Trajectory behaviour at different phonemic context sizes
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Abstract—We propose a piecewise-linear model for the temporal trajec-
tories of Mel Frequency Cepstral Coefficients during phone transitions.
As with conventional Hidden Markov Models, the parameters of the
model can be estimated for different phonemic context sizes, but our
model allows for an intuitive understanding of the impact of context size.
We find that the most detailed models, predictably, match the coefficient
tracks best — but when data scarcity forces us to use less detailed models,
different styles of context modelling (clustered triphones versus biphones)
have complementary behaviours. We discuss how this complementarity
may be useful for data-efficient ASR.

I. INTRODUCTION

Hidden Markov Model (HMM)-based speech recognition systems
are notoriously dependent on the availability of large amounts of
training data. This data is also required to be phonetically rich:
it is not sufficient to include a large number of samples of each
monophone; these monophones must appear in the required contexts.

Modelling larger acoustic contexts (increasing the number of
phonemes considered to the left and right of the unit being modelled)
exponentially increases the number of acoustic models required.
And as the number of models increases, so the need for additional
data is increased. At a context size that is large enough to only
combine models that are indeed similar, data typically becomes too
sparse for accurate model estimation. To deal with this data sparsity,
typical HMM systems employ tree-based clustering. States that are
acoustically similar are grouped together, ensuring that adequate
model estimation can be accomplished.

The success of triphones is at least partly a consequence of their
flexibility near phone transitions. Given the physical constraints of
the human vocal tract, a transition of one phonetic unit to the next is
bound to be coupled by co-articulation. We are therefore interested
in understanding whether some triphones display similar acoustic
changes during phone transitions, and how well this behaviour can be
approximated by smaller, less data-hungry units (such as biphones).

Since the co-articulation effect varies over time, we are particularly
interested in understanding whether temporal information near phone
transitions show systematic effects within different groupings of
triphones. If this is the case, such information can be used to
better predict the behaviour of rare or unseen triphones, based on
the behaviour of similar triphones or even units with less context
(biphones or monophones).

In this work, we present a model that can be used to isolate the key
elements of the acoustic changes that occur in each phone-to-phone
transition, We first show that trajectory behaviour in general can be
modelled this way (that the different transitions in a set of acoustic
data can be described with the new model). We then analyse transition
behaviour by grouping the transitions in different ways and evaluating
the accuracy with which these constrained models are still able to
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represent our data. We also discuss how the result of this analysis
points to alternative methods that can be considered for constructing
multi-unit models.

This paper is structured as follows: We discuss some related
research in section II. Section III describes the specific techniques
we apply to model and analyse temporal characteristics of phone
transitions. We then describe our experimental set-up in section IV
and present the results in section V. This is followed by a summary
of our main observations in section VI

II. BACKGROUND

The importance of contextual modelling has long been understood
[1]. In particular, tying triphones at the state level using a phonetic
tree is considered an effective modelling approach, and is standard
practise when building high-accuracy speech recognition systems [2],
[3]. However, when two acoustic units are clustered together (to
compensate for data sparsity), the scores returned by the acoustic
model will always be the same, even when these units may be quite
dissimilar acoustically. In response to this, Chang and Glass [4]
proposed a back-off discriminative acoustic modelling method that
incorporates broad phonetic classes. Their model requires specific
acoustic-phonetic knowledge to subdivide the classification problem
into sub-problems, and augments the overall acoustic scores with that
of the sub-problems. A fully automated state-based Eigentriphones
modelling approach is shown to be just as successful [5]. This
procedure attempts to retain acoustic discrimination using the careful
adaptation of HMM parameters.

Apart from the size and grouping of contexts, another key element
of contextual modelling relates to the inclusion of temporal infor-
mation in the model. When building HMM-based systems, first and
second derivatives of the underlying features (such as MFCCs) are
typically added to the set of features being modelled [3]. This results
in a simple but effective technique for the modelling of temporal
information.

