PRONUNCIATION MODELLING AND BOOTSTRAPPING

MARELIE HATTINGH DAVEL

PRONUNCIATION MODELLING AND BOOTSTRAPPING

By
Marelie Hattingh Davel

Submitted in partial fulfilment of the requirements for thegcee

Philosophiae Doctor (Electronic Engineering)
in the
Faculty of Engineering, the Built Environment and InforinatTechnology
at the
UNIVERSITY OF PRETORIA

Advisor: Professor E. Barnard

August 2005

PRONUNCIATION MODELLING AND BOOTSTRAPPING

Bootstrapping techniques have the potential to acceldratdevelopment of language technology re-
sources. This is of specific importance in the developingdwshere language technology resources
are scarce and linguistic diversity is high. In this thesis analyse the pronunciation modelling
task within a bootstrapping framework, as a case study imtimgstrapping of language technology
resources.

We analyse the grapheme-to-phoneme conversion task ir#énehsfor a grapheme-to-phoneme
conversion algorithm that can be utilised during bootginag. We experiment with enhancements
to the Dynamically Expanding Context algorithm and devedopew algorithm for grapheme-to-
phoneme rule extractiorDgfault&Refing that utilises the concept of a ‘default phoneme’ to create
a cascade of increasingly specialised rules. This algoriiisplays a number of attractive proper-
ties including rapid learning, language independenced gaymptotic accuracy, robustness to noise,
and the production of a compact rule set. In order to havetgrdaxibility with regard to the var-
ious heuristic choices made during rewrite rule extractisa define a new theoretical framework
for analysing instance-based learning of rewrite rule.s@le define the concept ahinimal repre-
sentation graphsand discuss the utility of these graphs in obtaining thellestapossible rule set
describing a given set of discrete training data.

We develop an approach for the interactive creation of proiation models via bootstrapping,
and implement this approach in a system that integratesusdf the analysed grapheme-to-phoneme
alignment and conversion algorithms. The focus of this wisrlbn combining machine learning
and human intervention in such a way as to minimise the amofuntiman effort required during
bootstrapping, and a generic framework for the analysikisffirocess is defined. Practical tools that
support the bootstrapping process are developed and tbee€fy of the process is analysed from
both a machine learning and a human factors perspective. nd/ghiat even linguistically untrained
users can use the system to create electronic pronuncditibonaries accurately, in a fraction of the
time the traditional approach requires. We create newdtiaties in a number of languages (isiZulu,
Afrikaans and Sepedi) and demonstrate the utility of thésdodaries by incorporating them in
speech technology systems.

Keywords: bootstrapping, grapheme-to-phoneme conversion, graghe-phoneme alignment,
letter-to-sound, pronunciation modelling, pronunciatfarediction, pronunciation rules, pronuncia-
tion dictionary, language technology resource develogmen

UITSPRAAKMODELLERING EN SELFSTEUN

Selfsteuntegnieke beloof om die ontwikkeling van taalbudmne vir tegnologiese toepassings te
versnel. Hierdie belofte is veral belangrik in die onwildedle weéreld, waar sulke hulpbronne
skaars is, en beduidende taalverskeidenheid voorkometdikitesis ontleed ons die uitspraakvoor-
spellingstaak binne 'n selfsteunraamwerk, as 'n gevaltistvan selfsteunontwikkeling van taalhulp-
bronne.

Ons ontleed grafeem-na-foneemomskakeling, op soek nayaritthe wat vir selfsteundoelein-
des gebruik kan word. Ons ondersoek verbeteringe aan dieatbiese Konteksuitbreiding” (DEC)
algoritme, en ontwikkel 'n nuwe algoritme vir die onttreklgi van grafeem-na-foneemreélge(-
stek&Verfyn wat die begrip van 'n ‘verstekfoneem’ gebruik om 'n rits vilmenemend afgestemde
reéls te skep. Hierdie algoritme vertoon 'n aantal aalikeleienskappe, insluitende kort leertye,
taalonafhanklikheid, goeie uitloopakkuraatheid, rusdébadheid, en die skep van klein reélstelle. Om
groter plooibaarheid in 'n aantal heuristiese keuses teryestel ons 'n nuwe teoretiese raamwerk
vir die ontleed van geval-gebasseerde leerprosesse vskryfegéls voor. Ons stel die begrip van
kleinste voorstellende grafiek@or, en bespreek die nut van sulke grafieke in die onttrekdian
kleinste moontlike reélstel wat gegewe leervoorbeeldsikiyé.

Ons ontwikkel 'n benadering tot die wisselwerkende skep wvitspraakmodelle deur selfsteun,
en verwerklik hierdie benadering in 'n stelsel wat verskeia die ontlede algoritmes vir belyning en
reélonttrekking saamvat. Ons gee aandag aan die saamaoegasjienleer en menslike ingrype om
die hoeveelheid menslike inset tydens selfsteun so kleiontfik te hou, en ontwikkel 'n algemene
raamwerk vir die ontleding van hierdie proses. Verder okiteli ons praktiese gereedskap ter on-
dersteuning van selfsteun, en ontleed die doeltreffeddti@arvan uit die oogpunte van masjienleer
en menslike bruikbaarheid. Ons bevind dat selfs gebruigensler taalkundige opleiding akkurate
woordeboeke sodoende kan skep, in 'n breukdeel van die tydie/gebruiklike benadering vereis.
Ons skep nuwe woordeboeke vir verskeie tale (isiZulu, A&fiks en Sepedi), en toon die nuttigheid
van hierdie woordeboeke in spraaktegnologietoepassings.

Sleutelterme selfsteun, grafeem-na-foneem omsetting, grafeem-neeim belyning, letter-
na-klank, uitspraakmodellering, uitspraakvoorspellingiitspraakwoordeboek, uitspraakreéls,
hulpbronontwikkeling vir taaltegnologie.

ACKNOWLEDGEMENTS

This research was performed in the Human Language Techiael@LT) Research Group of the
Meraka Institute. It was guided by Etienne Barnard, for thstthree years my PhD advisor, col-
league and the ideal co-explorer (a rare privilege!)

The HLT Research group grew in parallel with this thesis, leenth grateful to all the group members
who assisted in one way or another: Louis Joubert, Francota#p and others, who assisted with
the development of 'System B’; Aby Louw who assisted in inéigmg some of the newly created
dictionaries in Text-to-Speech systems; and the many éth€researchers, developers and students
who provided a supportive research environment.

Much of the collected data relied on the patience of the uaritictionary developers. | am especially
grateful to Nadia Barnard, who assisted with both kindneskskill.

| would also like to thank:

e Johan Eksteen, my manager at the CSIR at the time, who pisapported my decision to
make the jump from project manager to researcher, and wheupgerted my work ever since.

e Liesbeth Botha, who guided my initial explorations in sgeeelated research.

e Rich Stern and the Carnegie Mellon Speech Group, who hostedtnCarnegie Mellon in
Pittsburgh for a very enjoyable year.

Finally, I would like to thank my friends and family for puty up with me as a mostly absent, part-
time PhD student; and of course, MC, without whose supp@twhole endeavour would have been
quite impossible.

TABLE OF CONTENTS

CHAPTER ONE - NTRODUCTION

1.1 HLTinthedevelopingworld uu.....
1.2 Bootstrapping of HLT resources i i it i
1.3 Pronunciation modelling within a bootstrapping frarogev.
1.4 Overviewofthesis e

CHAPTER TWO - BACKGROUND
2.1 Introduction e
2.2 Pronunciation Modelling e e
2.2.1 Manual development of pronunciation models
2.2.1.1 Pronunciation dictionaries
2.2.1.2 Pronunciationrules
2.2.2 Data-driven approaches to g-to-p rule extraction
2.2.2.1 Neural networks and decisiontrees
2.2.2.2 Pronunciationby Analogy
2.2.2.3 Instance-basedlearninga.
2.2.2.4 Alternative approaches
2.2.3 Grapheme-to-phoneme alignment
2.2.4 Grapheme-basedsystems e
2.3 Bootstrapping of HLT resources i i i i i e e e
2.4 The automated generation of pronunciation dictiosarie
25 Conclusion e

CHAPTER THREE - BDOTSTRAPPING MODEL

3.1 Introduction e

3.2 Modeldescription e e e
3.21 Components e e e e
3.2.2 PrOCESS o o e e e e e
3.2.3 Examples

3.3 Efficiency of bootstrapping process e

10
10
12
12
13
14
15
16

3.3.1 Humanfactors
3.3.2 Machinelearningfactors e
3.3.3 Systemanalysis e e
3.4 Bootstrapping pronunciation models o000
3.4.1 Algorithmic requirements e
3.5 Conclusion

CHAPTER FOUR - RAPHEME-TO-PHONEME CONVERSION
4.1 Introduction L e
4.2 Baseline algorithm e
4.3 Experimental dataand approach e
4.4 Grapheme-to-phoneme alignment aee e
4.4.1 Pre-processing of graphemicnulls
4.4.2 Utilising the phonemic character of null-phonemes
4.5 DEC-based grapheme-to-phoneme prediction
451 Standard DEC
452 Shiftingwindows e e e
453 Rulepairs
454 Conflictresolutiono
455 Defaultrules
4.6 A default-and-refinement approach to g-to-p prediction.
4.6.1 Asymptotic performance e e .
4.6.1.1 Regularspellingsystems
4.6.1.2 Lessregularspellingsystems,
4.6.2 Learningefficiency
46.3 Sizeoftheruleset e
4.6.4 Continuouslearning e e
4.7 Bootstrapping analysis e
4.7.1 Predictiveability e
4.7.2 CONVersioNn aCCUraCy . . . « v v v v v et et e e e e e e e e e e e
4.7.3 Computational cost e
474 Robustnesstonoise e
4.8 Conclusion e

CHAPTER FIVE - MNIMAL REPRESENTATIONGRAPHS

5.1 Introduction L e
5.2 Conceptual approach e
5.3 Theoretical framework

26
26
26
27
28
29
29
31
31
32
35
36
36
37
40
40
41
42
43
43
47
47
48
49
52
54

5.3.1 Rule format

5,32 Rulesetanalysis

5321
5.3.2.2
5.3.2.3
5324
5.3.2.5
5.3.2.6
5.3.2.7

Training data, word patterns and sub-patterns
Conflict rules and conflict resolution
Complete, accurate, minimal and possibipimal rule sets
Allowed states and allowed operations

Matchwords, possibl@ords, rulewords and sharedords
Complementing rules: containpat, mincomp andrsopg
Zm 8S A SUDSEt QF copbined « « « « ¢+ v e e e e e e

5.3.3 Ruleordering e

5.3.4 Characteristics ofan allowed state i o

5.3.5 Initialallowedstate

5.3.6 Allowedoperations e

5.3.6.1
5.3.6.2
5.3.6.3
5.3.6.4

Decreasingrulesetsize
Removing unnecessaryedges
Identifying requiredrules
Resolving conflictrules

5.3.7 Breakingties e

5.3.8 Optimising generalisation ability

5.4 Alternative algorithms as specialisation of generainfework
5.5 Extensions . .

5.6 Conclusion .

CHAPTER SIX - BOOTSTRAPPING PRONUNCIATION MODELS

6.1 Introduction . .

6.2 Bootstrapping system e e

6.2.1 Userperspective e e

6.2.2 Systemperspective e

6.2.3 Algorithmicchoices e

6.2.4 Systemconfiguration e

6.3 Experiment A: Validationofconcept

6.3.1 Experimental protocol e

6.3.2 Humanfactors e

6.3.2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.3.2.5

Userlearningcurve
Effect of linguistic expertise
The cost of using audio assistance
The cost of phoneme corrections

Relatedfactors,

CHAPTER

6.3.3 Machinelearning factors e 108
6.3.3.1 Systemcontinuity 108
6.3.3.2 Predictiveaccuracy 108
6.3.3.3 \Validityofbasedata 109
6.3.4 Systemanalysis 109
6.4 Experiment B: Semi-automatic detection of verifieresro. 110

6.5 Experiment C: Building a medium-sized dictionary 112

6.5.1 Experimental protocol e 112
6.5.2 Humanfactorsanalysis e 112
6.5.3 Analysis of machine learning factors L. 114
6.5.4 Systemanalysis e e 115
6.6 Building systems that utilise bootstrapped dictioggari 118
6.6.1 isiZulu Text-to-Speech e 118
6.6.2 Sepedi Speech Recognition. aua... 118
6.6.3 Afrikaans Text-to-Speech 118
6.6.4 Othersystems e e e 119
6.7 Conclusion e 120
CHAPTER SEVEN - @NCLUSION 121
7.1 Introduction e e 121
7.2 Summary of contribution 121
7.3 Further application and future worko 122
7.4 Conclusion 124
APPENDIX A - THE ARPABET PHONE SET 125

APPENDIX B - SOME THEOREMS REGARDING MINIMAL REPRESENTATION

GRAPHS 126
B.1 Wordsets e e e e 126
B.2 Characteristicsaf,,, e 129
B.3 Z,,asasubset Q. bined - - « « « ¢ . e e e e e e e e e e e e e e e 131
B.4 RuleorderingirZ,, 134
B.5 Rule ordering irnZ,,, as a subset Q. pined « « « « « « ¢ e e e e e e 137
B.6 Characteristics ofanallowedstate 139
B.7 Initialallowedstate e 141
REFERENCES 144

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 1

CHAPTER ONE

INTRODUCTION

1.1 HLT IN THE DEVELOPING WORLD

Human language technologies (HLT) hold much promise fordéxeeloping world, especially for
user communities that have a low literacy rate, speak a litynlanguage, or reside in areas where
access to conventional information infrastructure ist@ai For example, information systems that
provide speech-enabled services via a telephone can serseran his or her language of choice
in a remote location, without requiring additional expsatirom the user, or a sophisticated Internet
infrastructure. In South Africa, while Internet penetatis still low, more thai90% of the population
has access to a telephone; and the potential of voice serfdcémproving access to information is
receiving increasing attention [1].

The development of various forms of human language teclgol@uch as speech recognition,
speech synthesis or multilingual information retrievateyns - requires the availability of exten-
sive language resources. The development of these resdoudves significant effort, and can be
a prohibitively expensive task when such technologies axeldped for a new language. The de-
velopment of an accurate automatic speech recognitiorrsysor example, requires access to an
electronic pronunciation dictionary, a large annotategesp corpus from various speakers, and an
extensive textual corpus. Such resources are freely alaifar only a small subset of the world’s
languages. This presents a significant obstacle to theafaweint of HLT in the developing world,
where few electronic resources are available for locallaggs, skilled computational linguists are
scarce, and linguistic diversity is high. (India, for exdeypecognises nineteen official languages
and South Africa eleven. In countries such as Indonesia agelrid, several hundred languages are
widely spoken [2].)

CHAPTER ONE INTRODUCTION

In order to realise the potential benefit of HLT in the devéaigpworld, the language resource
barrier must first be overcome: techniques are requiredsiygport the fast and cost-effective de-
velopment of language resources in a new language, withaenhgve reliance on assistance from
skilled computational linguists or access to prior languegsources. Techniques that can support or
accelerate the language resource development efford@c¢he cross-language re-use of information
[3, 4], statistical approaches to automated resource gtoei5, 6], and bootstrapping, the focus of
this thesis.

1.2 BOOTSTRAPPING OF HLT RESOURCES

The popular saying “to pull oneself up by one’s bootstragsypically used to describe the process
of “improving one’s position by one’s own efforts” [7]. In ogputer terminology this term was
originally used to describe the process of iteratively lngd computer operating system from a few
initial instructions, but soon came to describe any progdssre “a simple system activates a more
complicated system” [8]. We use the term to describe antiterarocess whereby a model of some
form is improved via a controlled series of increments, ahestage utilising the previous model to
generate the next ohe

This generic technique has been applied successfully tatigeiage resource development prob-
lem previously, especially in the creation of automaticesiperecognition systems [3,9-11]. When
acoustic models are developed for a new target languagejtamatic speech recognition system
can be initialised with pre-developed models from an adcai$t similar source language, and these
initial models improved through an iterative process whgraudio data in the target language is au-
tomatically segmented using the current set of acousticetspthe models retrained and the target
data re-segmented via a set of incremental updates. Thatjabteaving in resource requirements
achieved through such a process was well demonstrated mtSeahd Waibel [12], among others.

When considering resource bootstrapping approaches ia deail (as discussed in Chapter 3)
it becomes apparent that these approaches rely on an aatbmaichanism that converts between
various representations of the data considered. Eachseaiegion provides some specific advantage
—making the data more amenable to a particular form of aisatywhich can be utilised in improving
or increasing the resource itself. In the above example,repoesentations are utilised: annotated
audio data and acoustic models; and the mechanisms to noowefre representation to the other are
well defined through the phone alignment and acoustic modethsks, respectively.

The bootstrapping process has been applied successfudlywaoiety of additional language re-
source development tasks, including the development afllpacorpora [13], morphological dictio-
naries [14], morphological analysers [15] and linguidtjckagged corpora [16]. We are specifically
interested in the use of bootstrapping for the developmimtamunciation models in new languages.

1The term ‘bootstrapping’ is discussed in more detail in Bec?.3.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 3

CHAPTER ONE INTRODUCTION

1.3 PRONUNCIATION MODELLING WITHIN A BOOTSTRAPPING
FRAMEWORK

A pronunciation model for a specific language describes tbegss of letter-to-sound conversion:
given the orthography of a word, it provides a predictionred phonemic realisation of that word.
This is a component required by many speech processing taskduding general domain speech
synthesis and large vocabulary speech recognition — anfteis one of the first resources required
when developing speech technology in a new language.

The letter-to-sound relationship is typically modelledotigh explicit pronunciation dictionar-
ies [17-19], but can also be represented according to \srdbstract letter-to-sound formalisms.
Grapheme-to-phoneme (g-to-p) rule sets can either be trafibd, or a letter-to-sound represen-
tation can be obtained from a given training dictionaryngsapproaches such as neural networks,
instance-based learning, decision trees, or pronungistycanalogy models [20-25]. In effect, these
data-driven letter-to-sound formalisms provide a seca@pdasentation of the training dictionary, by
converting the training dictionary to a set of base elemants operators of some form, which we
will refer to in general as g-to-p rule sets. These lettesdand formalisms have been studied over
the past twenty years (as discussed in more detail in Se2tR)nresulting in a number of efficient
representation techniques. Since efficient techniques txanalyse the same pronunciation data ac-
cording to more than one representation, it should be pleskihutilise these representations during
bootstrapping.

A letter-to-sound conversion mechanism is valuable, nét inthe absence of explicit pronun-
ciation dictionaries, but also in order to accommodate &paechnology in memory constrained
environments, or to deal with out-of-vocabulary words ieregh systems. Such applications require
a balance between the need for small rule sets, fast corgutatd optimal accuracy, and various
approaches to pronunciation modelling have been definect&t these requirements. Bootstrapping
introduces an additional requirement: the ability to abtahigh level of generalisation given a very
small training set. If such a g-to-p mechanism can be obdaiheeems probable that a bootstrapping
approach will be beneficial in improving the speed and aayuveith which pronunciation models
can be developed in a new language.

1.4 OVERVIEW OF THESIS

The aim of this thesis is to analyse the pronunciation modgliask within a bootstrapping frame-
work. The goals are two-fold: (a) to obtain a mechanism fempnciation modelling that is well
suited to bootstrapping; and (b) to analyse the bootstngpgi pronunciation models from a theoret-
ical and a practical perspective, as a case study in thetbambéing of HLT resources.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 4

CHAPTER ONE INTRODUCTION

The thesis is structured as follows:

e In Chapter 2 we provide background information with regardhie pronunciation modelling
task and the use of bootstrapping for the development of lésduirces in general.

e In Chapter 3 we sketch a framework for analysing the bogiptrey process. This framework
provides the context for subsequent chapters, and desdhibaequirements for a conversion
algorithm suitable to bootstrapping.

¢ In Chapter 4 we analyse the grapheme-to-phoneme conveeskiin the search for an appro-
priate conversion algorithm. This leads to the definitioefault & Refinga novel algorithm
for grapheme-to-phoneme rule extraction that is well suitebootstrapping.

e In Chapter 5 we utilise the characteristics of the prondimiamodelling task analysed in
the prior chapter in order to define a new framework for grapwo-phoneme prediction.
We define the concept ahinimal representation graphand demonstrate the utility of these
graphs in obtaining a minimal rule set describing a giverosetining data.

¢ In Chapter 6 we apply the new grapheme-to-phoneme algasithrthe bootstrapping of pro-
nunciation models. We experiment with a number of optiond, analyse the efficiency of this
process according to the framework defined in Chapter 3. Wielale bootstrapped pronunci-
ation models in three languages (isiZulu, Afrikaans andefip@and integrate the bootstrapped
dictionaries in speech technology systems.

¢ In Chapter 7 we summarise the contribution of this thesid,discuss further applications and
future work.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 5

CHAPTER TWO

BACKGROUND

2.1 INTRODUCTION

This chapter provides background information with regartheé main topics discussed in subsequent

chapters:
e Section 2.2 provides an overview of various approachesaoyrciation modelling;

e Section 2.3 describes the use of bootstrapping for the derent of HLT resources in general;

and

e Section 2.4 discusses current approaches to the creatorainciation dictionaries in a semi-

automated fashion.

In this chapter, as in the remainder of this thesis, we uséRIBAbet symbol set (included in Ap-
pendix A) to demonstrate phonemic concepts.

