

 

 Investigation of the Sturm-Liouville problem corresponding to equation (14), shows 

that the resulting eigenfunctions ( ),  1, 2,...
n

X x n =  satisfy two orthogonality conditions: 
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( ) ( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ( )

2

3 3 32

3
0 0

3
0 0

, , , , , ,
, , ,

             , , ,                                                                            

l l

p

l t

G x t G x t G x t
u x t A g h G x t d I g h d

t t

A
F G x t d d

ξ ξ ξ
ξ ξ ξ ξ η ξ ξ ξ

ξ ξ

ξ τ ξ τ τ ξ
ρ

� �∂ ∂ ∂� �
′ ′= + + + +� �� �

∂ ∂ ∂ ∂� � � �

+ −

� �

� �                   (16)

 

where 3,

3 2
1 3, 1

( ) ( )sin
( , , )

n n n

n n n

X x X t
G x t

X

ξ
ξ

∞

=

Ω
=

Ω
�  is the Green Function, in which 2

3,

1

Ω =
n

n

n

X

X
 are the 

natural eigenvalues corresponding to ( ),  1, 2,...
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5 Mindlin-Herrmann Theory 

 

Despite the fact that has improved the previous theories. It is necessary to emphasise the lack 

of physical clarity in interpretation of certain high-order modes, mainly independent shear 

and radial motion. In order to address this insufficiency Mindlin and Herrmann take into 

account the independent shearing deformation, radial displacement and distributed stress 

along the transversal direction
3
. According to these new ideas the displacements are 

represented by two independent functions: 
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where r  is the distance between the points along the lateral direction of the rod. 

 The compact form of the system of equations of motion is given as follows: 
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is the Lagrangian density of the rod, in which   and  ,
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constants. Substituting expression (19) into the system (18) leads to the explicit form of the 

system of equations: 
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        The couple of eigenfunctions found by investigating the Sturm-Liouville problem 

associated to the system (14), hold the following orthogonality properties for  m n≠  
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6 Multimode Theories 

 

A more accurate description of rod deformation can be obtained by increasing the number of 

possible deformation modes. The so called Mindlin-McNiven theory
4
 is one such multimode 

model. Here we consider another multimode generalisation of the Mindlin-Herrmann model 

of longitudinal vibration of a rod with circular cross-section. Assume the axisymmetric case 

where the displacements are approximated as follows: 
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According to the choice of  and i j  we can obtain a higher or lower mode of vibration of the 

rod. 
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with a set of natural boundary conditions 
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is the Lagrangian density of the rod and 
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 Substituting expression (24) into system (23) we obtain the explicit form of the 

system of equation of motion in operator form: 
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7 Comparison of Different Theories 

 

We analyse different models of longitudinal vibration of rods by drawing their frequency 

spectra and comparing them with the frequency spectrum of the exact Pochhammer-Chree 

solution
5
 of the axisymmetric problem of a cylindrical rod with free outer surface. To make 

this comparison we assume ( ) ( )
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equations are constant (say, ( )A x A const= = , etc.). In the classical case we obtain a single 

straight line ( ) Ek kω ρ= ⋅ . The frequency spectrum curve R
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where R – radius of the outer cylindrical surface of the rod (all other figures are drawn in the 

same ranges). Figure 2 demonstrates the frequency spectrum of the Rayleigh-Bishop model. 
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      Figure 1. Rayleigh-Love model.      Figure 2. Rayleigh-Bishop model.  

 

 The frequency spectrum of the Mindlin-Herrmann model is shown in Figure 3. Figure 

4 illustrates the multimode model with 1, 0i j= = . 

RRBB        MMHH  
  Figure 3. Mindlin-Herrmann model Figure 4. Multimode model ( 1, 0i j= = ) 

 

 Figure 5 illustrates the multimode model with 2, 1i j= =  and Figure 6 shows the 

exact Pochhammer-Chree model of the axisymmetric case and free cylindrical surface. 
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MMNN5     PC  
Figure 5. Multimode model ( 2, 1i j= = )      Figure 6. Pochhammer –Chree model. 

 

 

8 Conclusion 

 

In the present paper we compared the classical, Rayleigh-Love, Rayleigh-Bishop, Mindlin-

Herrmann, and multimode models of longitudinal vibration of rods with the exact 

Pochhammer-Chree solution for axisymmetric vibration of an isotropic cylinder with free 

outer surface. The classical, Rayleigh-Love, and Rayleigh-Bishop models approximately 

describe the first mode of the exact solution in a restricted “k - ω ”- domain. The Rayleigh-

Bishop approximation is more accurate, but the frequency spectrum asymptotically tends to 

the shear wave solution while the exact solution tends to the surface waves mode. It is 

explained by the hypothesis on one dimensionality in all the above approximate models. The 

Mindlin-Herrmann model also satisfies the plane cross-section hypothesis. Due to the fact 

that this model is described in terms of two independent functions the frequency spectrum 

contains two branches. In the multimode model we reject the hypothesis on plane cross-

section and obtain more branches. The higher the order of the multimode approximation the 

broader is the “k - ω ”- domain in which the effects of longitudinal vibrations of the rods 

could be analysed. 
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