A more explicit modelling of temporal effects may be required
for accurate representation. Evidence from the speech production
process suggests the existence of underlying articulatory trajectories
in speech data [6]. As a result, much research in spoken language
technology intends to incorporate structures of human speech into
current statistical speech recognition systems [7].

Attempts at explicit modelling of temporal trajectories have
achieved limited success [8). Generally, these approaches attempt
to overcome specific limitations of the HMM modelling paradigm
(especially the state-based independence assumption), by either in-
corporating explicit trajectories within the HMM framework [9] or
by defining longer-term variable-length segmental models [10].



While there is an extensive field of literature related to improving
speech recognition accuracies for well-resourced languages, the im-
plication of temporal modelling when working with systems trained
on limited amounts of data, is not so clearly understood. [7] seem
to obtain rather promising results, as do [11], who show that frame-
based feature trajectories are informative on the nature of transitions
for specific phone classes.

III. APPROACH

At the heart of our approach to analysing trajectory behaviour
is a linear trajectory model that captures temporal changes (at the
cepstral level) for every phone transition. This model can be applied
to different phone classes and at various contextual levels, and the
differences between the modelled trajectories and the actual speech
data measured. By constraining the model in different ways (grouping
certain transitions as if they were similar) and evaluating the effect
this has on the accuracy of the model, we gain an understanding of
the acoustic changes that take place during phone transitions.

The trajectory tracking technique consists of the following main
elements: (1) Preparation of the input features used to describe each
transition, (2) linear trajectory estimation using a linear trajectory
model, (3) calculation of reference values as required by this model,
and (4) model evaluation and analysis.

A. Feature preparation

HMM-based ASR systems encode the speech-signal using frame-
based feature vectors such as Mel-Frequency Cepstral Coefficients
(MFCCs) or Linear Predictive Coding (LPC) coefficients. We utilise
MFCCs in the current analysis but other frame-based features would
also be applicable within the general framework described here.

As a first step towards trajectory parameter estimation, phone
transition boundaries are obtained using an ASR system in forced
alignment mode. Guided by the estimated phone boundaries, we
define specific phone transitions by segmenting all of the phone
examples at their centres (which are expected to be the most sta-
tionary part of each phone) effectively yielding diphone units. These
phone transition units can then be described by tying together their
parameters at the mono-, bi- or triphone level. This results in a set
of labelled transitions for each unit-to-unit pair.

B. Linear trajectory estimation

The authors of [11] showed evidence for the different types of
co-articulatory mechanisms at work for various phone transitions,
modelled using MFCC features. Quite generally, however, plots of
the 13 MFCCs for the frames of phone transitions seemed to suggest
a definite change near the phone transition, and very little change near
the centre of phones. Consequently, analysing cepstral trajectories for
these transitions should be tractable using simple linear models.

In order to model this behaviour we use piece-wise linear approx-
imation. Three line pieces are used to fit the cepstral values of a
single MFCC coefficient stream, using least-squares optimisation, We
restrict the start and end line segments to be constant values (linear
with zero slope), and model the transition between these two values
with a straight line of variable slope. Furthermore, we require the
constant line segments (the start and end line pieces) to be associated
with at least @ frames serving as trajectory anchor points, with § = 1
in the current work.

Estimation of the centre line piece is not explicitly associated with
any data points. Rather, we utilise the zero order anchor points and
draw the first order line between the end and starting indexes of the
two anchor points. We search for these indexes by optimising the

squared error SE across all three line segments. This also yields a
single error value for the specific approximation.

Finally, in order to compare the “goodness of approximation™ for
different options we calculate the square errors (SEy) followed by
the mean square error (M S Ecoer):
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where t{zy) is the trajectory value at frame z; and |t(zs) — ys|? is
the squared residual.
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Once optimised, this model then provides the following values:

refstor:  parameter value at initial stable point
fstart  frame at start of the transition
fena  frame at end of the transition
refeng  parameter value of final stable point 3)

As these are calculated for each coefficient individually, and can
be calculated over every single transition individually, the resulting
set of parameters can be very large. (Since each of these parameters
are independent measurements, we denote them as separate scalar
values.) Our next step is to constrain the model by requiring that
different types of units should share the same behaviour for at least
their stable points.