2.2 PRONUNCIATION MODELLING

A pronunciation model for a specific language provides ami@ate mechanism for letter-to-sound
conversion, also referred to as grapheme-to-phoneme-gy-tonversion. Given the orthography
of a word, grapheme-to-phoneme conversion provides a giredliof the phonemic realisation of
that word. Where additional pronunciation charactessiach as stress or tone are predicted, this
process is referred to as grapheme-to-phoneme converdiorstness and/or tone assignment. This
can be the first of a two-phase process in pronunciation gtfedi the first task being grapheme-
to-phoneme conversion, the second phoneme-to-allophomeision. The rules utilised in the latter
phase are typically referred to as phonological rules, andat always required explicitly, depending

6

CHAPTER TWO BACKGROUND

on the specific type of speech technology that will be utitisihe dictionary. For example, a speech
recognition system may either model phonological effeggigtly, or utilise a phonemic lexicon
and rely on the context-dependent acoustic models to eaptany of the phonological effects [26].
As the distinction between phonemes and phones is ofterebluwve approach this differentiation in
a pragmatic fashion in this thesis.

Pronunciations can be idiosyncratic, and not all prondimrigphenomena are regular to the ex-
tent of being predictable. Also, letter-to-sound conwarsioes not only depend on orthography: the
phonemic outcome can (and does) depend on other linguesitries such as word part-of-speech,
word morphology or word etymology. From a bootstrappingspective, we are interested in ap-
proaches to the pronunciation prediction problem wherédtiaddl linguistic resources are not avail-
able (or can be bootstrapped easily), and therefore we fmauattention on grapheme-to-phoneme
conversion based mainly on orthography.

The remainder of this section provides an overview of cura@proaches to pronunciation mod-
elling: Section 2.2.1 describes the manual developmentasfymciation models, both the develop-
ment of explicit pronunciation dictionaries and the haaftang of grapheme-to-phoneme conversion
rules, and Section 2.2.2 provides an overview of differ@praaches to the data-driven extraction of
grapheme-to-phoneme conversion rules. As many of thediatan approaches require grapheme-
to-phoneme alignment prior to grapheme-to-phoneme rueetion, approaches to grapheme-to-
phoneme alignment are discussed separately in Sectidh B2ction 2.2.4 discusses an alternative
speech processing approach that circumvents the needdiiciegronunciation modelling.

2.21 MANUAL DEVELOPMENT OF PRONUNCIATION MODELS
2.2.1.1 PRONUNCIATION DICTIONARIES

Many electronic pronunciation dictionaries (such as NEKTf20] or OALD [18]) were created as
digital versions of similar printed dictionaries. Clasgdiprinted pronunciation dictionaries typically
only list word base forms, and for each word base form itsxgéad’ pronunciation. Pronunciation
variants are only included when more than one distinct pmoiation exists for a single word (e.g.
the past tense and present tense variants of the English‘vead: r iy d andr eh d). Electronic
dictionaries that are frequently utilised in speech ajpilims (such as CMUdict [17]) soon grow to
include additional word forms (plurals and other derivasiy and multiple pronunciation variants, as
required by the applications utilising the dictionary. Runciation variants can be generated auto-
matically using phonological rule sétsr added according to a manual process.

Task-designed electronic pronunciation dictionarieshsasFONILEX developed by Mertens
and Vercammen [19], include systematic mechanisms to eleviord variants from base forms.
FONILEX specifically is a full-form lexicon (it lists the various webibase forms separately) and

1The automatic extraction of phonological rules utiliségiques similar to those applied during grapheme-to-pinene
rule extraction, as described in Section 2.2.2.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 7

CHAPTER TWO BACKGROUND

provides an ‘abstract’ representation of each word, as agelhree ‘concrete’ pronunciations repre-
senting three different speaking styles. The concreteymrciations are derived automatically from
the abstract representation via a set of phonological tewries. In this way, regular variants are cap-
tured via phonological rules, rather than additional ditéiry entries. Irregular variants are included
as additional dictionary entries. A related approachpfedd independently by Alleat al [27] and
Cokeret al [28], utilises morphemes as the stored unit, and obtairn#odeary entries by combining
these morphemes using a set of morphological rules. Herphutmgical rules are used to generate
the word base form itself, which is not stored individually.is interesting to note thaEONILEX
was compiled semi-automatically using grapheme-to-pimaneonversion, and verified manually —
an approach that is related to the bootstrapping processtigated in this thesis.

2.2.1.2 PRONUNCIATION RULES

Manual pronunciation rules are typically developed acicgydo the two-stage process described in
Section 2.2; that is, two rule sets are created: one set phgrae-to-phoneme rules, and a second
set of phonological rules that generate the appropriatpladine (or allophones) per phoneme. Both
rule sets are often augmented by a set of exceptions. Thieseats can be described according to
different formalisms, a general formalism for a multi-lex@write rule being:

{a}"g{b}" — {c}p{d}” (2.1)

which, more typically, is simplified asa}*g{b}* — p, whereg indicates the grapheme being con-
sidered angh the specific phonemic realisation @f{a}* and{b}* represent zero or more contextual
elements to the left and the right of the grapheme (respg}iof words that this rule can be applied
to, and{c}* and{d}* indicate how the word is amended (or not) during the appticadf this spe-
cific rule. Depending on the exact formalism, the left andight contexts of the left-hand side can
either consist of graphemes only, or a combination of grayg@seand phonemes, and similarly, the
right-hand side can either be defined in terms of phonemes anh combination of graphemes and
phonemes. A null (or empty) phoneme or grapheme may beadilxplicitly within the formalism.
Furthermore, a single contextual element can also be useghtesent a class of such graphemes or
phonemes. Formalisms differ based on the order in whictsrate applied, the direction in which
rules are parsed, and whether a single rule or a sequendentditehing rules are applied when pre-
dicting a single word. Manually developed rewrite rulessexor a number of languages, including
languages as diverse as English [29], Arabic [30] and iseah81].

Typically, the more modern the writing system of a languaige stronger the connection between
the spoken and written form of a language, and the more rethdapelling system of the langu&ge
Languages with a fairly recent spelling system (such as 8ijvialwve an almost direct correspondence
between the orthography and the pronunciation of a wordeveianguage such as English or French

2As discussed further in Section 4.6.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 8

CHAPTER TWO BACKGROUND

includes significant historical ‘baggage’ in its spellingstem. For languages with highly regular
spelling systems, the manual development of a set of praatime rules can be a manageable task
for a skilled linguist. For languages with less regular lpglsystems this task becomes particularly
arduous, with the set of words that that can be predictec:ctiyrusing the manually developed rule
set only achieving larger sizes if amended by a sizeablepgirees dictionary. For example, the rule
set developed by Elovitet al [29], consisting of 329 rules for English, achieved oaly7% word
accuracy when evaluated by Dampéal[25] and19.3% word accuracy when a modified version was
evaluated by Bagshaw [32] (using different corpora). Seraiually developed finite state transducer
systems can achieve better performance [26], but requjrefisiant expertise to develop.

2.2.2 DATA-DRIVEN APPROACHES TO G-TO-P RULE EXTRACTION

Data-driven approaches to grapheme-to-phoneme rulecégtiecan be used to generalise from ex-
isting pronunciation dictionaries when handling out-otabulary words in speech systems, and to
compress information when requiring a pronunciation maael memory-constrained environment.
Such applications require a balance between the need fdirrsileasets, fast computation and optimal
accuracy, and various approaches to pronunciation moddiive been defined to meet these require-
ments. Approaches include the application of neural nétsv{0, 33], decision trees [22—-24, 34],
Pronunciation by Analogy (PbA) models [32,35-38], instbased learning algorithms such as Dy-
namically Expanding Context (DEC) [21, 36] and IB1-1G [2flihite state transducers [39], Bayesian
networks [40], and the combination of methods and additianfarmation sources through meta-
classifiers [41]. Many of these algorithms require graphéoaghoneme alignment prior to rule ex-
traction, as discussed in Section 2.2.3.

Benchmarking these pronunciation prediction algorithsndifficult: There are few standardised
pronunciation prediction tasks that are widely used, aaddkk itself is very sensitive to training/test
set distributions. A strict evaluation of three of the ddtaxen approaches (a neural network, IB1-IG
and PbA) can be found in [25]. Results obtained when appldiffgrent algorithms are discussed
in further detail in Section 4.6.1; the remainder of thistegcprovides an overview of the various
approaches to grapheme-to-phoneme rule extraction nnextiabove.

The automatic extraction of phonological rules utiliseiiantechniques as those described here.
Such rule sets are used to generate an allophonic représerfia a phonemic pronunciation, as
demonstrated by Ellison [42], Tajchmat al [43] and others, or to assign additional pronunciation
characteristics such as stress to the pronunciation of trd j44]. The application of data driven
techniques for the development of phonological rule setsisliscussed further: we rather focus our
attention on the grapheme-to-phoneme conversion propestisally.

2.2.2.1 NEURAL NETWORKS AND DECISION TREES

A neural network was one of the first data-driven approachagapheme-to-phoneme rule set ex-
traction demonstrated. A neural network was trained by @&egki and Rosenberg [20] using the

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 9

CHAPTER TWO BACKGROUND

English NETtalk corpus, and later re-implemented by Mc@ulll and others as the NETspeak [33]
system. Words were windowed with a fixed number of grapherbesvéen 3 and 11 graphemes)
per window, and a feed-forward neural network was trainedstociate each letter, surrounded by
its graphemic window, with a specific phoneme outcome. Alsingystem was later evaluated by
Damperet al [25].

Various decision tree based approaches have been dentedsinaluding systems developed by
Anderseret al[22, 45], Blacket al [23] and Hakkineret al [34], obtaining comparable results. The
detail implementations differed based on various aspéeuthkjding the type of questions generated,
the pruning method, the splitting criteria and detailechpaeter choices. The algorithms were applied
to different languages and corpora, and different evalngtrocesses used. Andersaral compared
a binary decision tree with Trie structures using both aniEngNETtalk and CMUdict) and a French
(ONOMASTICA) database [22]. Blaost alutilised Classification and Regression Trees (CART) and
English (OALD and CMUdict), French (BRULEX) and German (CEX) dictionaries [23]. Hakki-
nenet al explicitly compared the performance of neural networks @ecision trees for the English
CMUdict task. Hakkineret al found that neural networks provide better generalisatiamn tdeci-
sion trees when limited training data is available, andgrerfmore consistently across mismatched
test sets, while decision trees typically outperform nkenesworks where training and test data are
closely matched [34].

2.2.2.2 PRONUNCIATION BY ANALOGY

Pronunciation by Analogy (PbA) models predict the pronatich of a new word by searching
through known words for matching sub-word parts. This setlgbrithms was designed specifically
for the task of grapheme-to-phoneme prediction. Origynsliggested by Dedina and Nusbaum [46],
the approach was further developed by Sullivan and Damg&y Y3ron [36, 47], Damper and East-
mond [37], Bagshaw [32], and Marchand and Damper [38].

Languages with irregular spelling systems such as Engligh French perform well within
analogy-based frameworks, and for English, the best asitiopesults to date have been achieved
with PbA [25]. Unfortunately, current versions of theseaaithms can be ‘slow learners’, only ap-
proaching asymptotic accuracy for larger training dictionsizes, as discussed further in Section 4.2.
Depending on the amount of prior manipulation of the trainitata employed by PbA algorithms,
these algorithms can be seen as a form of instance-baseéhpar

2.2.2.3 INSTANCE-BASED LEARNING

We use the ternnstance-based learnings used by Ahat al [48] to describe algorithms that gen-
erate classification predictions using specific instanoa® fa set of training data, rather than using
a generalised abstraction created from the training sdtdamot differentiate among instance-based
learning, memory-based learning or case-based reasomimgse algorithms all utilise ‘lazy learn-
ing’: rather than generalising from a training set, thererttiaining set is typically retained (in some

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 10

CHAPTER TWO BACKGROUND

form or another) and predictions are based on reasoning #iese retained exemplars, analogous to
the process of nearest neighbour classificdtion

In [24], Daelemangt al provide a strong argument for the utility of memory-baseprapches for
language processing tasks, noting that in many of these tagleptions tend to occur in ‘groups or
pockets in instance space’. As it is difficult to differetgidetween actual noise inherent to language
datd and small regular families of exceptions (that provide ulspfedictive information), Daele-
mans argues that exceptions should preferably be reta@sed,inherent to standard instance-based
learning. Two specific approaches that have been appliexbssitlly to grapheme-to-phoneme con-
version are (1) variations dB1-1G [49], as developed and applied to the grapheme-to-phonashke t
by Daelemangt al [24]; and (2) Kohonen’s Dynamically Expanding Context (DEB0], initially
applied by Torkkola [21] to the grapheme-to-phoneme task:

1. IB1-IG

IB1-IG [24,49] is in essence a k-nearest neighbour classti utilises as distance measure
a weighted version of graphemic context overlap. Appraerigeighting of the graphemic
context is an important aspect of the algorithm, and isratathrough information gain tech-
niques. Given a grapheme-to-phoneme aligned trainingpdity, words are windowed, and a
learning instance is generated per window (each instarmes$ing on a specific letter within
the context of the rest of the window) and associated withezifip phonemic classification
of that letter. Weights are associated with each featuredbes a normalised measure of the
amount of information the specific feature contributes tovidedge about the specific phone-
mic class (over the entire instance base). New words ardcpeddby finding the instances
that are closest to the target word, using the weightedrdistaneasure. Ties are resolved by
considering frequency of outcome, and frequency of ocogeef the specific feature (where
a feature defines both a letter and its position).

Daelemanset al [24] evaluated this algorithm on the task of grapheme-toAgime conver-
sion with stress assignment, using the CELEX database @efoa set of language learning
tasks considered), and found comparable accuracy rateed®tiB1-1G and a decision tree
approach. The IB1-IG algorithm performed better than thed@cision tree used for com-
parison: the difference in performance was slight (butificant) if the number of instances
required for a decision tree node to be retained was chosén(similar to the IB1-IG ap-
proach); a larger number of required instances causedegngamning of the decision tree, and
decreased its performance. Damptal [25] found that IB1-1G obtained higher accuracy than
a neural network, but not the same level of asymptotic acguaa PbA. Further results are
provided by Hostet al[41] in an evaluation of meta-classification techniques.

%It should be noted that the differentiation among techrsqdescribed in this section is not strict: for example, a
decision tree learning algorithm that does not allow anyjmg can also be seen as a form of instance-based learning.
“For example, as caused by true exceptions, or discrepandias way in which the lexicon was developed.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 11

CHAPTER TWO BACKGROUND

2. DEC

Kohonen’s Dynamically Expanding Context (DEC) [50], ialty applied by Torkkola to the
grapheme-to-phoneme problem [21], is another instanseebiearning algorithm that predicts
phoneme realisation based solely on graphemic contextEld,[@ach rule specifies a mapping
of a single grapheme to a single phoneme for a given left ayid graphemic context, i.e is of
the form: (left-context,grapheme,right-context} phoneme

Rules are extracted by finding the smallest context thatigeswva unique mapping of grapheme
to phoneme. If am—letter context is not sufficient, the context is expandedttmee the right
or the left. This ‘specificity order’ influences the performea of the algorithm. The set of
extracted rules are stored as a hierarchical tree, with g@mneral rules at the root, and more
specific rules at the leaves. The tree is traversed from thietoothe leaves, and the rule at
the first matching leaf (the rule describing the largest hiate context) is used to predict the
specific grapheme-to-phoneme realisation. If no leaf ishet, the most probable outcome of
the last matching leaf is used, as can be estimated fromalmeng data. If the extracted ‘rule
set’ is allowed to contain contexts of an arbitrary size,maming words are discarded, and the
tree structure is simply used to arrange the set of all tngiinistances in an efficient structure.

2.2.2.4 ALTERNATIVE APPROACHES
A number of further approaches to pronuncation modellirigtecluding:

1. Finite state transduction, as demonstrated by Luk andpearf89], and more recently by
Hazenet al[26]. Finite state transduction as used in [26] requirerifiizant linguistic specifi-
cation, while Luk and Damper’s approach requires less Istguinput but makes a number of
(restrictive) assumptions in order to create a trainabdtesy.

2. The application of Bayesian networks for grapheme-torgime conversion [40]. Bayesian
networks are more typically used for pronunciation vasiatmodelling, rather than phonemic
base form generation.

3. The use of hierarchical systems of meta-classifiers, aed meta-meta-classifiers as investi-
gated by Hostet al [41].

Various of these approaches can be utilised during bopfsitrg, as discussed further in Section 4.2.

2.2.3 GRAPHEME-TO-PHONEME ALIGNMENT

The majority of data-driven approaches to grapheme-ta@ine rule extraction first require that the
training dictionary be aligned on a grapheme-to-phonensésb&or languages with alphabetic writ-
ing systemg, each grapheme is mapped to its corresponding phoneme haneérpic or graphemic

SFor ideographic, pictographic, syllabic or even moraiglamges, a more complex process is required — see for example
[51] for a comparison of alignment approaches for Japanese.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 12

CHAPTER TWO BACKGROUND

nulls inserted where required: A phonemic null is insertduere a single phoneme is produced
from more than one grapheme; a graphemic null where a simgfghgme results in more than one
phoneme. In languages where graphemic nulls are rare, graplexceptions that can map to more
that one phoneme (such as— k s) can be replaced with two pseudo-graphemes (e.g. replacing
with 2 X) and only phonemic nulls inserted. This technique, suggesy Pageét al [52], results in
fewer alignment errors.

Initial data sets used for grapheme-to-phoneme benchnta(kiich adNETtalk[20]) were hand
aligned. Dalsgaard, Andersen and others [53, 54] applieckébViterbi alignment [55] to create
automatic grapheme-to-phoneme alignments, based ondbalglitiesP(grapheme | phoneme j)
Initial probabilities were obtained from words and proniations that have equal length. This ap-
proach provides fairly accurate alignments: when benckeatbagainst th&lETtalkhand alignments,
Anderseret al achieved a word alignment accuracy83t7% and a phoneme alignment accuracy of
93.2% [22]. It should be noted that théETtalkhand alignments may not be the ideal benchmark to
use for measuring alignment accuracy, as discussed in netaéd th Section 4.4. Blaclet al [23]
used a similar alignment approach but defined a candidat® sestrict misalignments. In Black’s
approach the possible grapheme-to-phoneme mappingseuifiep prior to alignment, and used to
restrict the alignment options during Viterbi alignment.

2.2.4 GRAPHEME-BASED SYSTEMS

The discussion up to this point has assumed that a proniorciaindel is a required component for
a variety of speech processing systems, including autorspgech recognition systems. Schiio

al [56] demonstrated an alternative approach by introdudiegcbncept of grapheme-based speech
recognition: rather than using a pronunciation dictiongrgphemes are used directly as basis for the
acoustic sub-units modelled. This grapheme-based agpreaalts in surprisingly accurate systems.
Since the perplexity of the language model has a significHiatteon the accuracy of the system,
a strong language model compensates well for an inaccuratgipciation model. The results ob-
tained by Schillet alwere independently confirmed by Kanthak and Ney [57] anceK[B8]. While
grapheme-based systems are conceptually less complateytstem that incorporate an explicit pro-
nunciation dictionary, grapheme-based systems for lagegiavith fairly regular spelling systems
(such as ltalian, Spanish or Dutch) do not seem to be significkess accurate than phoneme-based
systems, especially in the presence of a strong languagelp®othibiting a less tha2% relative de-
crease in accuracy in [57]. For languages with less regutdems, the decrease in accuracy becomes
more noticeable: In [57] @5.7% relative decrease in accuracy was observed for an Englistkray
with a word trigram perplexity of24.5.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 13

CHAPTER TWO BACKGROUND

2.3 BOOTSTRAPPING OF HLT RESOURCES

We use the term ‘bootstrapping’ to describe an iterativegse whereby a model of some form is
improved via a controlled series of increments, at eachestéifising the previous model to generate
the next one. This is a broader definition than often empldpeghachine learning, where boot-
strapping typically indicates a semi-supervised apprdadearning, where a small set of labelled
instances is used to seed a classifier, label unclassifieg alad retrain the classifier [59, 60]. Both
the above interpretations should not be confused with tkeeofishis term in the field of Statistics,
where it can also indicate a statistical method for estingatthe sampling distribution of an estimator
by resampling with replacement from the original samplg.[61

Bootstrapping can be a useful technique during languagrires development, and has been
used extensively in the creation of resources required tynaatic speech recognition systems [3,9—
11]. In speech recognition, a bootstrapping techniquetesnofombined with some form of cross-
language information sharing. For example, when acoustidats are developed for a new target
language, an automatic speech recognition system cantiadised with pre-developed models from
an acoustically similar source language, and these initialels improved through an iterative process
whereby audio data in the target language is automaticafjynented using the current set of acoustic
models, the models retrained and the target data re-segtheiata set of incremental updates.

The potential saving in resource requirements achievedighr such a process was well demon-
strated by Schultz and Waibel [12]. For example, in a set pEdrments conducted on a Portuguese
system, Schultz and Waibel obtained near-equal perforenasing either a fairly large amount (16.5
hours) of target data, or adapting multilingual models tigio a combination of bootstrapping and
adaptation, using 90 minutes of target data. The increaperfioermance using different techniques
is illustrated in Figure 2.1. Her®atarefers to the amount of target language data usedaradity
refers to the quality of the alignmentsitial alignments are generated by the multilingual system,
while good alignments are updated based on improving systelsthodrefers to the adaptation
method used: using the unadapted initial system in a ceoggdhge transfer approach (CL), Viterbi
training using the alignments from the initial system (VN)aximum Likelihood Linear Regression
adaptation of the initial system using the target data (M),LdR bootstrapping (Boot). Bootstrapping
consists of the following phases per bootstrapping cyaleating initial alignments, Viterbi training,
model clustering, retraining and writing improved aligmtee Treerefers to the decision tree used for
clustering: the original multi-lingual language indepentltree (LI), a Portuguese language depen-
dent tree (LD) or a tree built using the Polyphone DecisiceeT3pecialisation (PDTS) proc&$s2].
This example illustrates both the cross-language re-usdarmation — seeding the acoustic models
using a related language — and the essence of a bootstraagmingach: iteratively improving acous-

®A standard context modelling technique is to cluster modsisg a CART-based clustering technique and a splitting
criterion based on maximum entropy gain. The Polyphone diatiTree Specialisation (PDTS) technique was proposed
by Schultz as a mechanism to adapt the context modellingllmséhe target data, by restarting the decision tree growing
process according to the target data available, resultisggnificant improvements [62].

