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ABSTRACT 

 
A forecast system with all the components of the boundary between atmosphere, ocean, land and ice known 

to be of importance to atmospheric interannual variability modelled as fully interacting is called a fully 

coupled model system. Forecast performance by such systems predicting seasonal rainfall totals over South 

Africa is compared with forecasts produced by a computationally less demanding two-tiered system where 

prescribed sea-surface temperature (SST) anomalies are used to force the atmospheric general circulation 

model. Two coupled models and one two-tiered model are considered here, and they are respectively the 

ECHAM4.5-MOM3-DC2, the ECHAM4.5-GML-cfsSST, and the ECHAM4.5 atmospheric model that is 

forced with SST anomalies predicted by a statistical model. The 850 hPa geopotential height forecast fields 

of the three systems are statistically downscaled to South African Weather Service district rainfall by retro-

actively predicting 3-month seasonal rainfall totals over a 14-year retro-active test period from the 1995/96 

to the 2008/09 rainfall season. Forecasts are made for lead-times of up to 4 months and probabilistic 

forecast performance is evaluated for three categories with the outer two categories respectively defined by 

the 25
th

 and 75
th

 percentile values of the climatological record. The resulting forecast skill levels are also 

compared with levels obtained by downscaling forecasts produced by forcing the atmospheric model with 

observed SST in order to produce a reference forecast set. Forecasts produced by the coupled systems are 

generally outperforming the forecasts produced by the two-tiered system, but neither one of the two 

systems outscore the reference forecasts, suggesting that further improvement in operational seasonal 

rainfall forecast skill for South Africa is still achievable. Forecast verification results further supports the 

notion that predicting for the middle category has very limited skill notwithstanding the fact that in this 

study the middle category is defined by 50% of the climatological record.  

 

 

1. INTRODUCTION 

 

Sea-surface temperature (SST) anomalies, 

themselves a result of coherent atmosphere-

ocean interactions, have already been found as a 

probable cause of low-frequency variability in 

the atmosphere. Moreover, SST anomalies are 

arguably of greatest significance on the seasonal 

to interannual time scales and their slow 

evolution influence seasonal mean weather 

conditions (Goddard and Mason, 2002). 

Therefore, estimation of the evolution of SST 

anomalies, which are often relatively predictable, 

and subsequently employing them in 

atmospheric general circulation models 

(AGCMs), potentially provides means of 

generating forecasts of seasonal-average weather 

(Graham et al. 2000). Such a so-called two-tiered 

procedure to predict the outcome of the rainfall 

season has been employed in South Africa for a 

number of years already.  

 

The advent of fully coupled ocean-atmosphere 

models (e.g. Stockdale et al, 1998), or one-tiered 

systems, promised improved seasonal forecasts 

since in theory coupled models should eventually 

outperform two-tiered systems because the 

former is able to describe the feedback between 

ocean and atmosphere while the latter assumes 

that the atmosphere responds to SST but does not 

in turn affect the oceans (Copsey et al., 2006). 

This notion will be tested here by comparing the 

seasonal rainfall forecast performance of a two-

tiered system with forecasts from fully coupled 

systems. For both two-tiered and fully coupled 

systems the same AGCM will be used. 

 

 

2. DATA AND GLOBAL MODELS  

 

The 3-month seasonal rainfall data used for the 

downscaling are calculated from the district 

rainfall data set of the South African Weather 
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Service, and comprises of 94 evenly distributed 

locations across South Africa. This data set 

consists of monthly data from 1951 to 2009.  

 

All of the global model data are obtained from 

the data library of the International Research 

Institute for Climate and Society (IRI). The 

AGCM data used is produced by the ECHAM4.5 

(Roeckner et al., 1996) and consists of two sets. 