C. Reference values

In the unconstrained model, every single transition can be modelled
separately. When we start constraining the model, we require that
related transitions share the same parameters at their stable points.
Specifically, we require that the refstart and refenq values be exactly
the same for all clustered transitions, even though the timing values
(fstart, fend) may be quite different per transition. We refer to these
constrained values as reference values, and calculate them at different
contextual levels.

In our approach to reference-value estimation, we distinguish
between two main types of reference values: (1) static and (2)
dynamic. For static reference values we calculate the mean of the
normalised feature vectors over all of the specific phone units in the
training corpus. We utilise these values to test our initial models.

Dynamic reference values are estimated after a first iteration
of trajectory modelling. Once trajectories have been fitted to all
transitions, we calculate the reference value means over only those
frames associated with trajectory stable points. Since the essence
of the initial trajectory model is to identify where the acoustic
change takes place, the associated trajectory stable point values serve
as a more accurate approximation of the reference values. This is
also closer to the behaviour of a traditional HMM, which estimates
parameters based on separate states (with a 3-state HMM modelling
the approximate left, middle and right of a unit).

Reference values are not only calculated at different contextual
levels, but can also be calculated for different groupings of units.
For example, all nasal-to-vowel transitions can be grouped together
and a single reference value calculated. In the same way, the clusters
obtained during triphone tying can also be analysed in a grouped
structure.



D. Evaluation and analysis

From the main parameters listed in section III-B, various other
values can be calculated. Examples include the slope of transition
(the gradient of the first order line), the duration of the slope (fena —
Fstart), and the size of the transition (refens — Tefstars).

In this work, we are interested in determining how well different
approaches to trajectory estimation compare with respect to the actual
seen MFCC feature vectors of specific classes. In order to do so, the
MSE measurement (MSFE¢rqns) of the trajectories is particularly
useful. This value represents a direct comparison of the model and
the training data. The M SE;, .., measurement can be calculated as
follows:
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where SEy., is the squared error for a specific frame £, a specific
coefficient ¢ and a specific sample s.

Every transition generates F' squared errors (one for every frame)
and there are C = 13 of these SE parameter streams (one for every
MFCC coefficient stream). To analyse the parameters for all of the
examples (S) of a given class, the mean and standard deviation is
calculated for the binned trajectories of the same MFCC coefficients.

Lastly, to represent the entire set of transitions with a single error
value, we simply sum the contributions from each class:

r
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where M SFEirqns are the mean trajectory MSE estimated for S
examples of a contextual class and a total of T classes.

IV. EXPERIMENTAL SET-UP

A. Overview

For the experiments reported on in this paper, we analyse all of
the phone transitions for a set of speech data from a single speaker.
As a first step, we track the trajectories for all the training data
and estimate the initial approximations. Importantly, these initial
trajectories provide us with a timing value (at the start and end
point of every transition) as described in section III-A. We use these
trajectory alignments for all subsequent trajectory estimations with
reference values of different context sizes (only dynamic reference
values are discussed here).

B. Speech data

The speech data we use was collected specifically for this analysis
in order to provide a large corpus of high quality speech of a single
speaker. Only considering a single speaker allows us to focus on
contextual effects first, without other speaker specific differences con-
taminating the results. Based on existing balanced prompt lists [12],
we recorded about 2000 short Afrikaans prompts (between 1 to 5
words in length) of a male speaker. (The use of balanced prompt
lists ensures sufficient contextual variation.)

A combination of automated and manual review resulted in low
quality audio being discarded, and the selection of 1758 of these
utterances for analysis. At a total duration of approximately 1.5 hours
this corpus produces a higher triphone coverage for a single speaker
than is typically available from ASR corpora.