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 14

CHAPTER TWO BACKGROUND

1007

80

~1

]
[=]
=
—_

= —
2 60 a 57.1
F [522 499
z A 433
Z 40 L H
£
20 -+ H H H H F
20

Systemld| S1 | S2 | S3

54\ S5 \ 56\ s7 | s8

S9 \810 511\512 S13]S14

Data 0 15 minutes 25 minutes 453 16 |90 |16.5h
Quality | - initial alignments good alignments

Method |CL Boot[MLLR Vit ‘MLLR Boot MLLR Boot
Tree LI - LD | - |LI LD | PDTS LD

Figure 2.1:Experimental results when applying cross-language reafiseoustic information tech-
nigues in the bootstrapping of a Portuguese system, fror [12

tic models by utilising the models developed during the joney bootstrapping cycle to re-align the
data, and retrain the models.

Additional language resource development tasks that heee shown to benefit from some form
of bootstrapping include the development of parallel coad@3], morphological dictionaries [14],
text categorization [63], automatic audio alignments [g#hmmar parsers [65], morphological anal-
ysers [15], linguistically tagged corpora [16], and the elepment of pronunciation lexicons, as
discussed in Section 2.4.

2.4 THE AUTOMATED GENERATION OF PRONUNCIATION DICTIONARIE S

In this section, we consider automated and semi-automgieaches to the generation of pronun-
ciation dictionaries in a new language, referring to twoetypf approaches: Stuker [66] investigated
ways in which existing phoneme recognisers can be used &ragena pronunciation dictionary for
a new language, utilising audio data and word-level trapgons in the target language. Using nine
mono-lingual and a multi-lingual phoneme recogniser, @moa recognition of the audio data is per-
formed, and different voting and normalisation technigaesused to obtain a hypothesized pronun-
ciation (or pronunciations) per words. This technique dusscurrently result in usable dictionaries,
but further work is in progress.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 15

CHAPTER TWO BACKGROUND

A demonstrably successful approach to the semi-automateergtion of pronunciation dictionar-
ies, is the use of bootstrapping within the Festival TexBfeech System [67]. This system includes
a rule extraction component based on Classification andeRsigin Trees, which can be used to gen-
erate letter-to-sound rules from a small lexicon. Thisderiis then grown iteratively by submitting
additional words to the system, and having a human verifyctiveectness of the predictions. This
process was recently demonstrated by Masiegl [68], utilising an approach that is analogous to
the approach used in this thesis. Masktl developed a Nepali pronunciation dictionary by iter-
atively extracting a grapheme-to-phoneme rule set, piadi@ set of additional dictionary entries
(varying from 100 words per cycle initially to 5000 words msrcle later in the process), identify-
ing a subset of these words based on a calculated confideams sod having these corrected by
a Nepali speaker. In a related approach, RBNILEX dictionary was compiled semi-automatically
using grapheme-to-phoneme conversion, and verified migria8l.

2.5 CONCLUSION

This chapter provided background on the pronunciation tingeask, and described various ap-
proaches to pronunciation modelling, focussing on daiteedrtechniques. The pronunciation mod-
elling topic is addressed further in Chapter 4, where we dedigrapheme-to-phoneme rule extrac-
tion mechanism suitable to bootstrapping. The currenttematso provided a brief overview of prior
work related to the bootstrapping of HLT resources; thisusion continues in Chapter 3 with the
definition of a general model for the bootstrapping of HLTowEes.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 16

CHAPTER THREE

BOOTSTRAPPING MODEL

3.1 INTRODUCTION

In this chapter we sketch a basic framework for the analystbe bootstrapping process. We de-
scribe the bootstrapping model in Section 3.2, and distwestattors to consider when evaluating the
efficiency of the bootstrapping process in Section 3.3. ktiSe 3.4 we show how this model applies
to the pronunciation modelling task in particular.

3.2 MODEL DESCRIPTION

As introduced in Section 2.3, we use the term ‘bootstrappgodescribean iterative process whereby
a model is improved via a controlled series of incrementgagh stage utilising the previous model
to generate the next on®uring bootstrapping the model is grown systematicalygdming increas-
ingly accurate from one increment to the next. When analytie bootstrapping process, it soon
becomes apparent that the process relies on an automatethisagtomated mechanism to convert
among various representations of the model considered Eepcesentation describes the same task
in a format that provides a specific benefit: either becausedhpresentation is amenable to auto-
mated modelling and analysis, or because it describes thentumodel in a way that is convenient
for a human to verify and improve. The remainder of this sectiontains a definition of the various
components of a bootstrapping system, a description of abéstrapping process, and examples of
bootstrapping applications.

17

CHAPTER THREE BOOTSTRAPPING MODEL

3.2.1 COMPONENTS

The general bootstrapping concept utilising two modelas@ntations is depicted in Figure 3.1. The
number of representations is limited to two for the sake wipdicity — three or more representations
can also be included in the model.

External data

Conversion Current el B A B Base data: full [Current Conversion
model ADE data set base A mocel

-]

(o)

__

External data

Figure 3.1:General bootstrapping concept, utilising two model repreations.

The following components play a role during bootstrapping:

e Alternative representationstwo or more representations of the same model lie at the béart
the bootstrapping process. In the Fig. 3.1 these are irediGdA andB.

e Conversion mechanismd€ach conversion mechanism (indicatedAas— B and B — A)
provides an automated or semi-automated means to convarfrdan one representation to
another.

¢ \erification mechanismsOnce converted to a specific representation, the model cam-be
proved via automated or human (manual) verification, irtdiddn the figure by thé/erify
components.

e Base data:This term is used to refer to the domain of the model. Theent basendicates
the domain that has been used in training the current modglcansists of a subset of, or the

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 18

CHAPTER THREE BOOTSTRAPPING MODEL

full base data set. The current base data is implicitly otieily included in each of the two
representations.

¢ Increment mechanismsThe Add components are used to increase the current base during
bootstrapping. At the one extreme, all model instances eandduded in a single increment;
at the other, a single instance can be added per bootstgapyife. The increment mechanisms
may utilise active learning techniques [69, 70] in orderdtest an appropriate set of instances
to add.

e External data: This term refers to additional data sources that are ufilth&ring bootstrap-
ping. Typically, external data is used to initialise a btraggping system with models that were
developed on a related task.

3.2.2 PROCESS

Prior to bootstrapping, the various representations atialised in preparation for the first iteration.
Typically only a single representation requires initiatien (A in this instance). External data may
be included in this process, or the bootstrapping procestsskithout any initial knowledge of the
task not included in the base data. The increment mecharisoses the first base set to use. Once
initialised, the bootstrapping process consists of thieviohg steps, many of which are optional, as
indicated:

1. The current base, as well as the current representdtisrused to generate the next represen-
tation B.

2. Bis verified, either manually or automatically. (Optional)

3. Based on the current state of the bootstrapping systenmdchement mechanism increases the
current base set. (Optional if (6) is not)

4. The current base, as well as the current represent&tisrused to generate representatibn
5. Ais verified, either manually or automatically. (Optional)

6. Based on the current state of the bootstrapping systenmehement mechanism increases the
current base set. (Optional if (3) is not)

This cycle is repeated until a sufficiently accurate andéongrehensive model is obtained.

3.2.3 EXAMPLES

Two typical examples of bootstrapping are illustrated igufes 3.2 and 3.3. The first example (Fig.
3.2) illustrates the automated bootstrapping scenarioritbesl in Section 1.2. For this task, the
base data consists of audio data and phonemic transceptioiially not aligned with the audio

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 19

CHAPTER THREE BOOTSTRAPPING MODEL

External data

Representation

A
Current
base

Conversion

Conversion
model

model

Current Base data: full
hase data set

Representation
B

Figure 3.2:An example of automated bootstrapping.

data). A represents the phonemic segmentation of the audio datd3 alnel acoustic models derived
from the segmentations. The focus is on the refinement of¢bastic models: the segmentations
themselves are only important to the extent that they inflaehe quality of the acoustic models. The
A — B mechanism consists of the training, re-clustering, anttaieing of acoustic models, and
the B — A mechanism of automatic Viterbi alignment of the phonemamscriptions, utilising the
current acoustic models.

The second example (Fig. 3.3) illustrates a simple bogising scenario where machine learning
and human intervention are combined, as would be the casexdmple, when bootstrapping audio
segmentations for Text-to-Speech purposes. The baseghitacnsists of audio data and phonemic
transcriptions;A represents the human-readable segmentation of the audioastal B the acoustic
models derived from the segmentations. he» B mechanism consists of acoustic model training,
and theB — A mechanism of automatic alignment. Here the focus is on eicigeptimal segmen-
tations and these are hand-verified until the acoustic msaalel stable enough to support accurate
alignments (and possibly even after that, if high qualityrsentations are required).

3.3 EFFICIENCY OF BOOTSTRAPPING PROCESS

The main aim of a bootstrapping system is to obtain as aacaratodel as possible from available
data. When human intervention is used to supplement orecteattraining data itself, the aim shifts
towardsminimising the amount of human effort required during thecess This is the focus of our

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 20

CHAPTER THREE BOOTSTRAPPING MODEL

External data
A
Predicted A f------m Serify ------3 (User-readabl
representation)

Conversian Current I B Base data: Ul Current Conversian
i hase data set base G model
madel
B (Interim
representation)

m
-]

External data

Figure 3.3:An example of bootstrapping where machine learning and Inuimarvention are com-
bined.

analysis, and we therefore measure bootstrapping effic@na function of model accuracy:

ef ficiency(a) = 7tb00t8trap(a) (3.1)

Umanual (CL)

where a is the accuracy of the current model as measured againstdapeandent test set and
thootstrap(@) aNdtanuqi (@) Specify the time (measured according to amount of humarviemgion)
required to develop a model of accuracwith and without bootstrapping respectively.

Bootstrapping is analysed according to bootstrappingesycWhile bootstrapping, all base in-
stances do not result in valid data that can be included imibael training process. Of the instances
that define valid base data, some will be correctly represehy the initial representatior3, and
others will contain errors. We define a number of variableadsist us in the analysis of these in-
stances: At the start of cycleof the bootstrapping process, we defitie’) as the number of instances
included in the current base;,..;.¢(z) as the number of instances that are invalig,.,...:(x) as the
number of instances that are valid and correct,and,(x) as the number of instances that are valid
and incorrect. For these variables, the following will ajsdnold:

TL(I’) = ninvalid(w) + nvalid(x)

nvalid(x) = ncorrect(x) + nerror(x) (32)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 21

CHAPTER THREE BOOTSTRAPPING MODEL

Related incremental variables are used to represent thease during cycle;, namelyinc_n(z),
INC-Ninpatid(T), iNC_Nyalid (), INCNeorrect () ANAINC_nerror (). The same intervention mechanism
may have different cost implications based on thetus of the instance. In the simplest case, the
status of an instance may simply be correct, incorrect a@ligvbut subtler differences are possible,
e.g. the number of changes required to move from an incoroegtcorrect version. The expected
status of a newly predicted instance changes as the systmymbe more accurate. Prior to human
intervention at stage of the bootstrapping process, the number of instances bfstatus within the
current increment is given by:

incon(x) = Z inc-n(s,x) (3.3)
sestatus
Combining machine learning and human intervention in a vieg minimises the amount of
human effort required during the process can be achievagddmiays: (a) by minimising the effort
required by the human verifier to identify errors accuratelyd (b) by optimising the speed and
accuracy with which the system learns from the human inputis $ection describes the various
factors that influence the efficiency of the bootstrappiracpss from both these perspectives.

3.3.1 HUMAN FACTORS

The first human factor that impacts on the efficiency of thetftoapping process relatesrequired
user expertisewhether the task requires expert skills, or whether a lidhétmount of task-directed
training is sufficient. If is assumed that the user has thissidquired, the following measurements
provide an indication of the efficiency of the bootstrappimgcess for a specific user:

e User learning curveThe time it takes for a specific user to become fully proficiesing the
bootstrapping system. Measured:as;,,, initial training data is assumed to be discarded.

e Cost of intervention:The average amount of user time required per interventionen an
instance is in status, for a fully trained user using the bootstrapping system.aslieed as
tverify(i, s) a different average cost may be associated with differguestyof interventions.
If more than one intervention is used to generate a singtarioe during one cycle of boot-
strapping, the combination of mechanisms is modelled agiditi@nal (single) mechanism.
Depending on the bootstrapping process, it may be morestieatlb measure this value for a
set of instances.

e Task difficulty: The average number of errors for a fully trained user usieghbthotstrapping
system. Indicated byrror_ratepootstrap (i, s), this is measured in percentage as the average
number of errors per 100 instances generated using int@wemechanisni to verify an in-
stance initially in state.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 22

CHAPTER THREE BOOTSTRAPPING MODEL

Quiality and cost of user verification mechanismgplicit in the above two measurements
are the cost and effect on error-rate of additional assist@novided during user intervention.
Rather than modelling additional user assistance prowvilgihg existing interventions sepa-
rately, the combined intervention is again modelled as aitiadal type of intervention. In the
same way, automated verification mechanisms are modelladditsonal interventions.

Difficulty of manual task:The average number of errors for a fully trained user dewetpp
instances manually. Indicated lyror rate,.nual, this is measured in percentage as the
average number of errors per 100 manual instances develafede each manual instance
can be associated with an individual base data instance indbtstrapped system.

Manual development speetdihe average amount of time per instance development foilya ful
trained user performing this task manually, measureg.as.,; this value can also be analysed
separately per types of instance developmenas;,,(s), if so required.

Initial set-up cost:The time it takes for a user to prepare the initial system fanoal devel-
opment or bootstrapping; measured in timeé @8, ,manual ANALserup_bootstrap FESPECLivEly.

3.3.2 MACHINE LEARNING FACTORS

The faster a system learns between verification cycles, éWwerf corrections are required from a

human verifier, and the more efficient the bootstrapping gsedecomes. From a machine learning

perspective, learning speed and accuracy are directlyeiméled by:

Predictive accuracy of current basenodelled as the expected number of instances of each
status at a specific cycle of the bootstrapping process paichited byF (inc_n(s, x)). Implicit
to this measurement are four factors:

— Accuracy of representationghe ability of the chosen representations to model the spe-
cific task.

— Set sampling abilityThe ability to identify the the next ‘best’ instance or instas to add
to the knowledge base, possibly utilising active learngghhiques.

— System continuity:The speed at which the system updates its knowledge base. Thi
has a significant effect on system responsiveness, edgeadiaing the initial stages of
bootstrapping.

— Robustness to human errofhe stability of the conversion mechanisms and chosen rep-
resentations in the presence of noise introduced by human er

e On-line conversion speedAny additional time costs introduced when computation is pe

formed while a human verifier is required to be present (blet while waiting for the com-
putation to complete); measured as an average per humbatidfinstances developed and
indicated byt;ge(n).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 23

CHAPTER THREE BOOTSTRAPPING MODEL

e Quality and cost of verification mechanismBhe average amount of time required to utilise
additional assistance mechanigm from a computational perspective —when an instance is in
statuss, measured a1, (7, 5)-

¢ Validity of base dataUsing invalid data slows the bootstrapping process, eafhgd human
intervention is required to verify the validity of base dataeasured in % of base data, this is
indicated byvalid_ratio.

Two additional factors that are not included explicitly iretgeneral model, but can be included
based on the requirements of the specific bootstrapping assk

e Conversion accuracyThe ability of the conversion to model convert between regméations
without loss of accuracy.

e Effect of incorporating additional data source§he ability of the system to boost accuracy by
incorporating external data sources at appropriate times.

3.3.3 SYSTEM ANALYSIS

The combined effect of the machine learning factors and uiaetors provide an indication of the
expected cost of using the bootstrapping system. The tindevelop a bootstrapping model vié
cycles of bootstrapping, utilising a set of interventidnss given by:

tbootstrap(Na I) = 7fsetup_bootsﬁ’ap + tirain + titerate(Na I)

= tsetup bootstrap + ttrain

+ Z (Z Z tverify(S, 1) + tauto(s,1)) * incn(s, x)

i€l sEstatus

Ftidie * iNC_Nyqria(T + 1)) (3.4)

wheret;.rqte (I, I) combines the cost of the various iterations, excluding te¢ associated with
system setup and user training. The expected valuecf.(s, =) depends on the specific conversion
mechanism, and is influenced bylid_ratio anderror_ratepootstrap (%, 5)-

This cost of bootstrapping can be compared to the expecstd€developingi,,anua iINStances
via a manual process:

tmanual = tsetup_mcmual + tdevelop * Mmanual (35)

If Nbootstrap ANANmanua are chosen such that

Elincn(correct, Npootstrap)] = Elinc_n(correct, nmanuat) (3.6)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 24

CHAPTER THREE BOOTSTRAPPING MODEL

where the number of valid instances generated during iapfsing is given by:

N—-1
Nbootstrap = Z inc-n(valid, x) (3.7)
r=1
the accuracy of each of the two systems is approximatelyalguit, and the values of eq. 3.4 and 3.5
can be combined according to eq. 3.1 in order to obtain a meaduhe expected efficiency of the
bootstrapping process. We use this measure to analyseificspeotstrapping system in Chapter 6.

3.4 BOOTSTRAPPING PRONUNCIATION MODELS

The scenario depicted in Fig. 3.3 can be applied to the brapisng of pronunciation models. In
this case, the base data consists of a word Hstepresents an explicit pronunciation dictionary,
each instance consisting of a word and pronunciation paitf;/arepresents a set of grapheme-to-
phoneme rules. Thd — B mechanism represents grapheme-to-phoneme rule extraatio the
B — A mechanism grapheme-to-phoneme conversion. Additiondloation assistance that can be
provided include automated error detection, and audio@tgjuring verification.

3.4.1 ALGORITHMIC REQUIREMENTS

An appropriate grapheme-to-phoneme rule extraction andersion mechanism lies at the heart of
the bootstrapping process. From the discussion in 3.3@laws that the following are the most
important requirements for a grapheme-to-phoneme fosmalo be used in bootstrapping:

1. It should have high predictive ability, even for very shtiaining set sizes.

2. It should be able to represent the word/pronunciatioa daactly (in order to prevent conver-
sion loss when switching between representations).

3. It should allow continuous model updating at a low compoital cost.
4. Pronunciation prediction should be fast.

5. It should be robust to noise in the training data.

3.5 CONCLUSION

In this chapter we defined a framework and terminology forahalysis of a bootstrapping system.
We showed how this model applies to the bootstrapping of yroiation models and defined the
requirements for a grapheme-to-phoneme conversion mschauitable for bootstrapping. These
requirements are taken into account in the next chapterp€hd) in the search for such a mecha-
nism. The bootstrapping topic itself is revisited in Chafte

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 25

CHAPTER FOUR

GRAPHEME-TO-PHONEME CONVERSION

4.1 INTRODUCTION

In this chapter we analyse the grapheme-to-phoneme (§-tofpversion task through a number of
experiments. Our aim is obtain a pronunciation modellingmagism that is well suited to boot-
strapping. We choose an instance based learning approdtthDynamically Expanding Context
(DEC) as the baseline algorithm, for reasons discusseddtidBet.2. We utilise the pronunciation
dictionaries described in Section 4.3 to analyse variopgds of the task, and to benchmark our
results. As DEC is sensitive to alignment errors, we firstymeagrapheme-to-phoneme alignment
accuracy (in Section 4.4), and define the alignment approachtilise in subsequent experiments.
We then proceed to analyse a number of variations of DEC, aggkst small adaptations to the stan-
dard algorithm (Section 4.5). These variations lead to tfanidion of a new grapheme-to-phoneme
conversion algorithm described in Section 4.6. This atbori—Default & Refine- has a number of
attractive properties that makes it suitable for bootgtiragn

4.2 BASELINE ALGORITHM

As discussed in Section 3.4.1, the ideal grapheme-to-phermnversion mechanism will have the
following characteristics:

1. High predictive ability, even for very small training sgtes.
2. Exact representation of training data.
3. Low computational cost (both for rule extraction and praeiation prediction).

4. Robustness to noise in the training data.

26

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Of the approaches discussed in Section 2.2.2, we excludéhahyequire linguistic input (such as
finite state transduction) or extensive computational uems (such as meta-classifiers). Of the re-
maining approaches, most exhibit comparable asymptotforpeance, with the best results currently
achieved by pronunciation by analogy (PbA) approachesrsidrnice-based learning methods, as de-
scribed earlier.

Both PbA approaches and instance-based learning methogsmade exact representation after
conversion, as required. Also, the computational compjlediexamples within both of these classes
of algorithms are within acceptable limits, with PbA apmioas providing some advantage with
regard to computational cost [25]. As bootstrapping isdgfty not the aim of grapheme-to-phoneme
approaches, little information is available with regarddbustness to noise. The first requirement
then becomes the deciding factor for choice of algorithmuw fnell does the algorithm generalise
from very small data sets. Again, explicit information is m@ailable, but it seems from the results
provided by Dampeet al in [25] that the PbA algorithm only starts to generalise welien the
training dictionary is of sufficient siZze We therefore choose an example of instance-based learning
as the basis for our initial experimentation. Specificallg,choose Dynamically Expanding Context
(DEC), an algorithm that is simple to implement, and gemnsgalfairly well from a small training set.

