Some geological and geophysical aspects in electric rock breaking

Dr G Henry, Dr D Johnson*, Mr H Ilgner and Mr S Letlotla Centre for Mining Innovation (CMI) 31 August 2011

Introduction

CMI Carlow Road Campus

Rock breaker (non-explosive; ore processor) 3D scanner - mapping Roof sounding device Underground navigation

CMI focus areas

Real time risk management

Human factors in mining

Novel mining methods autonomous narrow reef miner (<50 cm high)

© CSIR 2011 Slide 2

How rock breaks

Elsburg reef samples

Under tension

tensile strength – force needed to pull the rock until it fails and fractures develop

Under compression

compressive force applied to a rock until failure is induced and the rock fractures

Important: rocks are much weaker under tension (10 times) than under compression

From: Ilgner (2006)

Rock-breaking methods

Great Noligwa Mine – air drill

- (1) Localised force inclined to a rock face e.g. chisel bit
- (1) Compressive stress applied parallel to a free face

High stresses behind free face Thermal expansion

- (2) Forces inside a cavity drill and blast method
- (3) Compression across a rock fragment secondary rock-breaking comminution

Cook and Joughin, 1970

Why non-explosive rock breaking?

Health and Safety – underground environment is noisy and dusty; away from high risk areas

Labour intensive and time consuming – long mining cycle

Integrate with autonomous narrow-reef miner

Research work in non-explosive rock breaking

Impact ripper (Willis et al., 2001) Water pulse rock breaker

Cheapest – drill and blast

Other technologies

Impact ripper

Drilling out the reef

Mini-disc cutting

Water pulse rock breaking

Controlled foam injection

Diamond wire cutting

Electrical methods

Electrical methods in rock breaking

Types

- (a) Alternating Current low voltage (700-1200 V), high frequency (250 kHz)
- (a) Direct Current very high voltage (100-400 kV)
- (a) Submerged discharge (under water) electrode combustion plasma blasting pulsed discharge streams
- (d) Thermal methods rock melting

Other methods – submerged discharge, rock melting (plasma)

Rock melting drill

Plasma blasting system

Previous research work in electric rock breaking by CSIR

Marx generator transformer

High voltage

From: Ilgner (2006)

Single –shot high voltage electric rock breaking (2003)

230 kV fast ramp up, (about 1 MV / µs)

48 mm diameter round core sample: split right through the middle by plasma

www.csir.co.za © CSIR 2011 Slide10

Present research

Neutron tomography image core

AIM: to understand the science behind electric rock breaking

Experiments

AC test rig - low voltage – high frequency

range of different rock types

Numerical modelling no robust models exist at present

Will be novel if successful

Test Rig

Johannesburg

Pretoria

Experimental setup

ELECTRIC ROCK BREAKING EXPERIMENTAL SETUP

© CSIR 2011 Slide 13

Rock types tested

Main Reef Leader conglomerate

Witwatersrand conglomerate reef quartz, pyrite

Bushveld Complex pyroxenite and chromitite pyroxene, feldspar, chromite, sulphide

Rooiberg tin ore carbonate, feldspar, cassiterite, sulphide

Kimberlite olivine, pyroxene, serpentine

Some results

Ventersdorp Contact Reef

Infrared thermal photography - Sample 114

Witwatersrand conglomerate

Even heating

Rock fracture

Theories of why and how rocks break using electricity

Ongoing research

Very high voltage (DC)

analogous to lightning strikes

Lower voltage (AC)

Idea -

Rock need to be "suitably resistive" to absorb electrical power to create "hot spots"

rapid thermal expansion leads to cracking

www.csir.co.za © CSIR 2011 Slide 17

Geological factor – rock type (mechanical properties)

Common rock-forming minerals

quartz feldspar carbonate pyroxene amphibole olivine

Ore mineral (minor components)
sulphides (pyrite, chalcopyrite, galena)
oxides (cassiterite, haematite)

Bulk compressive strength tensile strength

From: iRocks.com (9 cm high)

www.csir.co.za

© CSIR 2011 Slide 18

Geophysical factors

Electrical conductivity/ resistivity

individual minerals

bulk rock high variability

Dielectric constant

R_L Electrode contact resistance R_I--R_N Ohmic resistance in the rock

L Inductance

C Capacitance

Numerical modelling

Using FLAC – early stage (top)

Late stage (below)

Purpose – quantify at least one mechanism that would lead to electric rock breaking

Conclusion

Geological and geophysical factors play an important role in any rock-breaking techniques using electrical power. Our research is towards understanding the science behind electric rock breaking.

This understanding would lead to a practical method to break rocks using electricity that is comparable in energy usage as drilling and blasting.

Thank you.

Questions?