C. Speech segmentation

Our trajectory analysis relies on the identification of accurate
phone transition boundaries. We obtain automatic alignments using a
standard HMM-based ASR system trained using all 1758 utterances
of training data. For this purpose we build a context-dependent
cross-word phone recogniser using tied triphone models. 39 MFCC
features are used, which include 13 MFCCs and their first and second
derivatives, MFCC parameters are computed across a window size
of 25ms and a frame rate of 10ms is employed. Each triphone
model has 3 emitting states with 7 Gaussian mixtures per state and
a diagonal covariance matrix. Cepstral Mean Normalisation (CMN)
and semitied transforms are applied. Using a flat-phone grammar,
10-fold cross-validation yields a mean phone accuracy of 90.8%. A
forced alignment is performed to output triphone model alignments.
The model alignment labels are then converted to the base phone
label sequence (the actual phonemes observed in the training data)
and used together with the timing information obtained from the
alignment to provide the HMM-based phone transition boundaries
for speech segmentation.

D. Features for trajectory tracking

Once the transition boundaries have been obtained, MFCCs are
extracted for trajectory tracking. These are similar to the ones used
during segmentation, except that (1) a 5ms frame rate is used to
provide better time resolution, (2) only the raw 13 MFCC coefficients
are used and not any derivatives, and (3) the MFCCs are normalised
to have zero mean and unit varance. (For each feature vector,
normalisation is performed by subtracting the mean and dividing by
the standard deviation of the unprocessed feature values.)

Incorporating the phone boundary alignments from above, we
associate each of the generated feature vectors with corresponding
contextual labelling at the triphone level.

E. Identity-based clustering

Once the transitions have been obtained and labelled, reference
values can be calculated by grouping units in different ways, and the
corresponding MSEs calculated, We experiment with the grouping of
phones based solely on their identities: combining all monophones,
combining all biphones and combining all triphones in three different
experiments.

To place these experiments in perspective, we also analyse the
triphone clusters obtained through acoustic clustering, as described
below.

FE Tree-based clustering

During ASR system training, tree-based clustering is performed
on a state level using phonetic trees. The system described in section
IV-C performs state clustering for each of the emitting states of a
specific triphone.

At every node a binary decision is taken based on a context-specific
question. For our purposes we include all left and right phone contexts
as possible questions. The specific question that is then chosen locally
during tree building, maximises the likelihood of the training data
given the final set of state tyings [13]. Depending on the answers
to these questions a pool of states is successively split. Obtaining
meaningful clusters is accomplished using two standard thresholds:
(1) Minimum log likelihood T'B and (2) the occupation count RO.

The clusters we analyse have been created using optimized thresh-
olds. We perform flat-phone recognition for the single mixture models
after tree-based clustering and select values RO = 24 and TB = 80.



(A good balance for the influence of both parameters is obtained at
this point.)

After the tree-based clustering step a set of tied models is gener-
ated, The HMM-model structure allows each 3-state triphone model
to be identified with unique context labels. We analyse the model
structure and perform a look-up on all of the seen triphone labels. It
is then possible to track the state-specific model assignments trough
the state-specific group labels, previously assigned during tree-based
clustering. We use these same labels as the cluster names. Lastly it is
also necessary to consider the cluster state (since state clustering is
performed for each of the emitting states of a base phone separately).
We select only the cluster labels corresponding to the first and last
emitting states and determine the pool of triphone labels associated
with each of these clusters.

V. RESULTS

In order to determine the overall effectiveness of the trajectory
tracking technique, we calculate the M.SEgiobq1 values for different
options of reference values. Specifically we analyse (1) the overall
accuracy of approximation, (2) the accuracy of approximation for
specific transitions, and (3) trends observed for broad transitional
classes.

A. Overall accuracy

Reference value n 2
No ref 0.110 | 0.036
Triphone 0.339 | 0.073
Triphone Tree-based | 0.392 | 0.097
Biphone 0.433 | 0.089
Monophone 0.503 | 0.117
TABLE 1

Overall M SEgiopar measurements for different trajectory estimation
options calculated over the total number of 38001 phone transitions

The values of Table I show the mean p and standard deviation
o, when the 38001 M SE;rqns measurement values (one for every
phone transition) is reduced to a single value by taking the mean
(M SEgisba1) as described in section I11-D.