4.3 EXPERIMENTAL DATA AND APPROACH

We utilise the following databases during experiments:

e NETtalk a publicly available 20,008-word English pronunciatiactionary [20], derived from
Miriam Webster's pocket dictionary (1974). Hand-craftedgheme-to-phoneme alignments
are included in the electronic version.

e FONILEX a publicly available pronunciation dictionary of Dutchnde as spoken in the Flem-
ish part of Belgium [19]. We obtained the exact 173,873-waometaligned version of the dic-
tionary as used by Hoste [41].

e OALD, a publicly available English pronunciation dictionary8]1 We obtained the exact
60,399-word pre-aligned version of the dictionary as useBlack [23].

e Afrikaans A a 5,013-word Afrikaans pronunciation dictionary, buiing the bootstrapping
system and developed as part of this thesis. This dictiowasy/transcribed by a linguistically
sophisticated first-language Afrikaans speaker and mbnuetified by the author. Of the
5,013 words, 90 words are invalid: the remaining 4,923 warésall valid and distinct.

¢ Afrikaans B a 8,053-word Afrikaans pronunciation dictionary, buiting the bootstrapping
system and developed as part of this thesis. This dictiowaybootstrapped frorfrikaans

"When trained on the (American English) Teachers’ Word BAakB), the PbA algorithm that was evaluated achieved
approximately 40% word accuracy after 2000 words [25]

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 27

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

A and transcribed by a linguistically sophisticated firstglaage Afrikaans speaker, but not
exhaustively verified. (Some verification was performeddescribed in Section 6.5.) Of the
8,053 words, 271 words are invalid: the remaining 7,782 wae all valid and distinct.

Where any of the above databases include pronunciatioantar{one word associated with two
or more valid pronunciations), all but the first pronunc@ativariant are removed from the database,
prior to dividing the database into training and test setbeke report on results, we use the term
phoneme correctneds specify the percentage of phonemes identified corrgaigneme accuracy
as the number of correct phonemes minus the number of iossrtdivided by the total number of
phonemes in a correct pronunciation, amord accuracyto specify the percentage of words com-
pletely correct. While we typically report on phoneme aecyronly, phoneme correctness is some-
times included in order to provide a comparative measurh wasults from other sources. Unless
otherwise stated, we perform 10-fold cross-validationribg10-fold cross-validation we subdivide
the entire corpus randomly into 10 distinct sub-sections, taen perform 10 training/testing exper-
iments, training on nine of the sub-sections and testindgheridnth. For the different measurements
(word accuracy, phoneme accuracy, phoneme correctnesgped on the standard deviation of the
mean of each of these measurements, indicated ¥ Where there is uncertainty with regard to the
measure used in a benchmark result, word accuracy providdedst ambiguous comparison.

As in previous sections, we use the format

(1. Zm, G, Y1-Yn) — D (4.1)

to specify extracted grapheme-to-phoneme rules. kiéndicates the focal grapheme; andy; the
graphemic context, anglthe phonemic realisation of the grapheméie also use a more compact
representation:

T1.Tm — G — Y1--Yn — P (4.2)

to indicate the same rule. Note that each grapheme specifiegaaate element, even though these
separate elements are written next to each other (withaespor other indicators of element bound-

ary.)

4.4 GRAPHEME-TO-PHONEME ALIGNMENT

Errors in grapheme-to-phoneme alignment do not affeceuwdifit rule extraction techniques to the
same extent. DEC-based rule extraction mechanisms aréivseng alignment accuracy. For ex-
ample, the correct DEC extraction rule for the grapheme-pai in English is—e — ¢ — iy and
e — e— — ¢ whereg indicates the null phoneme. If the system incorrectly aigre words “keen”

2|f the mean of a random variable is estimated witindependent measurements, and the standard deviations# th

measurements is, the standard deviation of the meanris = %

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 28

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

and “seen” as followsk ee n — k iy ¢ nands e e n — s ¢ iy n, DEC will not be able to extract
the fairly simple rule specified above, as the two words glewionflicting evidence with regard to
the pronunciation of the grapheme pair ‘ee’. Note that thguistic accuracy of the position of the
null phoneme is not important, as long as the choice of mwsi consistent across the set of train-
ing instances. As DEC is sensitive to alignment accuracyppténise the grapheme-to-phoneme
alignment process before analysing the grapheme-to-ph@menversion process.

4.4.1 PRE-PROCESSING OF GRAPHEMIC NULLS

Many languages require few or no graphemic nulls and theiaddl variability introduced by cater-
ing for graphemic nulls result in miss-alignments. For oasé algorithm Align v1) we use forced
Viterbi alignment based on the probabilitiP¢grapheme | phoneme j)and initialise probabilities
from words and pronunciations that have equal length, awithesl by Anderseet al[54]. However,
we insert graphemic and phonemic nulls in two separate .sbe@spre-processing phase, graphemic
null generator pairs (two graphemes that result in more tivarphonemes) are identified by Viterbi
alignment of all word-pairs where pronunciation lengthasder than word length. Phonemic nulls
are inserted in a second phase of Viterbi alignment. (WHeeditst phase introduces unnecessary
graphemic nulls, these are typically mapped to phonemits mlulring the second phase.) In both
phases the alignment process is repeated until no furttedihibod improvement is observed.
Alignment accuracy on thBlETtalk corpus using this implementatiol{gn v1) is higher than
the results reported by Andersehal [22], as compared in Table 4.1. This improvement is due to an
implementation difference rather than a conceptual difiee: The algorithms are similar, apart from
the different handling of graphemic nulls, and graphemitsrao not occur in théNETtalkcorpus.

4.4.2 UTILISING THE PHONEMIC CHARACTER OF NULL-PHONEMES

An additional improvement can be obtained if the transimiptconvention used b\NETtalk is
adapted. IMNETtalk null phonemes are used to identify graphemes that aret&leluring pro-
nunciation, for example the wordriter is transcribed as r it e r — ¢ r ay t ¢ axr. An alternative
convention would be to use null phonemes simply to identitances where two or more graphemes
give rise to a single phoneme (without identifying a patacygrapheme as deleted), by aligning the
first grapheme in such a group with a non-null phoneme, anskesjutent graphemes with nulls. Using
this convention, the wordriter is transcribed as) r i t e r — r ¢ ay t axr ¢. A null phoneme then
simply indicates that the phonemic realisation remains#me for more than one grapheme.

Using a set of about 40 rewrite rules, tN&Ttalk dictionary can be rewritten using either the
one convention or the other. Using the second conventiandittionary responds better to data-

3In earlier work, when adding graphemic nulls by hand, we tbthrat the use of pseudo-phonemes can complement
the use of pseudo-graphemes. Pageall[52] suggested the use of pseudo-graphemes (e.g. creatrgraphemes z to
represent thé ands phonemes that originate fromseparately). We found that, when a more natural choice, sheofi
pseudo-phonemes (e.g. creatingsgphoneme to represent theands combination) can improve alignment accuracy.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 29

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

driven alignment and the second version of our Viterbi atgor (Align v2). This algorithm explicitly
calculates therobability that a specific grapheme is realised as a nullqge, given the previous
non-null phonemic realisation of the preceding graphemgraphemesand provides a significant

performance improvement, as shown in Table 4.1.

Table 4.1:Phoneme and word alignment accuracy obtained on the NETtalhus.

Database Type Phoneme Word
NETtalkoriginal | Iterative Viterbi [22] 93.2 83.7
NETtalkoriginal | Align vl 96.5 87.3
NETtalkrewritten | Align v2 98.7 95.4

The effect of the improvement in alignment accuracy on ruleagtion accuracy is depicted in
Fig. 4.1. TheAlign v1andAlign v2 algorithms are used prior tDEC-mirf rule extraction on a
10,000-word subset of tHeONILEX database, and grapheme-to-phoneme prediction accuracy me
sured against a 5000-word test set.

Align vl ——
70 L Alignv2 -

50 /
40 b/

30]/
0 2000 4000 6000 8000 10000
Number of words

Word-level accuracy

Figure 4.1:Effect of different alignment algorithms on word-levelquaciation prediction accuracy
of DEC-min, as measured on a 10,000-word subset of FONILEX.

In order to verify that this effect is not corpus-specific, pegform a further evaluation using the
OALD corpus. We analyse the effect of the two different alignrmaggorithms Align v1 and Align
v2) when extracting botlbEC-growand DEC-minrules using training sets of increasing size. For
each training set of a specific size, 10 distinct training se¢ generated. All training sets are tested
against a non-overlapping 5970-word test $6¥{ of the full data set). A similiar trend is observed as
on theFONILEXcorpus, as depicted in Fig. 4.2. For example, the mean pheaenuracy foDEC-
grow rules trained on a 5000-word training seB&83% (with o190 = 0.07) when aligned according
to Align v1, and87.54% (with 019 = 0.06) when aligned according talign v2 During the earlier

4The DEC-minalgorithm is described in Section 4.5.2.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 30

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

45 AL T T T 45 AL T T T
Alignvl —— | Alignvl ——
40 [AlIgN V2 —tosemmn b T T AR V2t
> : : - > : :
Q : : (8] : :
8 35 g
> 3
3 3
g 301 IS
o o
S 25 5]
= 2
20
15 15
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
DEC-min DEC-grow
88 AL T T T 88 T T T T 2
Alignvl —— | e ¢ Alignvl —— JE
§ 86 - 'Alig"n' v27v><~— T § 86 ['Align V27v><~—
5 84r] Tl 5 84] —
o : o :
g 82 : o S 82
g 80 GE" 80 F
2 2
o 78 - o 78 -
c e
o 76 o 76
74 74
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
DEC-min DEC-grow

Figure 4.2:Effect of different alignment algorithms on prediction a@xry of DEC-grow and DEC-
min, as measured using the OALD corpus.

stages of the rule extraction process (when alignment pilitiess are still unstable) this provides a
signficant advantage.

45 DEC-BASED GRAPHEME-TO-PHONEME PREDICTION

4.5.1 STANDARD DEC

A conceptual description of DEC as applied to the graphasyghbneme problem by Torkkola [21]
is provided in Section 2.2.2.3. In this section, we dischssapproach in further detail: Each DEC
rule specifies a mapping of a single grapheme to a single phefiar a given left and right graphemic
context, i.e is of the form(left-context,grapheme,right-context}y phonemeEach word in the train-
ing dictionary is aligned with its pronunciation on a peapgneme basis, as illustrated in Table 4.2.
Rules are extracted by finding the smallest context thatigesva uniqgue mapping of grapheme to
phoneme. If am—letter context is not sufficient, the context is expandedtteethe right or the left.
This ‘specificity order’ influences the performance of thgoaithm. Different orderings are illustrated
in Table 4.3 as applied to graphenst in the word'‘interesting’. Context 1 is expanded symmetri-
cally on a right-grapheme-first basis, context 2 is exparsj@dmetrically on a left-grapheme-first
basis, and context 3 favours the right context on a 2:1 badsis.set of extracted rules are stored as
a hierarchical tree, with more general rules at the root,raack specific rules at the leaves. The tree
is traversed from the root to the leaves, and the rule at tsierfiatching leaf (the rule describing the

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 31

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Table 4.2:Word alignment and rule extraction in standard DEC.

Alignment examples | rose—rowzo
rOwsS—rowaez

root—ruwot

Rule examples for -0t in context -0: -0-0— uw
in context -se: -0-se- OW
in context 0-: 0-0— ¢

Table 4.3:Different examples of context expansion order in DEC.

size | context 1| context 2| context 3
0 S S S
1 st es st
2 est est sti
3 esti rest esti
4 resti erest estin

largest matching context) is used to predict the specifiplwame-to-phoneme realisation. If no leaf
is matched, the most probable outcome of the last matchafgdeised, as can be estimated from the
training data. In our implementation of DEC, we do not explicorder the rules in a tree structure,
but number them according to the order in which they are etdda(corresponding to a topological
sort of all rules that can apply to a single word). We thendeaia reverse rule order rather than tree
traversal. This variation does not change the algorithnatfanally.

If DEC is not allowed to grow an asymmetric context when itchezs a word boundary and
conflicting rules are ignoredDEC-conflic) the performance of the algorithm degrades for larger
training corpora, especially if rules regarding the contaxrounding a grapheme early or late in a
word are of predictive importance. In order to remove thfsaf the version of DECEC-grow)
that was implemented as baseline algorithm allows a comegtow towards the opposite side if a
word boundary is encountered. This effect is illustratedrig. 4.3 where we plot the results for
DEC-conflictandDEC-growduring the initial stages of learning (using tR®NILEXcorpus).

45.2 SHIFTING WINDOWS

DEC, as applied by Torkkola [21] expands the context of algeage one letter at a time, either
favouring the right- or left-hand side explicitly. We ansdythe implications of using a sliding window
rather than a strict expanding context. We define a slidingdaiv that first considers all possible
contexts of sizen, before continuing to consider contexts of sizel, which prevents rules with

unnecessarily large contexts from being extracted. Inrashto the DEC context expansion of Table
4.3, a sliding window applied to graphert® in the word‘interesting’ would result in the context

ordering indicated in Table 4.4. Since multiple rules of $aene context size may apply to a single
grapheme-to-phoneme mapping (suchegs,ti— sandere,s,t— s), contexts that are already served

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 32

CHAPTER FOUR

GRAPHEME-TO-PHONEME CONVERSION

Phoneme accuracy

Figure 4.3:Comparing DEC-conflict and DEC-grow during initial learmjrstage (first 5000 words

100 T T T T 65 T T T T
DEC-conflict —— DEC-conflict —+— e
‘DEC-grow ---x--- 60 [DEC:grow ==zg== 7T
95 b i R oo . ? Lo
90 i

85

80

0

1000 2000 3000 4000 5000

Number of words in training dictionary

Word accuracy

0
Number of words in training dictionary

of FONILEX). DEC-grow is chosen as baseline algorithm.

1000 2000 3000 4000 5000

Table 4.4:Context expansion order in shifted DEC.

order | size| context|| order | size| context
1 0 S 2 1 st
3 1 es 4 2 est
5 2 sti 6 2 res
7 3 esti 8 3 rest
9 3 stin 10 3 eres

by existing rules can be removed to prevent over-specialisa Because all contexts of each size
are considered, the order in which contexts are expandea @pecific context-level) becomes less
significant than in standard DEC.

Figures 4.4 and 4.5 compare the performance of different D&iations. In all experiments,
a symmetric right-first expansion scheme is 3s@s$ also in Table 4.4). The size of the maximum
context allowed when extracting rules is not restricted] #re same word training order (random
selection from corpus) is used. In order to compare withipte/results, we use the exact alignments
as used in [41]. Where word variants occur, we only use thievfirgant — both for training and testing
purposes.

Three shifted window versions of DEC are implemented: exing the first valid rule encoun-
tered DEC-win) extracting the maximum number of valid ruld3§C-may and pruning this system
to obtain the minimum number of rules that still provide fudiverage for the training corpuPEC-
min). When a shifting window is used, more than one conflicting of the same size may apply to
a word. Various conflict resolution strategies can be impgleted: in the set of experiments reported
below, the most frequently observed rule is favoured. Fettthining set sizes analysed, the pruned,
shifted window version of DEC.XEC-min) provides a small but consistent performance improvement
in word accuracy. DEC-winis not shown, but results in a learning curve similaDBC-grow both

A symmetric, right-first expansion scheme is used when rptos are generated for consideration prior to selection
of the actual rule — actual rules are generated accordinghdting window, and do not exhibit strict right-first belhaur.
®Note that phoneme accuracy initially follows a differerrtd for this corpus.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 33

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

100 T T T
DEC-grow ——
DEC-max -
DEC-min -
95
>
g I e N -
3 T e AN B, L
g T D
o 90 E
IS
]
c
o
ey
o
85

80
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of words in training dictionary

Figure 4.4:Word-level accuracy of different DEC variations duringtiai learning stage, as mea-
sured using the first 5000 words of FONILEX.

65 T T T
DEC-grow —+—
DEC-max --—--x---
60 - DEC-min ~x- P e s

55

50

45

Word accuracy

40

35

30

S

25
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of words in training dictionary

Figure 4.5: Phoneme-level accuracy of different DEC variations durinigal learning stage, as
measured using the first 5000 words of FONILEX.

with regard to word and phoneme accuracy. Asymptotic parémrce is only approached for larger
training sets, as compared in Table £282C-mincontinues to perform better th&EC-grow with a
small margin. The improvements during the initial learngtgges are small, and introduce additional
overhead during computation. Of more interest is that thve DEC variation DEC-min) forms the
basis for further algorithmic improvement, as discussetthémnext sections.

As can be expected, the extracted rule sets grow in diffes@ys with regard to rule number
and rule length, as the size of the training dictionary iases. An analysis of the different types
of rule sets extracted from the same training dictionaryravided in Table 4.6. The numbers of
rules of each size (the size of the context that specifiesul® are compared, as extracted from
different sized training dictionaries usimgEC-grow; DEC-maxand DEC-min Note thatDEC-max
tends to extract more rules th&EC-growbut that these rules tend to be shoreEC-minreduces

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 34

CHAPTER FOUR

GRAPHEME-TO-PHONEME CONVERSION

Table 4.5: Phoneme correctness, phoneme accuracy and word accuranpasison for different
DEC variations, as measured using the FONILEX corpus.

phoneme correctnegsphoneme accuracy word accuracy|
+o10 +o10 +o10
DEC-max | 98.44 0.01 98.28 0.01 88.71 0.06
DEC-grow | 98.50 0.01 98.32 0.04 88.60 0.07
DEC-win | 98.57 0.01 98.40 0.01 89.53 0.05
DEC-min | 98.58 0.01 98.41 0.01 89.58 0.06

the number of rules significantly (in comparison witieC-may. DEC-minextracts slightly more

rules tharDEC-win, but as can be expected, these are much shorter (more general

Table 4.6:Number and size of rules: DEC-grow, DEC-max and DEC-min

Rule type: DEC-grow DEC-max DEC-min
Dict size: | 100 1,000 10,000 100 1,000 10,000 100 1,000 10,000
1 27 27 27 27 27 27 27 27 27
2 65 92 103 | 108 105 103 | 86 104 102
3 127 545 1259 | 256 1224 2375| 102 705 1661
4 19 323 1996 | 24 926 7031 | 9 375 3469
5 7 131 1845 | - 78 3081 - 33 1381
6 - 33 712 | - 7 341 | - 3 178
7 - 8 280 | - - 27 - - 18
8 - - 71 - - 5 - - 3
9 - - 32 - - 1 - - 1
10 - - 4 - - 1 - - 1
11 - - 5 - - - - - -
12 - - 1 - - - - - -
13 - - - - - - - - -
14 - - - - - - - - -
15 - - 1 - - - - - -
Total 245 1,160 6,337| 415 2,367 12,992 224 1,247 6,841

4.5.3 RULE PAIRS

When analysing the specific errors made by these DEC vargtib becomes apparent that some
rules occur in ‘rule pairs’, i.e. two rules always occur ampanions in the training data. These rule
pairs are sometimes not applied as companions in the testaaising errors. For example, during
rule extraction a rule-e — en — iy is typically followed by a second rule rule— e —n — ¢
ore —e— — ¢, and is a better rule to apply when predicting the instahice e — en than the
otherwise equally likely rulgtk — e—. We experiment with the implication of forcing such rulergai
to occur in tandem. First, we identify rule pairs that alwagsur together in the training data and
exhibit a context overlap of at least the two focal graphenTgsen we restrict our rule application
to only use one of the rules in such a pair if the second ruldénpair is also applicable to the

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 35

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

same training instance. However, constraining rule paitkis way does not have a significant effect
on predictive accuracy: In some instances the rule paircgapr does correct a second phoneme that
would otherwise have been wrong, but in a comparable nuniloases this approach causes a second
phoneme to be wrong, which would otherwise have been covéettherefore do not continue with
further experimentation along this route.

4.5.4 CONFLICT RESOLUTION

In standard DEC, the largest matching rule is always urfighen a shifting window is used, more
than one conflicting rule of the same size may apply to a wdrdeelusenum(r, p) to specify the
number of training instances that match the context of aifipeale » and specific outcome as we
calculate the ‘accuracy’ of the ruleas:

t .
accuracy(r) = num/(r, outcome(r)) for all possible outcomes. 4.3)

> num(r,z) + 1

In the experiments described above, if more than one catedidke (of the same size) is applicable to
the current word being predicted, we choose the rule for aicuracy(r) is highest. This is a fairly
simple conflict resolution strategy, and various altem@atiptions are possible. We experiment with
a number of these, including (1) voting among possible r(dbsosing the outcome that most of the
candidate rules agree upon), (2) applying the smallerlfiatk) context rather than any of the larger
conflicting rules, and (3) simply choosing any of the rulesaatdom (in practice whichever of the
candidate rules was generated first during rule extragtag find no consistent improvement using
any of the alternative conflict resolution strategies. Watiomie to use the initial conflict resolution
strategy (highesiccuracy(r)) for further experimentation.