The first set (available from January 1950 to 

present) is produced by forcing the ECHAM4.5 

with observed SST and consists of 24 ensemble 

members, and the second set (available from 

January 1957 to July 2008), also consisting of 24 

ensemble members, is produced by forcing the 

model with SST anomalies that are forecast 

using constructed analogue SST (Van den Dool, 

2007). Forecast data from two coupled models 

are also used and their ocean models are 

respectively the MOM3 (Pacanowski and 

Griffies, 1998) directly coupled to the 

ECHAM4.5 (DeWitt, 2005), and a slab mixed 

layer (denoted ECHAM4.5-GML). Each of these 

forecast sets consist of 12 ensemble members, 

and the data are available from January 1982 to 

present. 

 

There are four forecast lead-times considered. 

For the two-tiered and the ECHAM4.5-GML 

systems, forecasts are produced near the 

beginning of the month, and for the ECHAM4.5-

MOM3 system near the end of the month. A 1-

month lead-time for the former two models 

implies that there are about three weeks from the 

issuance of the forecast to the beginning of the 

forecast season. For example, a 1-month lead-

time forecast for the December-January-

February (DJF) season is produced at the 

beginning of November, 2-month lead-time 

forecasts are produced early October, 3-month 

lead-time forecasts early September, and 4-

month lead-time forecasts early August. For the 

ECHAM4.5-MOM3 system, there are at least 4 

weeks between the production of the forecast and 

the first month of the forecast season. For 

example, DJF forecasts at a 1-month lead-time is 

produced near the end of October, 2-month lead-

time forecasts at the end of September, 3-month 

lead-time forecasts at the end of August, and 4-

month lead-time forecasts at the end of July.  

 

 

3. MODEL OUPUT STATISTICS 

 

Model output statistics (MOS; Wilks, 2006) 

equations are developed here because they can 

compensate for systematic deficiencies in the 

global models directly in the regression 

equations. The reason why these model errors 

can be overcome is because MOS uses predictor 

values from the global models in both the 

development and forecast stages. 

Notwithstanding, the selection of the appropriate 

model field require careful consideration: Raw 

model forecast of rainfall that is a result of, for 

example, the interaction between atmospheric 

circulation and topography is poorly resolved, 

and may therefore not be a good predictor of 

rainfall observed at ground level. Rainfall fields, 

even when totalled over a season, are noisy, and 

normally contain structures on spatial scales well 

below those resolved by the models. However, 

variables such as large-scale circulation are more 

accurately simulated by models than rainfall and 

should therefore be used instead in a MOS 

system to predict seasonal rainfall totals 

(Landman and Goddard, 2002).  

 

The MOS equations are developed by using the 

canonical correlation analysis (CCA) option of 

the Climate Predictability Tool (CPT). This tool 

was developed at the IRI 

(http://iri.columbia.edu). The forecast fields from 

each global model used in the MOS are restricted 

over a domain that covers an area between the 

Equator and 45°S, and 15°W to 60°E. Empirical 

orthogonal function (EOF) analysis is performed 

on both the predictor (global model fields) and 

predictand sets (district rainfall) prior to CCA, 

and the number of EOF and CCA modes to be 

retained in the CPT’s CCA procedure is 

determined using cross-validation skill 

sensitivity tests.  

 

In order to minimize artificial inflation of 

forecast skill, the downscaled forecast 

performance of the individual models should be 

verified over a test period that is independent of 

the training period and should involve evaluation 

of predictions compared to their matching 

observations excluding any information 

following the forecast year. Such a system 

mimics a true operational forecasting 

environment where no prior knowledge of the 

coming season is available. For the example of 

DJF rainfall, the models are first trained with 

information from 1982/83 and leading up to and 

including 1994/95. The seasonal rainfall of the 

next year (1995/96) is subsequently predicted 

using the trained models. The various MOS sets 

of equations are subsequently retrained using 

information leading up to and including 1995/96 

to predict for 1996/97 conditions. This procedure 

is continued until the 2008/09 DJF rainfall is 



predicted using MOS systems trained with data 

from 1982/83 to 2007/08, resulting in 14 years 

(1995/96 – 2008/09) of independent forecast 

data. In estimating the skill in predicting 

seasonal rainfall totals over South Africa, the 

observed and predicted fields are separated into 

three categories defining above-normal, near-

normal and below-normal seasonal rainfall 

totals. However, these categories are not equi-

probable here since the above- and below-normal 

threshold values respectively represent the 75
th
 

and 25
th

 percentile values of the climatological 

record.  