The first value presented (‘“No ref”) lists the error observed if stable
points are allowed to be estimated in an unconstrained fashion. This
produces a very low overall MSEgisba1, Which indicates that the
piecewise linear approximation used for transition modelling, is on
average effective in capturing trajectory behaviour.

The replacement of the stable points with dynamic reference values
at the triphone level yields the second most accurate representation of
the training data. However, generalising over trajectories does come
at a price. Here the additional error increase is roughly as much
when moving from trajectory-specific to triphone-reference values as
stable points, compared to only moving from triphone to monophone
reference value levels.

As expected, trajectories estimated using the tree-based reference
values outperform the biphone reference values. Interestingly, though,
the tree-based values seem to be much worse than triphone error
values (they are closer to biphones), when we have sufficient triphone
examples. We now investigate this effect further.

B. Transition accuracy

The same general measurement can be performed for specific tran-
sitional classes. We obtain the M SF;, qns measurement of section
III-D for the examples of a specific phone transition. For simplicity,
we also consider only monophone transitional classes (diphones).
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Fig. 1. Comparing trajectory tracking using M S Etrans value measurements
for the same phone transitional classes of triphone and biphone reference
values
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Fig. 2. Comparing trajectory tracking using M S E¢rqns value measurements
for the same phone transitional classes of tree-based and biphone reference
values

(Note that our selection of reference values for biphone and triphone
trajectory estimation does take into account the phone context of a
particular phone transition to make adequate selections.)

Performing these measurements, we generate a single M.SE¢rans



value per transitional phone class. Figure 1 shows a scatter plot of
these values when comparing transitional phone classes for triphone
and biphone reference values. (Only transitional classes with at least
10 phone examples are selected, to ensure adequate estimation.) The
scatter plots help us to (1) compare the specific phone transitional
classes on a one-to-one basis and (2) observe the amount of correla-
tion (shape) of these comparisons. It is apparent that all transitions
for triphone reference values fit the speech data better than the same
transition using biphone reference values for trajectory estimation.
We also observe a correlation (p = 0.783) between the biphone and
triphone data points. Importantly, this indicates that the influence of
broader phonetic effects is preserved when moving from the triphone
to the biphone level.

In contrast to Figure 1, Figure 2 shows the scatter plot when com-
paring the same transitional classes, but for biphone and tree-based
reference values. The correlation drops significantly (p = 0.571),
indicating that less of the broader phonetic effects seen between the
triphone and biphone cases are preserved. Furthermore, while the
overall measurements for the tree-based reference values outperform
the biphone level (see also Table I), this is clearly not the case for
all phone transitional classes.
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Fig. 3. Good correlation between biphone and triphone reference values for
transitions where biphone reference values outperform free-based reference
values when tracking trajectories using M SE:-qns value measurements

In Figures 3 and 4 we report specifically on the biphone values that
outperform the tree-based reference values for trajectory estimation.
Only transitional classes are selected, where the difference between
triphone and biphone reference values are small (For the purposes of
this paper we calculate the difference between the global measure-
ments for triphones and biphones and use this value as a threshold).
As a last constraint the biphone error value also has to be less than
that of the tree-based reference trajectories (Table II).