455 DEFAULT RULES

The question of how to best resolve conflict is closely linkedhe question of how to best define
default rules. One of the consequences of DEC rule extragithat there exists only a single rule
of any given length that can potentially apply to a specifiedMavhere this length lies between one
and the total length of the word being predicted). If the wioethg predicted is of length, and no
matching rule of length exists, then a single rule of size— 1 may potentially apply. In effect the
latter rule acts as ‘back-off value’ for the rule of length If a rule of lengthn — 1 does not exist
either, the (unique) matching rule of length- 2 becomes the next possible candidai/hen using
shifting windows, there is no longer a unique rule of any gilength that can potentially apply when
predicting a word — more than one candidate may exist. Wetthier consider the effect of adding
default rules explicitly: for any set of rules of contextesizwith one or more internal disagreements

"This rule may be conflicted (i.e. not a leaf node in Torkkokriginal implementation) in which case the most fre-
guently observed outcome across the training data is gexetaut no conflicting rules of the same size can exist.
8From a conceptual perspective — this is not the processstiatiowed in practice during DEC prediction.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 36

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

and no ‘default rule’ of sizes — 1, we add an explicit rule of context size— 1 with an outcomep
such thathum(r, p) is the maximum over all possible outcomes. Interestingldirg this additional
information decreases rule accuracy. An error analysigdels that inappropriate ‘default rules’ are
extracted: while these rules correctly ‘fill the gaps’ amdmg rules extracted from the training data,
the ‘default rules’ are forced to specific value by the prasglg extractedEC-minrules, and do not
generalise well. This leads us to the definition of a defaotl-refinement approach to grapheme-to-
phoneme prediction, as discussed in the next section (Bes4t6). This approach utilises a similar
rule definition format as DEC, but the rule extraction pradesnore distant from original DEC than
the variations studied up to this point.

4.6 A DEFAULT-AND-REFINEMENT APPROACH TO G-TO-P PREDICTIO N

Grapheme-to-phoneme prediction algorithms rely on theéeotion between the spoken and written
form of a language. Itis expected that, the more modern titgng/system of a language, the stronger
this connection, and the more regular the spelling systetheofanguage [71]. This may not always
hold in practice, for example, when a language with maintyofdy) an oral tradition is transcribed
for the first time, and the variability introduced througte fimitial transcription process has not yet
stabilised through usage or an education system thatagilise written form. While alternative
outcomes are possible, the languages studied as part dfi¢isis all exhibit a combination of a fairly
modern writing system associated with a fairly to highlyulkeg spelling system.

The more regular the spelling system of the language, tlmmgtr the concept of a ‘default
phoneme’: a grapheme that is realised as a single phonemificsigtly more often than as any
other phoneme. Figure 4.6 and Figure 4.7 illustrate thisiphenon for Flemish. When counting
the number of times a specific grapheme is realised as a spgkdheme, most graphemes follow
the trend depicted in Figure 4.6. Hengjs realised as a single phoneme more théfx of the
time, with the next two phonemic candidates occurring @alyt and4% of the time, respectively.
For graphemes that exhibit ‘conflicted default phoneme’abaur, such ash(j,n,u, the trend is
less strong, but also clearly discernible, as depictedguiiei 4.7. Similar trends are observable for
languages with less regular spelling systems, with a langggortion of graphemes of these languages
displaying the behaviour depicted in Figure 4.7.

We use this information to define an algorithm that utilise=edy search to find the most general
rule at any given stage of the rule extraction process, aplicék/ orders these rules according to the
reverse rule extraction orderExplicitly ordering the rules provides flexibility duringle extraction,
and ensures that the default pattern acts as a back-off misohdor the more specialized rules.
The framework we use is similar to that used in previous eesti Each grapheme-to-phoneme rule

°It is interesting to note that, while the rule applicationl@r of DEC is ordered by context size (largest rule first), our
reverse rule extraction order automatically reverts tdexirsize ordering in the case of DEC-based rule extraction.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 37

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

% of samples

\,\i\\p 2 g g)
4 6 8 10
Most to least frequent g-to-p mapping observed

Figure 4.6:Default phoneme behaviour of graphemes d,s,t and j in Flen@sly the first 10 phone-
mic candidates are displayed.

80 | . 1
70 | U B T
60 | 1
50 F]

40 |

% of samples

30

20

10

=
) -

0 e
0 2 4 6 8 10

Most to least frequent g-to-p mapping observed

Figure 4.7:Conflict phoneme behaviour of graphemes h,j,n,u in Flen@stly the first 10 phonemic
candidates are displayed.

consists of a pattern
Gleft — 9 — Gright — D (44)

whereg indicates the grapheme being consider@g;; and g,;41,; are the graphemic left and right
contexts of the rule, angd the specific phonemic realisation @f The pronunciation for a word is

generated one grapheme at a time. Each grapheme and itsdefghat context as found in the target
word are compared with each rule in the ordered rule set;tanfirst matching rule is applied.

Prior to rule extraction, grapheme-to-phoneme alignmepierformed according to the Viterbi-
based alignment process described in Section 4.4. Pratiorcivariants are currently not allowed:
if a word has more than one possible pronunciation, only trst i kept. Each aligned word-
pronunciation pair is used to generate a set of possible leextracting the sub-pattern of each
word pattern; an example of such a process is shown in Table 4.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 38

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Table 4.7:The relationship between a word (test) and, for one of itpgenes (e), the word pattern
and sub-patterns that are generated during rule extraction

Word test

Word pattern| #t-e-st#— eh

Sub-patterns| -e- — eh,-e-s— eh,t-e-— eh,t-e-s— eh
t-e-st— eh, #t-e-s— eh,-e-st#— eh
#t-e-st— eh,t-e-st#— eh #t-e-st#— eh

Once all possible rules have been generated in this ways auke extracted on a per-grapheme
basis, one rule at a time. For any specific grapheme, apf@dieadrds are split into two sets based on
whether the current rule set (initially empty) predicts grenunciation of that grapheme accurately
(Completedwnords) or not Newwords). These two large word sets are used to keep tracktoksta
but further manipulation utilises two sets of sub-pattertige Possiblesub-patterns, indicating all
possible new rules, and consisting of all the sub-pattefremch word pattern ilNew; excluding all
for which the left-hand side is an existing rule; and @aughtset of sub-patterns, indicating all the
sub-patterns covered by the current rule set irrespecfivehether the outcome of the rule matches
that of the word or not. Both thRossibleandCaughtsets of sub-patterns count the number of times,
per possible outcome, that a matching word pattern is obdénvthe relevant word sets.

The next rule is chosen by finding the pattern for which thechiaty count inPossibleminus
the conflicting count irCaughtis highest. (The conflicting count is the number of times acimay
left-hand pattern is observed with a conflicting right-hamdneme.) Definition of a new rule moves
words from theNewto the Completedset. Any words that are currently in tli@ompletedset and
conflict with the new rule, are moved back to thewset. This process is repeated until all words have
been moved from thelewto theCompletedset. The algorithm ensures that the next rule chosen is the
one that will cause the most net words to be moved fronNieto theCompletedset, irrespective of
context size. As this number (net words processed) is alpagiive'?, the algorithm cannot enter an
infinite loop. The stronger the default behaviour exhibibgda specific grapheme described by a new
rule, the more words are processed during the extractidmdtpecific rule. Conflict is only resolved
in the Completedset: new rules are allowed to conflict with words stilNiew; which ensures that the
rule set is built for the default pattern(s) first.

In order to ensure computational efficiency when trainedawgdr dictionaries, we use the fol-
lowing techniques during implementation:

e Words are pre-processed and the word patterns relevantitmle grapheme extracted and
written to file. All further manipulation considers a singjeapheme (and the corresponding
set of word patterns) at a time.

e The context size of the sub-patterns considered is growarsggically: only sub-patterns up to

1%A rule based on a full word pattern can only apply to that singbrd, and will result in a ‘net move count’ of 1. Since
the maximum of all these ‘net move counts’ is selected, thise/will always be positive.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 39

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

sizemax +win are evaluated, whereax indicates the current largest rule, anéh is defined
to ensure that any larger contexts that may be applicablecm&idered, without requiring all
patterns to be searched.

¢ Whenever a sub-pattern Rossibleor Caughtreaches a count of zero, the sub-pattern is deleted
and not considered further, unless re-added based on ass@itmove of a related word.

While these techniques ensure that a fairly large dictipr{d®0,000 words) can be trained in an
acceptable amount of time when using the process in a neraittive fashion, the process to train
a sizeable dictionary becomes too slow for interactive stoapping. This issue is addressed fur-
ther in Section 4.6.4. In the remainder of this thesis werrefehe algorithm described above as
‘Default&Refiné

4.6.1 ASYMPTOTIC PERFORMANCE

In order to evaluate the asymptotic behaviouDeffault&Refine we compare our results on a fairly
large corpus with published results for a number of altévaatlgorithms. As théefault&Refine
algorithm is motivated by 'default behaviour’, we first avale the algorithm on a language with a
fairly regular spelling system (Flemish), before testihgn a language with an irregular spelling
system (English).

4.6.1.1 REGULAR SPELLING SYSTEMS

We evaluate the accuracy of tbefault&Refinealgorithm when trained on the fUHONILEXtraining
set, and compare its performance with that of alternatigerdhms in Table 4.8: théB1-1G result
utilises an instance-based learning algorithm and is astegbin [41]; theDEC-growandDEC-min
results are calculated using the algorithms described dtid®e4.5.2; and th®&R result reports the
Default&Refinevalues. TheDEC and Default&Refineexperiments utilise the same alignments as
used in [41].

Table 4.8: Phoneme correctness, phoneme accuracy and word accuranpasison for different
algorithms using the FONILEX corpus

phon correct | phon accuracy word accuracy
+o10 +o10 +o10
IB1-1G 98.18 - - - 86.37 -
DEC-grow | 98.50 0.01| 98.32 0.04 | 88.60 0.07
DEC-min | 98.58 0.01| 98.41 0.01| 89.58 0.06
D&R 98.87 0.01| 98.78 0.01| 92.03 0.06

The focus of [41] was to investigate the effect of cascadivmydlassifiers — one trained GtONILEX
and one orCELEX- a Dutch variant corpus, and creating meta-classifiergushO0 (decision tree
learning), IB1-IG (instance-based learning as describe8dction 2.2.2.3), IGTREE (an algorithm

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 40

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

that induces decision trees utilising information gainjl AACCENT (a maximum entropy-based
algorithm). The highest accuracy reported was for such a4tlessifier system91.55% word
accuracy for a single meta-classifier; a92125% word accuracy for a meta-meta-classifier of all
meta-classifiers. (These systems all utilised@eL £ X data as an additional data source.) We find
thatDefault&Refinehas good asymptotic accuracy, and performs better tharothparative (single)
classifiers.

4.6.1.2 LESS REGULAR SPELLING SYSTEMS

As the algorithm is motivated by 'default behaviour’ we wémterested in the extent in which the
algorithm would fail for a language such as English, withssleegular spelling system. We therefore
evaluate the asymptotic performance of the algorithm agjdianchmark results available for both
the NETtalkand theOALD corpus. It is reassuring to find that the algorithm againqrens well, as
shown in Tables 4.9 and 4.10.

Table 4.9: Phoneme accuracy, phoneme correctness and word accuranpasson for different
algorithms using the NETtalk corpus

phon correct | phon accuracy word accuracy,

+o10 +o10 +o10
Trie - - 89.8 - 51.7 -
DTree - - 89.9 - 53.0 -
DEC-T - - 90.8 - - -
DEC-Y - - 92.21 - 56.67 -
D&R 91.37 0.08| 90.50 0.1 | 58.66 0.21
SMPA - - 93.19 - 63.96 -

In Table 4.9 we compare the performance of a number of algogton theNETtalk corpus.
We list the results obtained by Andersenal [22] using Trie structuresTfie) and decision trees
(DTre@ respectively; by both Torkkola [21] and Yvon [36] using Rynically Expanding Context
(DEC-T and DEC-Y); by Yvon [36] using SMPA, a pronunciation-by-analogy aitom; and the
results ofDefault&Refing(D&R) using own alignments. The phoneme correctness reportgbjn
for DEC seems anomalously high, in relation to our own expernits, those obtained in [21], and the
reported word accuracy. TI&MPAalgorithm employs a pronunciation by analogy approach,ignd
less suitable for training on very small data sets. Therlagésults only pertain to words that could
be pronounced — abo0t5% of words were not pronounceable with SMPA when fully trainsidte
also that the SMPA results score the accuracy of variantsdndst set differently to the approach
employed in this thests.

In Table 4.10 we compare the performanc®efault&Refing D&R) with the results obtained by

In the SMPA experiments all variants but one are removed ftaniraining set, but all variants are retained in the test
set — if any of the possible variants are generated durinitngeghe prediction is marked as accurate. This is diffeten
the scoring approach used in this thesis, as described tio8dc3

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 41

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Black et al [23] using Classification and Regression Tre@ART) for two data sets: one including
stress assignment (SA) and one without. We use the exaonadigts, and the same single training
set and test set as used by Bl&ckrhe CART trees were generated taking part-of-speechrirdtion
into account — whiclDefault&Refinedoes not use. Without POS information, the CART result (with
stress assignment) decrease8i32% phoneme correctness aftl28% word accuracy .

Table 4.10:Phoneme accuracy, phoneme correctness and word accuraggacson for CART and
Default&Refine using the OALD corpus (SA indicates stregmalent)

phon correct| phon accuracy word accuracy|
Incl. SA:
CART 95.80 - 74.56
D&R 97.12 96.87 83.76
Excl. SA:
CART 96.36 - 76.92
D&R 97.80 97.56 87.40

4.6.2 LEARNING EFFICIENCY

In order to use this algorithm for the bootstrapping of praciation dictionaries, we are specifically
interested in the performance of the algorithm when tramedery small training sets. We therefore
evaluate word and phoneme accuracy for different trainictjatharies of sizes smaller than 3,000
words, using subsets froFONILEX Figure 4.8 demonstrates the phoneme accuracy learning cur
for Default&Refinen comparison wittDEC-grow Each rule set is evaluated against the full 17,387-

word test set.

0 | Default&Refine ——
DEC - —

92 1

90
o6
84 '/

82 L
80

0 500 1000 1500 2000 2500 3000
Number of words in training dictionary

Phoneme accuracy

Figure 4.8:Phoneme accuracy during initial 3000 training words, as swad using the FONILEX
corpus.

2When 10-fold cross-validation is performed using différenbsets of this data set, a slightly lower cross-validated
accuracy is obtained96.62% phoneme accuracy ar2.37% word accuracy when stress assignment is included, and
97.66% phoneme accuracy argé.41% word accuracy without stress assignment.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 42

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

4.6.3 SIZE OF THE RULE SET

While the size of the rule set is typically not a concern dygmapheme-to-phoneme bootstrapping,
it can be important for other applications (such as dictiprammpression). We therefore analyse the
size of the rule set, and find that the rule set extracteBdifault&Refinds significantly smaller that
extracted byDEC-grow, as shown in Figures 4.9 and 4.1Default&Refineprovides both a more
accurate and more compact prediction model: the 156,486-waining dictionary is represented
with 100% accuracy by 15,053 rules.

DEC

12 .
: 1,000 ——
% 10,000 -

10 b 156,486 x|
| . *

8 \

Size of rule context

0 2000 4000 6000 8000 10000
Number of rules per context size

Figure 4.9:Number of rules per context size extracted by DEC-grow fr@imihg dictionaries of
three different sizes.

Default&Refine
12 T
g 1,000 ——
3 10,000 ----x---
10 # 156,486 x|
«
g Btx
<
S s8R
S \x *
)
N 4 >
2 [
0
0 2000 4000 6000 8000 10000

Number of rules per context size

Figure 4.10:Number of rules per context size extracted by Default&Rdfom training dictionaries
of three different sizes.

4.6.4 CONTINUOUS LEARNING

The ideal bootstrapping system will be able to update treeget after every correction by the verifier,
immediately incorporating further learning in the boaping knowledge base. The time taken for

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 43

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

such updates is therefore of crucial importance. The upslsed is influenced by two factors: the
alignment speed and the rule extraction speed: lépresents the number of words in the training
dictionary, then the complexity of the alignment procesd #rat of the rule extraction process is
both approximatelyO(n), if it is assumed for the sake of simplicity that all words awere or less
of equal length®. This is typical of various of the rule extraction technigubat are appropriate for
grapheme-to-phoneme bootstrapping.

If the entire set of training words is processed after evenyection, the update time becomes
a limiting factor as the dictionary grows. In our implemditta, continuous updating becomes un-
wieldy when the number of words with known pronunciationse®ds approximately 2000. On the
other hand, by performing batch updates at specific timdssthinthe verifier (e.g. at the end of a
verification session), the update time does not become draoris but the learning obtained during
the session is not utilised to refine models until after the einthe session. In order to obtain an
algorithm that allows for continuous model updating whigeging the update time within acceptable
limits, an incremental version of tHeefault&Refinealgorithm was developed.

While the original algorithm creates a set of graphemic tdes (one tree per grapheme) from the
training set by considering all the training words simudtansly, the incremental version utilises the
trees constructed during the previous (batch mode) updateadds the new refinements as leaves to
these trees: for each grapheme in the new word, if the relgtiseneme is predicted accurately by the
current graphemic tree, no update occurs; otherwise thikeshiaule is extracted that will describe the
new word without affecting any of the existing predictiofihis version hag)(d) complexity where
d represents the average depth of the various graphemiaeele {which is approximately equivalent
to the average context size of the graphemic rule set). Usiisgincremental process, additional
learning can be obtained from the new words added withougicguiscernible delay, even for large
training dictionaries.

In practice, the bootstrapping process operates in twogshaturing the first phase a batch up-
date occurs for every word; during the second phase a battdteipccurs at synchronisation events
only, and incremental updates are performed in betweerhsynisation events. The interval between
synchronisation events is based on a set number of “updatgsiya.e. words that have been cor-
rected by the verifier (words that were correctly predictedrgo verification do not contribute to this
count). At the end of this interval, a synchronisation eveaurs: the complete training dictionary is
re-aligned, and new rules are extracted in batch mode. Dtinie update interval, the Viterbi proba-
bilities calculated at the previous synchronisation eaeetused per word to perform a fast alignment
(the probabilities are used in the standard way, but nottepdland incrementdbefault&Refineis
used to extract additional rules from the single aligneddagnonunciation pair. Phase 2 is initiated
well before the time required by the full update event becomaticeable. (For our current system
we progress from phase 1 to phase 2 when 1500 valid words legredrocessed.)

As can be expected, the new algorithm is an approximatiorntasfdardDefault&Refine and

13See section 4.7.3 for a further discussion of the computaticomplexity ofDefault&Refine.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 44

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

96

Batch mode (50) ——
95 Incremental mode (50) -

94]
93 T

i
92 ¢

Phoneme accuracy

90 /¥
89 /
88 /:

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of words in training dictionary

Figure 4.11:Phoneme accuracy comparison for incremental and batch rabde update interval of
50, measured using the FONILEX corpus.

10 r : i i .
‘ dl: Inc vs Batch (50) ——
x d2: Inc vs None (50) ----x---

)]

Percentage change in phoneme accuracy
& o
—t -

-10

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of words in training dictionary

Figure 4.12:Relative change in phoneme accuracy when comparing inere@neith batch mode
(61), and incremental mode vs no updating between synchrémisatents ¢;); both at update in-
terval 50.

therefore somewhat less accurate than the original. Weaeathe performance of the system using
an existing pronunciation dictionarfrQNILEX), and perform 10-fold cross-validation on all our
results. In order to determine the efficiency of the incretaleapproach, we first compare the two
rule extraction processes (incremental mode and batctandatd mode) without taking changes in
alignment into account. We utilise the same set of alignsiéfior both types of rule extraction, and
measure phoneme accuracy on the same training set usingdtifterent algorithms. We find that
the decrease in accuracy is slight once the graphemic treesf aufficient size, as demonstrated in
Fig. 4.11 for a synchronisation interval of 50. The diffezenn accuracy can be analysed in further
detail by calculating two valuesi;, the relative increase in phoneme error rate when utilisireg

The alignments used were obtained from a 173,873-worditigaitictionary.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 45

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

incremental mode compared to the batch mode,&anthe relative decrease in phoneme error rate
when utilising the incremental mode, in comparison withygrérforming updates at synchronisation
events and not updating the models in between; that is,

_inc(x) — batch(x)

ou(x) = 1 — batch(x)

inc(x) — batch(z — 1)
1 — batch(x — 1)

% 100 (4.5)

S2(z) = % 100 (4.6)
and wherebatch(x) indicates the phoneme accuracy using batch rule extractiodinc(z) the
phoneme accuracy using incremental rule extraction, batiirechronisation point. Fig. 4.12 illus-
trates the trends for thf andd, values for an update interval of 50 (still utilising ideailgaments),
providing an additional perspective on the same data atagliesphin Fig. 4.11.

The effect on rule set accuracy is strongly influenced by émgth of the update interval. We
therefore compare the performance of the two algorithmslifeerent update intervals, and find that
the average); andd, values are both fairly linear in relation to the update wéér the longer the
interval, the less accurate incremental updating becorheswompared with batch updating, and the
more value is provided by incremental updating vs perfogmia updates in between synchronisation
events. In Fig 4.13 we plot th§ andd, values for update intervals of leng®io, 100, 150 and 200
during the first 4500 words of bootstrapping. These trendsimoe for larger update intervals.

4

Average dl ——
Average d2 oy

Percentage change in phoneme accuracy
o

0 50 100 150 200 250
Length of update interval

Figure 4.13:Averaged, andd, values for update intervals of length 50,100,150 and 200.

Finally, in order to ensure that the fast alignment processscdot introduce a noticeable loss
in accuracy, we compare the two algorithms (batch and inengah rule extraction), applying the
alignment process as it would be used in practise: perfaymifull alignment during synchronisation
events and using the fast alignment process in between. W while there is a greater variance
in the effect on phoneme accuracy when using the fast alighpm®cess during the first phase of
bootstrapping, this effect becomes negligible during #mad phase of bootstrapping. (In practice,
fast alignment is only used during the second stage of trapising.) In Fig 4.14 we plot thé,

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 46

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

values for an update interval of 50, when using ideal aligmisiand actual alignments.