 

The distribution of individual ensemble members 

is supposed to be able to indicate forecast 

uncertainty. However, only a finite ensemble is 

available (12 or 24 members depending on the 

available global model data) suggesting that the 

forecast distribution may be poorly sampled or 

differently sampled owing to the difference in 

the available ensemble sizes – and so the 

uncertainty associated with the forecasts has to 

be estimated. Probabilistic MOS forecasts for 

each of the 14 retro-active years are obtained 

here from the error variance of the cross-

validated predictions using the ensemble mean 

(Troccoli et al., 2008) for each of the various 

training periods. Cross-validation is performed 

using a (large) 5-year-out window, which means 

that 2 years on either side of the predicted year is 

omitted, in order to minimize the chance of 

obtaining biased results. 

 

Seasonal climate is inherently probabilistic, and 

so seasonal forecasts should be judged 

probabilistically. The forecast verification 

measure presented here is the relative operating 

characteristic (ROC; Mason and Graham, 2002). 

ROC applied to probabilistic forecasts indicates 

whether the forecast probability was higher when 

an event such as a flood season occurred 

compared to when it did not occur, and therefore 

identifies whether a set of forecasts has the 

attribute of discrimination.   

 

 

4. RESULTS  

 

A ROC graph is made by plotting the forecast hit 

rates against the false alarm rates. The area 

beneath the ROC curve is used as a measure of 

discrimination and is referred to as a ROC score. 

If the area would be ≤ 0.5 the forecasts have no 

skill, and for a maximum ROC score of 1.0, 

perfect discrimination has been obtained. Figure 

1 shows the ROC scores for the three forecast 

categories for DJF rainfall totals for each of the 

individual downscaled models as calculated over 

the 14-year test period. On the figure the ROC 

scores for the two coupled models and AGCM is 

shown for the three categories and for the four 

lead-times, together with the ROC scores from 

the simulations that used observed SSTs to force 

the AGCM (the reference scores).  

 

 
Figure 1. ROC scores for the prediction of 

DJF rainfall totals over South Africa. The 

scores of the fully coupled and AGCM 

downscaled forecasts are shown for each lead-

time (solid and dashed lines), as well as the 

scores for the AGCM simulation runs (black 

bar). 

 

 

For the most part ROC scores associated with the 

coupled models are the highest, especially for the 

prediction of wet conditions over South Africa 

during DJF. Notwithstanding, neither one of the 

coupled or two-tiered systems outscore the 

reference forecasts, suggesting that further 

improvement in operational seasonal rainfall 

forecast skill for South Africa should still be 

achievable. The middle panel shows scores when 

predicting for the near-normal category defined 

by 50% of the climatological record. These 

verification results support the notion that 

predicting for the middle category has limited 



skill since ROC scores for most of the lead-times 

are near or below 0.5 

 

 

5. DISCUSSION AND CONCLUSION  

 

Centres producing operational seasonal forecasts 

for South Africa need to know whether or not 

modelling research should be directed towards 

more expensive coupled models as opposed to 

more generally used two-tiered operational 

forecasting systems. This will be the case when a 

more demanding (in a computational and 

resource based sense) coupled system outscores 

a two-tiered system, which has been shown to be 

the case here for DJF rainfall. However, when 

skilful SST forecasts are used two-tiered systems 

may perform at least equally well as coupled 

systems as has been demonstrated by the 

simulation case when the AGCM was forced 

with observed SST. In conclusion, coupled 

models perform skillfully over South Africa and 

may even be as skilful as an AGCM forced with 

perfect SST. This paper has therefore 

demonstrated that it certainly is feasible to direct 

some of the available research and modelling 

funds as well as effort towards the development 

of operational seasonal forecasting systems that 

incorporate fully coupled models.  
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