We observe that the biphone values which are closest to the
triphone values and improve on the tree-based errors are highly
correlated, showing strong relationships for the within-class etror for
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Fig. 4.  Additional mismatch when comparing biphone and tree-based
reference values for transitions where biphone reference values outperform
tree-based reference values for trajectory tracking using M S FEirqns value
measurements

Broad class Trans Tri Bi Tree Num
Frames
vowels-diphthongs y_i@ | 0.178 | 0.248 | 0.381 2275
nasals-vowels m_u: | 0.211 | 0.301 | 0.324 2171
vowels-approximants | @_j | 0.231 | 0.311 | 0.328 4901
vowels-fricatives iv 0.233 | 0.285 | 0.286 5122
vowels-diphthongs i_i@ | 0.234 | 0.262 | 0.345 9334
vowels-fricatives y_8§ 0.234 | 0.307 | 0.361 3952
TABLE I

Transitions where biphone reference values perform better than tree-based
reference values (Transition phone labels in SAMPA)

these cases. When these same transitional classes are shown for the
biphone comparison with the tree-based errors (Figure 4), it is evident
that the tree-based reference values used for trajectory estimation,
introduce additional mismatch for these transitional classes in our
data set.

C. Broad class comparison

Broad class HTri HBi HTree | HMono Num
Frames
fricatives-* 0.326 | 0.390 | 0.347 0.426 1,813,487
nasals-x 0.327 | 0.396 | 0.370 0.429 1,011, 660
vowels-* 0.328 | 0.394 | 0.354 0.452 3,239,301
approximants-+ | 0.340 | 0.398 | 0.368 0.485 498, 576
diphthongs-x 0.371 | 0.470 | 0.371 0.506 667,082
trill- 0.371 | 0.457 | 0.384 0.529 715,169
stops-x* 0.392 | 0.459 0.405 0.491 1,895, 881
TABLE III

Overall M SE¢rans measurements for different trajectory estimation
options calculated for broad phone clases



Broad class HTri HBi HTree HKEMono Num
Frames

*-nasals 0.327 | 0.399 | 0.344 0.447 870, 389
*-fricatives 0.334 | 0.405 | 0.349 0.444 1,700,712
*-8tOps 0.340 | 0.428 0.361 0.472 1,826,435
=-vowels 0.353 | 0.430 | 0.387 0.466 2,851,563

#-trill 0.357 | 0.433 | 0.363 0.497 608,036

*-approximants | 0.357 | 0.448 | 0.409 0.566 425,802

*-diphthongs 0.391 | 0.463 | 0.388 0.536 627,523

TABLE 1V

Overall M SE},qns measurements for different trajectory estimation
options calculated for broad phone clases

To further understand the strengths and weaknesses of the various
context-modelling approaches we compute the MSE;irqns values
when grouping phone classes together. All transitions from a specific
broad class and all transitions leading fo a specific broad class are
considered. These results are shown in Tables III and IV respectively.
The columns Num Frames denote the total number of distinct frames
summed over when all broad class transitions matching the given
specification is accumulated.

In both cases, the strong correlations for the triphone and biphone
reference values are immediately apparent (ordering with regard to
Jirri leads to good orderings of pp;). We also see some ordering for
the tree-based values, but these correlations are not as strong as for
the other groups.

VI. CONCLUSION

In this paper, a piecewise linear trajectory model was presented that
is able to model phone transition behaviour at the ceptral level. By
comparing variations of the model that group certain units together,
the implications of modelling at different contextual sizes can be
better understood.

Of specific interest is the extent to which a simple linear model
can model phone transitions, as well as the large relative discrepancy
between unconstrained and triphone models (given that the analysis
is still performed for a single speaker only). Comparatively, the
discrepancy between biphone and triphone models is significantly
less. We found the triphone models always outperform the biphone
models for this analysis. However, different co-articulation effects as
shown in [11] can be expected to have varying degrees of influence
for the application of the technique on the context level. It would be
interesting to consider the very definite phone transitional cases and
see whether these clases are indeed closer for biphone and triphone
models. Also of interest is that systematic differences in error at

various contextual levels can partially be traced back to broad phone
categories.

Finally, we found that fraditional tree clustering as used for the
typical HMM-systems is not always a good context model: a simple
biphone model is sometimes a more accurate representation of the
acoustics of the unit, despite having fewer free parameters. Future
work will build on this finding to determine whether trajectory
information can be used to better predict the behaviour of rare or
unseen triphones for ASR modelling purposes.
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