10

' (a) Ideal élignments' —
b) Actual alignments ----x---

)]

&

Change in phoneme accuracy
o

-10

500 1000 1500 2000 2500 3000 3500
Number of words

Figure 4.14:Change in phoneme accuracy Y when comparing incremental with batch mode when
(a) ideal alignments are used, and (b) when actual alignsard used.

The above results indicate that incrememafault&Refingprovides an effective way of increas-
ing system responsiveness. As there is a clear trade-offeleet the length of an update interval and
learning efficiency, the update interval can be chosen inyathat is suitable for the specific dictio-
nary developer: longer continuous sessions (requirirggnyi more corrections), or shorter sessions
with frequent breaks. As the dictionary size increases hadule set approaches asymptotic accu-
racy, the number of words considered between synchrooisatients increases automaticilyFor
large dictionaries, the batch update process can becomiysedent, rather than an hourly event,
as would be the case for relatively small dictionaries. Aldthe user interface requires little pro-
cessing capacity, the batch update may be scheduled to iocthe background during incremental
verification, transparent to the user

4.7 BOOTSTRAPPING ANALYSIS

In this section we summarise the characteristicEBEC-grow, DEC-mirandDefault&Refineaccord-
ing to the four main requirements for bootstrapping, as rilesg in Section 4.2: predictive ability,
conversion accuracy, computational cost and robustnassie.

4.7.1 PREDICTIVE ABILITY

In Fig. 4.15 we compare the accuracy of the three algoritharssmall training sets, using
the FONILEX corpus. TheDefault&Refinealgorithm performs particularly well, achieving 90%

5For example, using an update interval of 50, approximatély t2aining words are considered per session when just
past the 4000-word mark. (See Fig. 4.12.)
8This approach was not implemented.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 47

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

phoneme accuracy prior to the 500 word-mafREC-grow requires an additional 800 words be-
fore the same level of accuracy is reached. Since the cimeat incorrectly predicted phonemes is
the most labour-intensive aspect of bootstrapping proatioo dictionaries (as discussed in Section
6.3.2.4) this represents a significant improvement to tbeqss.

96
DECIZ-growI —— I I 70 F DECI-grovvI — ' ' .
& 94 e DEC-min ---»--- 4
g g 60 T
g 9 g
S 90 8 50
5 T
§ 88 g 40
o 86 30
84 ‘
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Number of words in training dictionary Number of words in training dictionary

Figure 4.15: Accuracy comparison during initial 5000 words of trainings measured using the
FONILEX corpus.

From a bootstrapping perspective, asymptotic accuracytsag important, unless very large
dictionaries are built. Asymptotic accuracies for diffgreanguages are compared for the dictionaries
listed in Table 4.11. Per dictionary the number of words taltsize and number of distinct words
(distinc are indicated. Word accuracy is listed in Table 4.12 anchph@e accuracy in Table 4.13, as
analysed during 10-fold cross-validation of the dictioesw

Table 4.11:Dictionaries used for accuracy analysis

Language Dictionary Size Distingt
Afrikaans Afrikaans B 7,782 7,782
English NETtalk 20,008 19,802
English OALD (no SA) 60,399 59,835
Flemish FONILEX 173,873 163,526

Table 4.12:Word accuracy of g-to-p algorithms for larger dictionarigsdifferent languages.

Dictionary DEC-grow DEC-min Default&Refine
+o10 +o10 +o10
Afrikaans B 79.08 0.44] 7990 0.51|84.82 0.29
NETtalk 47.82 041| 4761 0.35|58.66 0.21
OALD (excl SA) | 77.62 0.17| 79.98 0.17| 86.41 0.15
FONILEX 88.60 0.07| 89.58 0.06| 92.03 0.06

4.7.2 CONVERSION ACCURACY

All the studied algorithms are memory-based and provideptera retrieval of training data: the
entire training dictionary can be reconstructed from trepgeme-to-phoneme rule set without any

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 48

CHAPTER FOUR

GRAPHEME-TO-PHONEME CONVERSION

Table 4.13:Phoneme accuracy of g-to-p algorithms for larger dictidearin different languages.

150000

Dictionary DEC-grow DEC-min Default&Refine
+o10 +o10 +o10
Afrikaans B 95.96 0.09| 95.98 0.14| 97.08 0.08
NETtalk 87.82 0.11| 87.20 0.08| 90.50 0.10
OALD (no SA) | 95.85 0.04| 96.08 0.04| 97.41 0.03
FONILEX 98.32 0.04| 98.41 0.01| 98.78 0.01
loss of accuracy.
4.7.3 COMPUTATIONAL COST
5000 - T T T T =
Align 1400 | Extract DEC-win
» 4000 . «» 1200 |
© ©
8 3000 | | § 1ooof
3 % 800 [
c c
'é 2000 . é 600
£ £ 400
= 1000 . = 00
200 +
O | | | O | |
0 50000 100000 150000 0 50000 100000
Number of words in training dictionary Number of words in training dictionary
400 . . . 50 T T
350 L Extract DEC-grow —— Extract D&R
8 300 | { g 40r
s s
S 250 . S 30
2 200 . 2
o 150 1 e 2071
S S
= 100 | . E 10k
50 .
O 1 1 1 0 1 1
0 50000 100000 150000 0 50000 100000

Number of words in training dictionary

150000

Number of words in training dictionary

Figure 4.16:Time required for alignment and extraction of initial patie from different sized train-
ing dictionaries, measured using the FONILEX corpus.

The computational cost of the various algorithms resutimffour separate processes:

1. Grapheme-to-phoneme alignmeAfigning words on a grapheme-to-phoneme basis. An iden-

tical grapheme-to-phoneme alignment process is usedlfof #ile algorithms. The computa-

tional cost of alignment is influenced by the number of tinfes full dictionary is processed

before the alignment probabilities stabilise. As this igitglly a small number, alignment is

approximatelyO(n) wheren indicates the number of words in the training dictionary. the

probabilities stabilise more quickly when more trainingedia available, alignment can exhibit

better than linear dependency in practice.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

49

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

2. Extracting initial patterns prior to rule set extractiorin the current implementation, the dic-
tionary is read once, all required patterns are extracteldsaparated according to grapheme.
Further rule extraction utilises the per-grapheme patsets as input. This process is again
O(n) for all the algorithms.

3. Rule extraction: Extracting a specific rule set from a grapheme-specific pattet. For the
implementations oDEC-growandDefault&Refinerule extraction may require as many as

n(n—1)

5 4.7)

n+(n—1)+Mn-2)..~
steps, which results i(n?) behaviour. This would be the case for a dictionary that is con
flicted to the extent that every single word gives rise to asse rule. However, in practise,
the number of steps required is closer to

n+kn+kn+ ..~ ﬁ (4.8)

where0 < k < 1 provides some indication of the pronunciation conflict toe specific lan-
guage (and dictionary) being considered. The more exaeptiothe dictionary, the highé,
and the higher the complexity of rule extraction. In pragtiale extraction therefore displays
O(n) behaviour.

70 T T T
DEC-max ——
DEC-min -
60 | DEC-grow ---x---

50
40

30 -

Time in seconds

20 +

10

m*—f—’—’""*jf/’“i""n rrrrr S 1] 1 1 1 1 1
0 000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of words in training dictionary

Figure 4.17:Time required to extract DEC-grow, DEC-max and DEC-min sui®em different sized
training dictionaries, measured using the FONILEX corpus.

4. Pronunciation prediction:Predicting the pronunciation of a single word based on astiegj
rule set. Pronunciation prediction is efficient for all tHgaaithms studied. For each type of
rule extraction, the ensuing rule set can be arranged infigieet tree structure. Pronunciation
prediction is ofO(d.l) wherel indicates the length of the word predicted, ahdgain repre-
sents the average depth of the various graphemic rule tndesh(is approximately equivalent

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 50

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

to the average context size of the graphemic rule set, asibeddn Section 4.6.4). Our im-
plementation oDEC-maxand DEC-minexhibit worse than linear dependency, as depicted in

Fig. 4.17.
180 35 . . .
160 | 30 | i
@ 140 K 25
§ 120 §
© 100 - g 201 i
£ 80 £ 15 | i
(3] (]
g 60F E 10f .
[40 |+ ~
20 | B]
04 ! ! ! 0 1 1 1
0 50000 100000 150000 0 50000 100000 150000
1200 45 . . .
40 F i
1000 |
%) »n 35 —
e 2
5 800 | 5 30 F -
b 600 | 27T }
< £ 20F -
.§ 400 | .g 15 -
= F 10} .
200 |
5 - -
04 ! ! ! 0 ! ! !
0 50000 100000 150000 0 50000 100000 150000

Figure 4.18:Time required to extract Default&Refine rules for differehbnemes from different sized
training dictionaries, measured using the FONILEX corpus.

These trends are further illustrated in Fig. 4.16 4.18 add.4Execution time for alignment,
pattern extraction and rule extraction is plotted for anfirgg dictionary as it increases in size. These
values were measured on a 1600 MHz Intel Pentium 4 personghuater with 1 GB memory, using
the initial Perl prototype used during experimentation (System A). In caispa, equivalent algo-
rithms are much faster as implemented in System B, a morestaeusion of the initial prototygé,
as listed in Table 4.14.

"These systems are described in more detail in Chapter Gar8ystvas developed iRerl by the author, and used during
algorithm development and experimentation; System B wasiptemented inJava(without any algorithmic changes) by
members of the CSIR HLT Research Group. The second systemsgddo build a medium-sized dictionary, as described
in Section 6.5.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 51

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

Table 4.14:A comparison of computation times in seconds for alignmadt efault&Refine rule
extraction for two different implementations of the baagsping system.

Task System A| System B
Alignment: 10,000 words 185.32 8.15
Alignment: 50,000 words 793.23 49.08

Default&Refine: 10,000 words
Default&Refine: 50,000 word

272.40 26.13
1335.36 | 320.06

H—nN

4.7.4 ROBUSTNESS TO NOISE

In order to analyse the effect of errors on predictive aayyreve conduct a number of simulation
experiments, usind\frikaans A one of a set of Afrikaans bootstrapped dictionaries, asriesd
in Section 4.3. Based on earlier experience with dictiordgyelopers who are more error prone
(see Section 6.3.2.2), we atrtificially corrupt a fractiontledse transcriptions and then measure the
predictive accuracy dbefault&Refineon the corrupted databases.

We introduce two types of corruptions into the transcripgio

e Systematic corruption®flect the fact that users are prone to making certain trgntien errors
- for example, in the ARPAbet phone say is often used whereyis intended. We allow a
number of such substitutions, to reflect observed confgdigrAfrikaans transcribers.

e Random corruptionsimulate the less systematic errors that also occur inipegaéh our sim-
ulations, random insertions, substitutions and deletamhonemes are introduced.

We generate four corrupted data sets (systematic submtguand random insertions, substitu-
tions and deletions), where 1%, 2%, 5% and 10% of the wordsaamly selected for corruption.
We generatdDefault&Refineand DEC-grow rule sets with 90% of the words of each (corrupted)
dictionary and measure the accuracy of the rules againsethaining 10% (using the original un-
corrupted dictionary), and perform 10-fold cross-valioiat

The effect of the simulated errors on predictive accuraayejsicted below. In Figure 4.19 the
average word accuracy and phoneme accuracy are plottetsatda percentage of corrupted words
for DEC-grow and Default&Refine Note that the most significant effect is due to insertiorss, a
unnecessary insertions cause superfluous graphemic whiish introduce alignment errors. This
effect is visible for bothDEC-grow and Default&Refing as both rely on accurate pre-alignments.
Figure 4.20 provides a more detailed analysis: the changedrage word accuracy and phoneme
accuracy is plotted in the same way as above. Here it can Imetaedeletions and substitutions
affect the predictive accuracy to a similar extent, whetaedom or systematic. This behaviour is
quite different to the behaviour observed later (see Sedid), when the position of rules in the
extracted rule set is used to predict errors in the trainiata.d As no rules are discarded during
standardDefault&Refine rule set position does not affect predictive accuracy.hBate extraction

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 52

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

techniques perform well in the presence of low levels of maigith Default&Refingoroviding a slight
advantage oveDEC-grow

80 80 L
g 75 E\ i i i i i
=)
3 10 o)
S S
S5 65 =]
(8] (8]
& 3
z 9 =)
g 55 : : : : : g

ol

0 2 4 6 8 10 12
m)
o] o)
))
> >
Q (8]
S S
>S5 >S5
Q Q
Q Q
© @©
(] (3]
e £
() ()
C C
o o
L ~
o o

0 2 4 6 8 10 12
Default&Refine DEC-grow

Figure 4.19:Effect of noise on average phoneme and word accuracy wheactrg rules from a
corrupted version of the Afrikaans A database. Databasesarrupted with random insertions(ri),
random deletions (rd), random substitutions (rs) and systic substitutions (cx).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 53

CHAPTER FOUR GRAPHEME-TO-PHONEME CONVERSION

£ €
3 =
Py >
g g
3 =}
Q Q
3 @
T 2
5] 5]
= =
) o)
) K=
> >
3 3
Q Q
@ 3
(]
g 8
(3] Q
[[
S 2
T o
0 2 4 6 8 10 12
Default&Refine DEC-grow

Figure 4.20: Effect of noise on change in average phoneme and word acgcwéen extracting
rules from a corrupted version of the Afrikaans A databasatabases are corrupted with random
insertions(ri), random deletions (rd), random substiba (rs) and systematic substitutions (cx).

4.8 CONCLUSION

In this chapter we analysed the grapheme-to-phoneme @ordask through a set of experiments
based on variations of Dynamically Expanding Context (DB proposed an enhancement to the
standard approach for grapheme-to-phoneme alignment afiied a new grapheme-to-phoneme
conversion algorithmOefault & Refing. This algorithm utilises the concept of a default phoneme
to extract a cascade of increasingly more specialised,rated has a number of attractive proper-
ties including language independence, rapid learningd gasymptotic accuracy, robustness to noise,
and the production of compact rule sets. In subsequent etsapte utilise bottDEC-minand De-
fault&Refineas grapheme-to-phoneme conversion mechanism duringtizgpsg.

Table 4.6 and Figures 4.9 and 4.10 depict an interestingtr@nthe rule sets that fully describe
the training data become smaller and smaller, the genatialisaccuracy of the rule set increases.
This raises an interesting theoretical question: Whatdssthallest possible rule set within a rewrite
rule based framework that can fully reconstruct a given sgming data with 1004 accuracy? In
the next chapter (Chapter 5) we explore this question furthe

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 54

CHAPTER FIVE

MINIMAL REPRESENTATIONGRAPHS

5.1 INTRODUCTION

In Chapter 4 we analysed the grapheme-to-phoneme commeisi® and developed an algorithm
suitable for bootstrapping. During the development of #hgprithm Qefault&Refing an interesting
trend was observed: if different rule sets that all providenplete recovery of a set of training data
are extracted, the smaller rule sets tend to generaliser lmettan unseen test set. This is not an atyp-
ical situation when addressing machine learning probldéms|eads us to an interesting theoretical
question: is it possible to define an algorithm that extréwessmallest possible rule set within the
rewrite rule framework studied in the previous chaptenrfrany given set of training data? All the
algorithms discussed in Chapter 4 use heuristic informattioattempt to obtain such a rule set; we
are interested in understanding the exact options availahken attempting to obtain a minimal rule
set given a set of training data.

In Section 5.2 we describe a conceptual approach that allsvis analyse the interdependencies
among words in the training data in a rigorous fashion. ThasnEwork provides us both with a
basis for analysing current rule extraction algorithmsl paints towards a method for the extraction
of a provably minimal rule set. In Section 5.3 we define thewksed framework in more detail,
and demonstrate how this framework can be used to extrazsats. In Section 5.6 we discuss the
implications of our results.

5.2 CONCEPTUAL APPROACH

In this section we provide a conceptual overview of the satggeapproach, referred to asnimal
representation graphg the remainder of this thesis. We use the same rewrite artadlism as

55

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

utilised in Chapter 4; that is, each rule describes the nmagpgfia single grapheme to a single phoneme
using the format:

T1.Tm — G — Y1--Yn — P (5.1)

Hereg indicates the focal grapheme;, andy; the graphemic context, anpdhe phonemic realisation
of the grapheme. The rule set is accompanied by an explicit rule applicatiater. A pronunciation
prediction for any specific word is generated one focal geapd at a time, by applying the first
matching rule found when searching through the rule setrdowp to the rule application order.
Initially we focus on a training data set that does not contiy variants, that is, every word is
associated with a single unique pronunciation

The goal of the approach is to obtain the smallest possilidesat that describes a set of training
data completely, as an indirect approach to obtaining aptmecuracy on an unseen test set. In
order to better analyse the options available when attegpti extract such a rule set, we define a
framework that relies on four main observations:

1. If, for every training word, we extract all the sub-patteiof that word (as illustrated in Table
5.1), we obtain a list of all the rules that can possibly beaeted from the training data. Some
of these rules will conflict with one another with regard tmpbmic outcome, and we refer to
these rules asonflictedrules. By choosing any subset of the full set of rules, antyass
a specific outcome to each rule, all possible rule sets carebergted, whether accurate in
predicting the training data, or not.

Table 5.1:The relationship between a word and its sub-pattern rules.
Example grapheme e to phoneme E in word 'test’
Word pattern| #t-e-st#— E

Sub-patterns| -e-— E,-e-s— E t-e-— E,t-e-s— E
t-e-st— E, #t-e-s— E,-e-st#— E
#t-e-st— E t-e-st#— E #t-e-sth— E

2. If all the orderings among the full set of possible rules/(8) that may be required by a subset
of Z to be accurate in predicting the training data can be defithed, it becomes possible to
construct a rule graph of the full rule set according to adl dinderings possible, and to define
appropriate operations that can manipulate this rule gimptell defined ways. During graph
manipulation, specific outcomes can be assigned to rulesudes identified asequiredor
superfluous. Superfluous rules can consequently be delatdtionly a minimal rule set is
retained.

3. During rule prediction, the relative rule applicatiomer of two rules that occur in an extracted
rule set is only of importance if the two rules conflict witlgeed to outcome, and if both can

We discuss options for dealing with pronunciation variantSection 5.5

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 56

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

apply to a single word. During rule extraction, the order imet two rules occur in an interim
rule set is only of importance if both can apply to a single avior the training data, and that
word has not yet been ‘caught’ by any required rule occureadier in the rule set. For each
rule, we refer to the latter set of words as tfessible wordsssociated with that rule.

4. The full set of possible ruleg cannot occur in any order. It is possible to restrict thevediole
orderings between any two rules for two reasons: (1) if ofeisumore specific than another,
the first rule must occur earlier in the rule set than the sgdorany minimal rule set. If not,
the second (more general) rule will always be invoked whedlipting a word that applies to
both rules, and the first rule will be redundant (which is isgible if the rule set is minimal);
and (2) if two rules are applicable to the same word in theitngi data but conflict with regard
to outcome. For such rules the words shared impibsible wordsets of each rule dictate the

orderings that are valid.

Using the above observations, we can analyse a set of waifdta in order to understand the
interdependencies among words in the training data, anoittiens for extracting a minimal rule set.
We illustrate the concepts using a simple 3-word examplasisting of the words ‘test’,'ten’ and
‘tea’ and consider the steps required to extract a rule sahéoletter ‘e’. As the software that we
developed to implement this approach uses a single charagesentation of each grapheme and
phoneme, we do the same in this example.

Prior to rule extraction, sord patternis generated from each aligned word-pronunciation pair in
the training data, as shown in Table 5.2. Hashes denote veanadaries.

Table 5.2:Word patterns associated with the words ‘test’,'ten’ areh't

aligned ARPAbet example single character representation
Words test—tehst test—test

ten—tehn ten—ten

tea—tiy ¢ tea—tio
Word patterns| #t-e-st#— eh #t-e-stft— e

#t-e-n#— eh #t-e-n#t— e

#t-e-att— iy #t-e-att— i

For each of the word patterns, we generate a set of submates listed in Table 5.1 for the word
pattern #t-e-st#—~ e). These sub-patterns are arranged in a graph structuredatg to specificity,
with the more general rules later in the graph (closer to twd)y and more specialised rule earlier
(higher up in the graph). Initially, an ordering is only addeetween two rules where the context
of one rule contains the context of another, and we refer égdtorderings asontain patternre-
lationships. A topological sort of this graph will result @nrule set that is accurate, but contains a
large number of superfluous rules. From the outset, the psaagsumes that any of the rules may be
deleted in future. As it becomes clear that certain rulegegaired in order to retain accuracy over
the training data (irrespective of further allowed changethe rule set), these rules are marked as

requiredrules.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 57

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

H#w-g-stie(l)

—e—i(1)e(2)

initial tree

Figure 5.1:An example rule graph, corresponding to the word patterriEaible 5.2

This process is illustrated in Fig. 5.1. Word nodes (one pandvpattern) are indicated in green.
Clear nodes indicate rule nodes that can only predict aesiogtcome. For these nodes, different
coloured outlines indicate different outcomes. Orangeesate associated with more than one pos-
sible outcome: different choices with regard to outcomé regult in different rule sets. Black edges
indicate that an ordering between two rules is requiredspective of further rule graph manipula-
tion. In the initial graph these edges represgmtain patternrelationships. Currently no rules are
marked as required,; if there were, these would be markedlliovye

Orderings are transitive. If all the orderings implied b tturrent set of edges are considered,
then the only additional orderings that can possibly ocouhe full rule set are between rules that
share a word in their respectip@ssible wordset, and have not already been assigned a fixed order-
ing. We refer to these rules asinimal complementsTheseminimal complementelationships are
added and utilised during rule extraction. We do not indichem explicitly on all the graphs used to
illustrate the current example, as the addition of mininmahplement relationships results in visually
complex graphs. For illustration, we mark the minimal coempénts related to a single rule ‘-e-st’
for the initial graph of Fig. 5.1 and display the result in Fig2. Minimal complement relationships
are marked as orange edges.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 58

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

E#t%#h B | tese 4 E#weMe 5

@ Hw-e-stie(l)
#t-e-st:e(l) @

-e-stre(2)

S

t-e-s:e(l) #w-e-e(l) @

tesi((1) 5e(2) @

-e-i(1):.(2)

aditional orderings added

Figure 5.2: Marking the minimal complement relationships associatéti e rule ‘-e-st’ for the
rule graph of Fig. 5.1

Note that the minimal complements associated with any ruban only occur in a restricted
range: the context of the earliest rule may not contain rulend the context of the latest rule may
not be contained by itself. As this range is restricted, the number of additiarderings that may
be required is similarly restricted. Each additional miairscomplement pair added to the graph
introduces two possible orderings. This increases the eurboptions to consider when making
any single decision (whether to resolve a conflicted nodedingle outcome, or whether a specific
rule is required or can be deleted.) We would like to removenany of the ‘double orderings’ as
possible, and replace these with orderings that indicateggesdirection. In some cases additional
information is available to choose one of the orderings asckdd the other:

e If the possible words associated with a ruls a subset of the possible words of a second rule

s, ruler must always occur earlier in the rule extraction order thahhe reasoning is similar

to that followed when adding the initial contain patternandgs, but now holds for minimal
complements that are not necessarily in a contain pattéaxtiareship. We refer to these rela-
tionships asuper complement§Vhile contain pattern relationships can be added to thehgra
from the outsetsuper complemen®smerge as the rule set extraction process progresses. As
more rules are marked asquired, the possible words sets of later rules decrease, and su-
per complement relationships start to emerge. Once aningdsradded between two super

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 59

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

complements, this relationship is not changed at a latgesdaring rule manipulaticn

e If aruler predicts a single outcome, and accurately matches all thésao the intersection of
the possible words of rule and the possible words of another ruleand there is at least one
word in this set that will mispredict given any of its allowed outcomes, then ruleas to occur
before rules for the rule set to be accurate. We refer to these relatipesisorder required
relationships. If neither of the two rules matches the fatlaf shared words, the relationship
is still inconclusive. As with super complement relatioipsth order required relationships also
emerge as the rule set extraction process progresses.

In Fig. 5.3 we identify and add additional super complemetdtionships. The current rule graph
does not have any order required relationships among nodes.

Heeni(le(l)

l

tesi(le(l)

-e-s:e(2)

ei(1)e(2)

supercomp relations and order_req identified

Figure 5.3:Adding super complements to the rule graph of Fig. 5.1. (Malicomplements are not
shown.)

Since orderings are transitive, we can remove any definderimgs that are already implied by
others. For example, in Fig. 5.3 the relationship betwedasritre-st’ and #t-e- is already implied

2As more rules are marked as required, the possible wordokatsother rules become smaller. If a set of possible
words associated with a rutgs the subset of the possible words associated with asrtifes relationship will be maintained
unless both sets become equal. In the latter case, one ofvtheutes are redundant and will be deleted during rule
extraction, as discussed later. Since either s will be deleted, the ordering between these two rules bedosignificant,

and the prior ordering based on their previous super comgaténelationship may be retained without restricting rutep
manipulation options.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 60

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

by the relationships between rules ‘t-e-st’ and ‘t-e-s'd doetween rules ‘t-e-s’ and#t-e-". Such
redundant edges can be removed without losing any infoomatirrently captured in the rule graph.
This process is illustrated in Fig. 5.4. Note how the rel&hips become simpler and the graph

more loosely connected from Fig. 5.1 to Fig. 5.4.

w-e-1e(l)

; #t—e— i(1e(1)

-e-st:e(2)

te-ti(1)e(l)
ei(1))

redundant edges removed

Figure 5.4:Removing unnecessary edges from the rule graph of Fig. BliBirbal complements are
not shown.)

If we can be sure that we have added all the necessary ord€dagsed by contain pattern, super
complement or order required relationships) and we keex whall minimal complement relation-
ships that still have an uncertain ordering, we now have @ graph that both contains all possible
rules, and specifies all possible orderings that may be redjtd define a valid rule application order.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 61

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

-e-st#:e(2)

#t-e-zi(e(1)

tesi(he(l)
(1))

leaves trimmed

Figure 5.5:Removing unnecessary rules from the rule graph of Fig. Biithal complements are
not shown.)

We can now use this rule graph as basis to make decisions aiich outcome to select where a
rule is conflicted (has more than one outcome), or even dediga a rule can be deleted or not.

When rules are deleted, it is possible that one of the rulpsined by a minimal rule set is deleted
unintentionally, and in order to compensate for this defettwo or more additional rules may have
to be kept to retain accuracy over the training data. The firlalset will then have more rules than
strictly required. To prevent this from happening, rules eliminated by deleting redundant rules,
identifying required rules and resolving conflict rules @@amall set of allowed operations. The
state of rule extraction can always be described by a triple ctingiof the possible rules that can
be included in the rule sef(), the rules that have been marked as requited, (and the orderings
that are definitedset(Z’), the black edges in the graph). Additional orderings that @ossible
can automatically be generated from such a state. Eachetlloperation changes the state of rule
extraction, from onallowed statedo another, with the initial allowed state as depicted in Bid..

One example of such an allowed deletion operation can bsridited as follows: The rule graph
in Fig. 5.4 clearly contains a number of superfluous rulesekiéhier a rule: exists such that (1) it
is not conflicted, and (2) all the possible words associatithl mule » can be caught by one or more

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 62

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

immediate successors that agree with rulgith regard to outcome, and (3) rutedoes not have any
immediate successors that can potentially disagree wggrdeto outcome, then rulecan safely be
deleted from the rule graph. All rules that meet these camdit can be deleted from the rule graph,
as illustrated in Fig. 5.5. Since the rule graph is now sigaiitly simpler, we start displaying the
remaining minimal complements from Fig. 5.6 onwards.

Hte-i(De(l)

[#w—est#l.e) te-si(l)e(1)

o

-~ i(i Je(2)

leaves trimmed

Figure 5.6:Removing unnecessary rules from the rule graph of Fig. Biitnal complements are
shown.)

Where the possible words associated with ruee exactly the same as the possible words of any
one of its successors rule r and rules are deemedule variants Either of two rule variants can be
generated at the same point in the rule extraction ordenpwitinfluencing the number of rules in the
final rule set. The process keeps track of all deleted rulaisate variants of retained rules. In this
way, while a rule node is physically deleted, the rules awffiect merged, and either of the two rules
may be utilised in the final rule set, as discussed later.

Additional deletion operations identify rules that haveeampty set of possible words, and rules
that are true variants of another, that is, two rules thabatk resolved to a single outcome, and have
identical relationships with identical predecessors amtassors. While these deletion operations
create a rule graph that is significantly simpler, we haveyebimade any decisions with regard to

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 63

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

the best choice of outcome for any of the conflicted nodesr Rsirule resolution, we first identify

any ruler assinglewhere — given the current state of rule extraction — at leastweord can only be

predicted by either rule or by another rule directly in the path ef In the remaining figures, these
single rules are marked “*S’.

There are various conditions under which a conflicted rutebearesolved, one of which we illus-
trate here. Conflicted nodes can be thought of as ‘defaulfatiback’ nodes. During pronunciation
prediction, a fallback node will only be invoked if a more sjadised rule is not available that matches
the word being predicted. These nodes therefore only nelee tetained if, in some way or another,
the rule can generalise from its immediate predecessolis.r@tuires that at least two predecessors
should predict a similar outcome. If this is not the casefdliback node does not provide any further
advantage, and can be removed from the rule graph withowtradmng the rule set in a way that
does not allow final minimisation This process is illustrated in Fig. 5.7 and Fig. 5.8.

reatli lmesile

_ei(1)e(2)

internal: 1 conflict node resolved - t-e- (conflict lost)

Figure 5.7:Resolving conflicted rule ‘t-e-'.

3This does not apply to the root node. The root node is handiedspecial case, as discussed below.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 64

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

ei(1)(2)

internal: 1 conflict node resolved - #t-e- (conflict lost)

Figure 5.8:Resolving conflicted rule#t-e-'.

Note that in the Fig. 5.8, none of the minimal complementtietships have been retained.
Additional resolution operations analyse the definite apskjble predecessors and select a specific
outcome based on this analysis. When resolving a conflictedo a specific outcome, it is required
that at least one of the predecessors that has an outcomuaateies the outcome selected for reso-
lution must be marked assinglerule. If such a single rule exists, this implies that some mith
the selected outcome will be generated at this point in tleeextraction order. While there is not
certainty that such a rule is required, the conflicted rulg nat yet be resolved.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 65

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Applying the same deletion operator discussed earliezethdditional rule nodes can be deleted,
as illustrated in Fig. 5.9.

leaves trimmed

Figure 5.9:Removing unnecessary rules ‘-e-st’, ‘-etsand ‘t-e-s’.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 66

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

If the resolution operator discussed previously were todmied to the root node, the rule set
would remain valid. However, this would result in the roodedeing deleted, and it is easier in
practise to manipulate the graph assuming a single root. ndide, we would like to generate some
‘default rule’ that can be used to predict any word patterhpreviously seen. Therefore the root
node is always resolved to a single outcome, once all itsgpesbors are resolved (and not deleted,
as would be the case if the standard resolution operator amgpbed). Resolving the root node
to a single outcome when standard application of a deletf@rator indicated that it should have
been deleted, is similar to choosing one variant of a rules@mother variant of the same rule. As
all variants are retained during rule extraction, and thal faloice with regard to which variant to
choose is postponed until after graph minimisation, mdatg the root node as a special case does
not restrict the rule extraction process in any way. In Fid03he root node is resolved to one of its
possible outcomes.

@

internal: 1 conflict node resolved - -e- (conftlict lost - root)

Figure 5.10:Resolving conflicted rule ‘-e-.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 67

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

If for at least one word pattertv in the possible words set of a rule there exists no other
rule than can possibly predict word pattesrcorrectly, given the current state of rule extraction (the
remaining rule set, the required rule set and the decidegtiogs); then rule is arequired rule and
can be marked as such. When a rule is identified as a requiledatbwords in the possible words
set of ruler are removed from the possible words sets of rules occurdteg In the rule graph. In
Fig 5.11 two rules are marked as required, with required sigtiticated in yellow. One final deletion
(using the standard deletion operator) and the minimalsetés obtained, as depicted in Fig. 5.12.

CpteatliWrestle Dwesttle

@

Needed rules marked

Figure 5.11:dentifying required rules ‘-e-a’ and ‘-e-'.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 68

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Ceatti

I#*-G-S’Nﬂe) ¢ [#We—ﬁ#]e _'

-e-re(2) *8§

leaves trimmed

Figure 5.12:The final (minimal) rule graph.

The rule set that can now be extracted from the rule graph Hbipnpeing a topological graph
traversal. This results in the rule set listed in Table 5@&. dach extracted rule, a number of possible
variants are listed. A rule can be replaced by any of its mésiavithout affecting the accuracy of the
rule set, or requiring the inclusion of additional rules.t<hat for any single word that gives rise to
a single rule (such as the word pattern #t-e-a# in this ex@mall word sub-patterns that have not
been identified as currently part of the rule set are incluatedariants.

Table 5.3:The final rule set generated from the words in Table 5.2, glioly possible variants.
Rule number| Extracted rule| Possible variants
1 -e-a— i #t-e-a #t-e-a# -e-aft t-e-a# t-efa
2 -e-—e -e-st# -e-s -e-st

At this stage, heuristic choices related to charactesisticch as rule context size, rule context
symmetry, or variance with regard to the training data cauntised to choose the most appropriate
rule set. In larger rule sets, many rules do not have varidntsa relatively large proportion of rules
retain one or more variants. The ability to make heuristicios late in the rule extraction process,
provides significant flexibility in obtaining the approfgaule set.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 69

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

5.3 THEORETICAL FRAMEWORK

In this section we describe the above framework in more ldetad provide a more rigorous definition
of the terminology use€d We provide proofs for the key statements in Appendix B. Wiverrefer to
a specific statement in the text, we are referring to therseate as found in Appendix B.

Firstly, we define the rule format and the various terms usethd rule set analysis. We then
proceed to show how a relationship between two rules in amahrule set translates to a specific
relationship between the same two rules in a larger ruleaset,describe the conditions and impli-
cations of a rule ordering between two rules occurring ihegitof these types of rule sets. Using
these conditions, we provide a formal definition of an alldwtate of rule extraction. We analyse the
characteristics of an allowed state and define an initiéé $keat can be shown to be allowable in these
terms. We then define the various allowed operations thatnvalpplied, progress the rule graph from
one allowed state to another. In contrast to the overall ésaank, the set of allowed operations are
still somewhat experimental, as discussed in section 5Rrtlly, we discuss the minimality of the
extracted rule set and describe additional options forrtigravement of generalisation ability.

5.3.1 RULE FORMAT

As discussed in Section 5.2, we use a set of rewrite rulessierithe the mapping of a single grapheme
to a single phoneme.

If G is the set of possible graphemes didhe set of possible phonemes; e rule for
graphemgy is formulated as

rule(g,i) = (x1..Zm, §,Y1-Yn) — 2;
T1.-Tm,g,Y1--Yn € G; 2 € H; (5.2)

alternatively written as:

I1-Im — 9 —Y1--Yn — 2

where z1..x,, defines then-grapheme left context of, v..y, defines then-grapheme
right context ofg, andz is the predicted phonemic realisation of graphemehen found
within the given left and right word contexté& includesg¢, the null grapheme ang the
word boundary marker (with always= #). H includes¢, the null phoneme.

4Terms and definitions are presented in definition boxes;spegsed among more general comments.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 70

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Theoutcome(r) function describes the phonemic outcome of the rule
outcome(rule(g,i)) = outcome(r1.. Ty — g — Y1-Yn — 2) = 2. (5.3)
The context(r) function describes the application context of the fuidirectly:

context(rule(g,i)) = context(xy.. Ty — g — Y1..Yn — 2) = T1..Tm — § — Y1--Yn. (5.4)

%context(.) can also be applied to word patterns, as defined in eq. 5.9

The rule application orderule_order(Z’,r, s) specifies the order in which any two rules
r ands occurring in a rule seZ’ are applied, where

Vr,s € Z' i rule_order(Z',r,s) =1 = rulenum(r) < rulenum(s) (5.5)
and therulenum(r) function describes the rule number of a specific rutérectly:
rulenum(rule(g,i)) = i. (5.6)

The oset(Z') for a rule setZ’ consists of the entire set of orderings specified by

rule_order(.), i.e:
oset(Z') = closure(Z', rule_order(.)) (5.7)

whererule_order(.) defines the current set of orderings o#randclosure(.) consists of
the transitive closure of the set of rule pairs for which acfperelation is defined, i.e.:

closure(Z', relation(.)) = U;(r, s)Vr,s € Z' :
relation(Z',r,s) =1 or3t € Z' : relation(Z',r,t) = 1,

relation(Z',t,s) = 1. (5.8)

Therule_order(.) relation restricts theulenum(.) function to a set of options, and does not neces-
sarily specify an ordering between every two rules. If ralesapplied according to thele_order(.)
relation and an ordering between two rules that both matcbrd i8 indeterminate, either of the rules
can potentially be invoked. It is possible to convert fromiraplicit rule_order(.) to an explicit rule

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 71

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

numbering via thessign(.) function:

Let the setussign(Z’, oset(Z")) define all the possible rule number assignments that are
valid given the specified rule sét and rule orderingsset(Z’). Per assignment, a single
rule number is assigned to every rule, consistent w4ti(Z’).

Note that for a specific value afssign(Z’, oset(Z')), rulenum(r) < rulenum(s) does not imply
thatrule_order(Z',r,s) = 1.

A word w consists of a sequence of graphemeé&;inDuring pronunciation prediction of
a word of lengthn (also counting word boundaries), we creat@ord patterns that each
focus on a specific grapheme in the word. When focusing orhgrapi, the word pattern
is described as:

Vw =122, €Gin>11<i<n:
word_pattern(w,i) = x1..2;—1 — T;j — Tj+1..Tp. (5.9)

(5.10)

The context(w) function can also be applied to word patterns, wherectheezt of a
word patternw is simply the word pattern itself.

The match(w, r) function indicates that a rule occurring in a rule seZ’ can be applied
to predict a word pattero:

Vr € Z' : match(w,r) =1 <= context(w) D context(r). (5.11)

The winningrule(w, g) relation describes the first matching rule(s) found in rgdes&
for word patterrw with regard to grapheme, i.e

Vr € Z':r € winningrule(Z', oset(Z'),w,g) <= match(w,r) = 1,

As : match(w,s) =1, (s,r) € oset(Z'). (5.12)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 72

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Rules with equivalent contexts and different outcomes ataliowed in the final rule set, i.e:

Vg € G,i,j € N : context(rule(g,i)) = context(rule(g,j)) =

outcome(rule(g,i)) = outcome(rule(g, j)). (5.13)

Conflicting rules will however exist during the interim ssepf rule extraction, as discussed below.

5.3.2 RULE SET ANALYSIS
5.3.2.1 TRAINING DATA, WORD PATTERNS AND SUB-PATTERNS

The rule set is derived from a set of training data. As in thevipus chapters, a data set consisting
of aligned word-pronunciation pairs is used as input durirlg extraction. Word patterns and word
sub-patterns are extracted from this set, and form the Basisrther rule set construction.

Each word-pronunciation pair consists of two sequenges:,, andy;..y,, wheren >

l,z; € Gandy;, € H. LetTD(g) be the set of all word patterns in the training data
that describe a specific graphemeassociated with a specific phonemic outcome per word
pattern. Then:

VgeG:weTD(g) < w=2x1..2i—1 — § — Tit1..-Tn, — Y,

wherezx; ..x,, andy;..y, an aligned word-pronunciation pair (5.14)

In the remainder of this section, assum® simplify notation (for example letule(i) be
equivalent torule(g,) for the specificg being considered). TD does not contain word
variants (multiple pronunciations of a single word), thsat i

Awi,we € T'D : context(w;) = context(ws) =

outcome(wy) # outcome(ws). (5.15)

A word pattern is in effect the largest possible rule thatdbes the grapheme-to-phoneme mapping
accurately. The combined left and right contexts of the waattern therefore contains the full word,
including word boundaries. For each word pattern, a setlofositern rules — describing all possible
sub-contexts of the word pattern — can be generated, apsyishown in Table 5.1.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 73

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Let Z be the set of all possible word patterns and sub-patterriassd with the word
patterns i’ D.

For any two rule sets/ 4 andZp, let Z4 C Zp indicate that one set is equal to or a subset
of the other, both with regard to the context and outcome lekruMore specifically:

ZAaCZp < resy :>7“/€ZB,

context(r) = context(r'), outcome(r) C outcome(r’). (5.16)

Let |Z’| indicate the number of rules in any rule s&t whereZ’ C Z.

Let allset(Z’) consist of all possible orderings in a rule s&t whether contradictory or
not:

VZ' C Zeompined : allset(Z') = U, j(vi, vj)Vvi,v; € Z' i # 5. (5.17)

A word pattermo can be referred to either as a word pattere T'D or as arulew € Z. The setZ
then consists of all possible rules that can potentiallyhafupthe word patterns ifi’ D.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 74

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

5.3.2.2 CONFLICT RULES AND CONFLICT RESOLUTION

As the setZ consists of all possible rules that can potentially applyh® word patterns i’ D, it
may include a number of conflicting rules. Under certain dims, these rules can be resolved to a
specific outcome. Until a rule is resolved to a single outcoarset of allowable outcomes is retained

per rule.

Let Z.on r1ic¢ CONsist of all the conflicting rules i, that is, rules that contradict eq. 5.13.
Let Z,0—confiict D€ the set of remaining rules, when all conflicting ruleszip,, s;.; are
removed fromZ, i.e

Zconflict U Znofconflict = Z.
Zconflict N Zno—conflict = Qb (518)

Define thecon flictrule(ra1,Ta2; .-, Tan) for all n rulesry; € Zeon i With equivalent

contexts as one rule with one ofalternative outcomes, i.e:

Vi € Zeon fiict, context(rq;) = context(rq)Vi = 1..n :
con flictrule(ro1, a2, - Tan) = context(ry) — z1l|22]|.--||2n,
zj = outcome(rq;)Vj = 1..n,

wherez;| |z, indicate that eitheg; or z;, is a possibleutcome. (5.19)
Define the resolution of eon flictrule as a specific-outcome version of the rule, i.e let:

V7o € Zeonflict; 2e € Uy, outcome(rule(ra;)) :

resolve(con flictrule(ro1,Ta2, - Tan), 2z) = context(ry) — 2. (5.20)

If a rule r with the same context is referred to with regard to differemé¢ sets in which
different resolved versions of the rule may occur,detcome(r|Z’) indicateoutcome(r)
wherer € Z'.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 75

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

For each subset of all elements if),, ;. With equivalent contexts, it is possible to
generate a singleon flictrule. Let the SetZ.., fiict—combinea CONSiSt of all the conflict

rules generated fron#,,, 1;; according to eq. 5.19, which have not been resolved. Leg
the setZ ., fiict—resovea CONSist of all the resolved conflict rules, where a conflide ru
will move from Z..,, fiict—combined 10 Zeon flict—resolved UPON resolution (according to eq.
5.20). LetZ ompinea CONsist of all elements ii,,,_ .., r1ic: COMbined with the elements in

Zconflictfcombined and Zconflictfresolveda where

Znofconflict U Zconflictfresolved U Zconflictfcombined = Zcombined
Zconflict—combined N Zno—conflict = Qb

Zconflictfresolved N Zconflictfcombined = (25

Zconflict—resolved N Zno—conflict = Qb (521)
and let Zsingle = Zcon flict—resolved U Znofconflict (522)
Z Zcombined
Zno-conflict Zconflict no-conflict
X1-g-X; = ¥ X5 X6 = ¥s X4=g-Xz = ¥y
X5G-X5 = Y
X3-G-%4 = Y2 X g% = Y Z conflict-resolved
X7-0-X: = ¥s5
X-G-% = Vi X7-0-%s = V¥

Figure 5.13:Examples of rules it, Z..mpineq @nd their subsets.

The relationships among the different sets are depicteding=13.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 76

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

5.3.2.3 COMPLETE, ACCURATE, MINIMAL AND POSSIBUMIMAL RULE SETS

Any subset 0Z.,,.pineq, Ordered according to a specific rule orderinge_order(.) will describe the
training data with a certain degree of accuracy. The iddalget will be one that is not only complete
but also accurate, and not only accurate but also minimalefised below:

A complete rule set can predict all the words in the training data:

VZ' C Zeombined : complete(Z') =1 <

Yw e TD,3r € Z' : match(w,r) = 1. (5.23)
An accurate rule set predicts all words in the training data accurately:

VZ' C Zeombined, Voset(Z') C allset(Z') :
accurate(Z'0set(Z')) =1 <= complete(Z') = 1,

Vw € TD,Vr € winningrule(Z', oset(Z"),w) : outcome(w) = outcome(r). (5.24)
A minimal rule set is an accurate rule set that contains the fewest palssible:

VZ' C Zeombined, 0set(Z') C allset(Z') :
minimal(Z',0set(Z')) =1 <= accurate(Z',oset(Z")) =1,
BZ" C Zeompined, 0set(Z") C allset(Z") :

accurate(Z" 0set(Z")) = 1,|2"| < |Z/|. (5.25)

A possibly_-minimal rule set is a set of rules that can be minimal, if ordered ctisre

VZ' C Zeombined : possibly minimal(Z') =1 <=

Joset(Z") C allset(Z') : minimal(Z', oset(Z')) = 1. (5.26)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 77

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

5.3.2.4 ALLOWED STATES AND ALLOWED OPERATIONS

The full set of rules iNZ.,.uneqa CONSists of all possible rules and is therefore a superseh®for
moreminimal rule setsZ,,°. We would like to delete the unnecessary rules until onbyiaimal
rule setis retained. When rules are deleted, it is posdilakeone of the rules required b, is deleted
unintentionally, and in order to compensate for this detettwo or more additional rules may have to
be kept to retain accuracy ovED. The final rule seZ’ will then have a number of rulég’| > |Z,,|.

To prevent this from happening, rules are eliminated byragidirderings, deleting redundant rules,
identifying required rules and resolving conflict rules gigzet of allowed operations. Theéate of
rule extraction can always be described by the tripleZ. , oset(Z’) , whereZ' indicates the possible
rules that can still be included in the final rule sét,indicates required rules that have to be included
in the final rule set, andset(Z') identifies some of the required rule orderings among elesnefnt
Z'. Each allowed operation changes tiiete of rule extraction, from onellowed_state to another,
with allowed_state as defined below (in eq 5.29).

Let the order_subset(oset 4(Z), 0setp(Zp)) relation be true if a set of rule orderings
oset4(Z4) is equal to or a subset of another set of rule orderingsz(Zz) (possibly
defined on a different rule set) when the two sets of rule anderare compared on their
rule set intersection. More specifically:

\V/ZA c Zcombined> ZB c Zcombineda
Vosets(Z4) C allset(Z4),o0setp(Zp) C allset(Zp) :
order_subset(oseta(Z 4),0setp(Zp)) =1 —

Vr,s € ZaNZp: (r,s) € oset(Zy4) = (r,s) € oset(Zp). (5.27)

Let minrules(Z', Z.,0set(Z'")) identify all the minimal rule set and rule ordering set
pairs that can be derived froid, given the set of orderingsset(Z’) and a required rule
subset”.. More specifically:

VZo C Z' C Zeombined, Voset(Z') C allset(Z') :
(Zm, 08€ty (Zy)) € minrules(Z', Ze, 0set(Z')) <=
minimal(Zpy,, 0sety(Zy)) =1, Ze C Zyy C Z/,

order_subset(oset(Z'), osety,(Zm)) = 1. (5.28)

®By definition, at least oneviminal rule set will always exist.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 78

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Let allowed_state(Z', Z.,0set(Z')) indicate that for a given required subsét and re-
quired set of orderingsset(Z’), there exists aninimal rule setZ,, contained withinZ’:

VZ' C Zeombined, Voset(Z') C allset(Z') :
allowed_state(Z', Ze,0set(Z')) = 1 +—
3Z ., 08€ty (Zm) + (Zm, 08€tm(Zym)) € minrules(Z', Ze, 0set(Z')). (5.29)

Define anallowed_op as any operation that, when applied to any possiblewed_state
of a rule set and rule ordering set, will result in anothBbwed_state.

Let each element iminset(Z,,, oset(Z,,)) consist of all and only those orderings required
for a possibly_minimal rule setZ,, to be minimal, given some prior set of orderings
oset(Zy,):

VZm C Zeombined, Possibly minimal(Z,,) = 1,
Voset(Zy,) C allset(Zy,) :
0sety(Zym) € minset(Zpy, oset(Z,y,)) <=

oset(Zy) C osety(Zy), minimal(Zy,, 0sety,(Zy,)) = 1. (5.30)

It follows directly from the definition ofninrules (eq. 5.28) andninset (eq. 5.30) that:

VZm C Zeombined, Possibly_minimal(Z,,) = 1,Yoset(Z,,) C allset(Zy,) :
osety(Zym) € minset(Zpy, oset(Z,y,)) <~

(Zm, 0s€tm(Zp,)) € minrules(Zpy,, Zm, 05€tm(Zm)). (5.31)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 79

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Such aminset(.) ordering does not exist for all prior orderingsset(.). The

valid(Z,, oset(Z,,)) relation indicates that a specifiget(Z,,) defined with regard to
apossibly_minimal rule setZ,, consists of a subset of the restrictions required by at least
oneminset(Zy,, oset(Z,,)). Specifically:

VZm C Zcombined>pOSSibly—minimal(Zm) =1,
Voset(Zy,) C allset(Zy,) : valid(Zy,, 0set(Zy,)) =1 <~
Josetm (Zm) C allset(Zy,) : 0sety(Zy,) € minset(Zy,, oset(Zy,)). (5.32)

It follows directly from the definition otillowed_state (eq. 5.29) andalid (eq. 5.32) that:

VZm C Zeombined, Possibly_minimal(Z,,) = 1,Yoset(Z,,) C allset(Zy,) :
valid(Zy,, 0set(Zy,)) =1 <= allowed_state(Z,, Zp,, 0set(Zy,)) = 1. (5.33)

If Z,, is a minimal rule set describing the training dat&, then some of the rules i,,, will each
be a single unique rule, while other rules will each be one séteof possible options — any one of
which could have been generated at a specific point in theappécation order without influencing
the number of rules required to predict the training set ately and completely. Such a combination

of rules is referred to asm@aule_variant set.

5.3.25 MATCHWORDS, POSSIBMEORDS, RULEWORDS AND SHAREVIDRDS

Throughout rule extraction, we keep track of the set of wah@s may influence our decisions with
regard to a specific rule. In this way we identify words thatehaa specific ruler@atchwords),
words that will invoke a specific rule during predictioru{cwords), and the set of possible words
that may result in rulewords in the final orderingp§sible_words). We also identify the possible
words that any two rules sharehared_words).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 80

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Let the setnatchwords(r) consist of all words matched by a specific rule

Vr € Zcombineds W € T'D :

w € matchwords(r) <= match(w,r) = 1. (5.34)

Let the setrulewords(Z’, oset(Z'), r) consist of all words that can cause a specific rule
to be invoked (where the actual rule invoked will depend @nabtual rule number assign-
ment), given the current set of rule orderingst(Z’):

Vr € Z/, z' - Zcombinedaw €TD:
w € rulewords(Z',oset(Z'),r) <=

r € winningrule(Z', oset(Z"), w) (5.35)

Not all rules can necessarily be invoked when predicting werds in TD - for rules that
cannot be invoked given the current rule set, the setwdbwords(.) is empty. Note also
that the actual words that will invoke rule in the final ordered rule set consists of the set
rulewords(Z,,, minset(oset(Z,,)), r) not the setulewords(Z,, oset(Zy,),r).

As the rule set is manipulated, additional rules are adddtaaequired subsef., which can
affect thepossible_words sets of all rules later in the rule graph. When comparing twesr ands,
it is possible that rule set extraction has progressedduitha section of the rule graph leading up to
one rule than in the section of the rule graph leading up tather. In order to be able to obtain a
clear comparison of the two rules, we choose a shared poiheirule graph (rule in the definition
below) and only allow rules defined prior to this point to ieffice thepossible_words(.) sets of both
rules, resulting in a stable basis for rule comparison.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 81

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Let the sepossible_words(Z', Z., 0set(Z'), v, r) consist of all words that match a specific
rule r, and have not yet been caught by ruler an earlier rule tham, wherev in Z,, the
required subset of rule séf when rule extraction is in staté’, 7., oset(Z'):

Vr,s € Z'\v € Zo, Ze C 7' C Zeompined, Yoset(Z') C allset(Z')
w € possible_words(Z', Z,,0set(Z'),v,r) <
v=ror(v,r) € oset(Z"), match(w,r) = 1,

As € Z, : match(w,s) =1,s = v or (s,v) € oset(Z')2. (5.36)

®Note that ifv # r and(v,r) & oset(Z') thenpossiblewords(Z', Z., oset(Z'),v,r) = ¢

Let vy be an imaginary rule that matches no words, is always therfilstto occur in any
rule set, and does not contribute to the rule count of a rulel$e rulevy has the following

characteristics:
v € Zcombined' (537)
[{vo}| =0. (5.38)
Vw € TD : match(w,vy) = 0. (5.39)

Vo, € Z', 7' C Zeompined, Vi 7 Vo, Yoset(Z') C allset(Z')
(vo,v;) € oset(Z"). (5.40)

Sincevy does not affect further rule set orderings directly, anchoamffect any word-rule relation-
ship, such a rule can be added without causing any side ®ffethe rule set. We use rulg as a
stable point for rule comparison when two rules do not shdeatical predecessors i when eval-
uatingpossible_words sets with regard to some stable points defined in eq. 5.36. An alternative
stable point that can be used is the last shared parent ofitheutes inZ.., as defined below.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 82

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Let last_parent(Z', Z.,0set(Z'),r, s) be the latest possible rule or rules4f that occur
earlier than both rulesands according twset(Z'), or the earliest of ands, if r, s € Z,:

Vr,s € Z'v € Zoy Ze C 7' C Zeompined, Voset(Z') C allset(Z')
v € last_parent(Z', Z.,0set(Z'),r,s) =1 <=

{(v,7),(v,8)} € oset(Z"); At € Z. : {(v,t),(t,7),(t,8)} € oset(Z"). (5.41)

Let shared_words(Z',Z.,oset(Z"),r,s,v) identify those words that are in the
possible_words sets of two different rules ands with regard to some rule:

Vr,s € 20 € Zo, Ze € Z' C Zpombined, Yoset' (Z') C allset(Z')
shared-words(Z', Z.,o0set(Z"),v,r,5) =

possible_words(Z', Z.,0set(Z"),v,r) N possible_words(Z', Ze, oset(Z'),v, s). (5.42)

5.3.2.6 COMPLEMENTING RULES: CONTAINPAT, MINCOMP AND SHEEDEMP

We now introduce a number of relationships that may exisveen pairs of rules. These relation-
ships are crucial in understanding how rules may substitrtene another, and therefore form the
foundation for the derivation of minimal rule sets.

Let complement(Z', Z.,0set(Z'),v,r, s) indicate that rules: and s have overlapping

possible_words sets, i.e.

Vr,s € Z/,T' F# 8,0 € Ly Ze C Z' C Zcombined
complement(Z', Z,, 0set(Z'),v,1,5) = 1 <=

Jw € shared-words(Z', Z.,o0set(Z"),v,r, s). (5.43)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 83

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Let the path(relation(r, s)) indicate that a path of relations of a specific type exists bet

tween rules- ands in arule setZ’, i.e

Vr,s € Z': path(relation(r,s)) =1 <= Iz =r,29,....0, =s € Z':

relation(x1,x2) = relation(xe, x3) = ... = relation(xy—1,x,) = 1. (5.44)
Vr,s € Z': path(relation(r,s)) = —1 <= Jx; =129, ...c,mp =8 € 7 :
relation(x1,xe) = relation(xs, r3) = ... = relation(x,—1,x,) = —1. (5.45)
Vr,s € Z': path(relation(r,s)) =0 <= Az =r,x9,....0, =S € Z':
relation(x1, xe) = relation(ra, x3) = ... = relation(rp—_1,x,) # 0. (5.46)
wherer, s andz; in the domain of the specific relation.
Let thepath(relation; /relationa(r,s)) = —1|0|1 indicate that a path exists between

ands as defined above, but with edges of either typlition; (.) or typerelations(.).

Let thepath(relation,&relations(r,s)) = —1|0]1 indicate that a path exists between

ands as defined above, but with edges such that bethtion (.) andrelations(.) hold.

Let the relatiorcontainpat(Z’, r, s) indicate that rule- is a rule with the smallest possible

context that contains the context of rulg.e.:

Vr,s € le z' C Zcombined
containpat(Z',r,s) =1 <= context(r) D context(s)

and At € Z': context(r) D context(t) D context(s).

(5.47)

Let containpat(Z',r,s) = —1 if and only if containpat(Z’,s,r) = 1; and let

containpat(Z',r,s) = 0 if and only if no containpat(.) relationship exists between

andsin Z'.

From the definition otontainpat it follows immediately that

V?”, S € ZI, Z/7 - Zcombined :

path(containpat(Z',r,s)) =1 <= context(r) D context(s).

(5.48)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

84

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Let the bidirectional relatiomincomp(Z’, Z., 0set(Z'),v,r, s) be true for all rules and
s that are minimal complements of each other, i.e.

Vr,s €2' v € Zo,Ze CZ' C Zeompined :

mincomp(Z', Z,0set(Z'),v,r,8) =1 <=

complement(Z', Z., oset(Z'),v,r,s) = 1,
path(containpat(Z',r,s)) = 0. (5.49)

Let the bidirectional relatiodirect(.) be true for rules that have either a directncomp(.)
or a directcontainpat(.) relationship, i.e.

V?”,S € ZI,U < Ze,Ze - A - Zcombined :
direct(Z', Z.,0set(Z'),r,s) =1 <

containpat(Z',r,s) = £1 or mincomp(Z', Z, 0set(Z'),r,s) = 1. (5.50)

Let thesubset(Z', Z., 0set(Z'),v, r, s) relation indicate that theossible_words that can
be caught by a rule is a strict subset of theossible words that can be caught by another
rule s, with respect to a rule that occurs earlier in the rule set than either s, for a given
rule extraction state¢’, Z., oset(Z'):

Vr,s € Z',Ze C 7' C Zeompined, Voset(Z') C allset(Z'),
v € Ze,{(v,7), (v,8)} € oset(Z') :
subset(Z', Ze,0set(Z'),v,r,8) =1 <=
shared_words(Z', Z.,0set(Z'),v,7,s) # ¢,
possible_words(Z', Z., oset(Z"),v,r) C possible-words(Z', Z.,oset(Z'), v, s).(5.51)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 85

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Let the supercomp(Z’', Z., oset(Z"),v,r, s) relation be true when two rulesand s are
both in asubset(Z', Z.,o0set(Z'),v,r,s) and amincomp(Z', Z.,0set(Z'),v,r,s) rela-
tion:

Vr,s € 20 € Zo, Ze € Z' C Zeombined, Voset(Z') C allset(Z'),
supercomp(Z', Z.,0set(Z'),v,1,8) =1 < (5.52)
mincomp(Z', Ze,0set(Z'),v,r, s) = 1,

subset(Z', Z.,0set(Z"),v,1,8) = 1. (5.53)

Forallr,s € Z', Z' C Zeompineda, 0set'(Z') C allset(Z'): Let anyset(Z', oset(Z"),r, s)
be an alternative naming convention foryset(Z’, Z' oset(Z'),r, s), whereanyset can
be thesubset (eq. 5.51)possible_words (€q. 5.36), obrder_req (eq. 5.58).

5.3.2.7 Zy AS ASUBSET OFconmBINED

As mentioned in section 5.3.2.4, the full set of ruleszin,.»ineq CONsists of all possible rules and is
therefore a superset of one or mengnimal rule setsZ,,. During rule extraction eacillowed rule
state is defined by a triplg’, Z., oset(Z'), and each allowed state can can give rise to one or more
minimal rule setsZ,,, oset(Z,,), where(Z,,, oset;,(Zy,)) € minrules(Z', Ze, oset(Z")).

If any two rulesr ands in Z,,, have a specific relationship in one such state, this impliebér
relationships in prior and ensuing states (as shown inrete15). For any two rulesands in Z,,
it holds that ifr ands have acontainpat relationship with regard to an appropri&teodev when the
rule extraction process is in stafé, Z., oset(Z') , rulesr ands will have a similar relationship when
rule extraction reaches the statg,, Z,,,, oset,,,(Z,,). It can also be shown that, for any two rules
ands in Z,,, it holds that ifr ands have acomplement relationship with regard to an appropriate
nodev when the rule extraction process is in the final stéte Z,,, oset,,(Z,,), then rules- and
s will have a similar relationship for eactllowed_state Z', Z., oset(Z') leading up to the final
state. Forcontainpat path relations, the statement is stronger: Any two rul@sds in Z,, will
have apath(containpat(.)) relationship when the rule extraction process is in S, , oset(Z’)
if and only if rulesr and s will have a similar relationship when rule extraction reestihe state
iy Zon,y 08€t (Zm).

®This v acts as the stable comparison point previously describagv/Auch that bottfv,) and(v, s) are included in
the set of established orderings would be valid.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 86

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

5.3.3 RULE ORDERING

In this section, we analyse the conditions and implicatiohan ordering relationship between two
rules in a rule sef’ whereZ’ C Z.,mpinea- We first define what we mean by ordering requirements,
and then show how these requirements can be translatedreldtienships defined in section 5.3.2.6.

Let orderqe.(Z', Ze, 0set(Zy,),r, s) indicate that ifr does not occur before, no state
7', Z.,o0set'(Z') can result in amllowed_state, whereoset’(Z') is a superset of the
oset(Z') orderings:

Vr,s € 2", Ze C 7' C Zeompined; Yoset(Z") C allset(Z') :
orderaec(Z', Ze,08et(Z'),r,8) =1 <=

Aoset’ (Z') D oset(Z') U (s,7) : allowed_state(Z', Z, 0set' (Z')) = 1. (5.54)

Letorder,.q(Z', 0set(Z'),r, s) indicate that if rules occurs before rule, at least one rule
in the rule setZ’ will become redundant, irrespective of any further ordgsiadded:

Vros € Z',Ze C 7' C Zeompined, Voset(Z') C allset(Z') :
orderyed(Z', Ze, 0set(Z'),1,5) =1 +—=
at least one rule € Z’' becomes redundant given any state

(Z',Z,, 0set' (Z")), 0set' (Z') D oset(Z') U (s,7), Z. D Z,. (5.55)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 87

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Letorder(Z', Z.,0set(Z'),r, s) indicate that either anrder,..(Z', Z., oset(Z'),r, s) or
anorder,.q(Z', Z,0set(Z'), r, s) relationship holds between any two ruleands:

Vr,s € Z' Ze C 7' C Zeompined, Yoset(Z') C allset(Z')
order(Z', Ze,0set(Z'),r,s) =1 <= orderyec(Z', Ze,0set(Z'),r,5) = 1,
ororderyeq(Z', Z.,0set(Z'),r,s) = 1. (5.56)

Let direct_order(Z', Z.,o0set(Z'),r,s) = 1 indicate that a direct ordering requirement
exists between rulesands:

Vr,s € Z',Z. C 7' C Zeompined, Yoset(Z') C allset(Z') :

direct_order(Z', Z.,0set(Z'),r,s) =1 <= order(Z', Z.,o0set(Z'),r,s) = 1;

)

At - direct_order(Z', Z.,0set(Z'),r,t) = 1,

direct_order(Z', Z,o0set(Z'),t,s) = 1.(5.57)

As before, for each of therder* relations ¢rder, order .., order,.q anddirect_order),
let order*(Z', Z,0set(Z'),r,s) = —1 indicate thatorder*(Z', Z., oset(Z'),s,r) = 1,
and letorder*(Z', Z.,0set(Z'),r,s) = 0 indicate thatorder*(Z’, Z.,oset(Z'),r,s) #
+1.

Using the above definitions it can be shown that ifoader,.. relationship exists between any two
rulesr ands in Z,,, then a path ofomplement anddirect__order relations exist between these two
rules (statement 19). That is, under appropriate conditiorder,..(Zm, , Zm, oset(Zy,),r,s) =
1 = path(direct_order&complement(Zy,, Zm,oset(Zy,),v,r,s)) = 1, wherev is a rule earlier
thanr or s (and in practice typically th&ist_parent of these two rules). This means that any two rules
in Z,, can only have an accuracy ordering requirement if theré¢seaipath of such complementing
direct orderings from one to the other.

Once aminimal rule setZ,, has been obtained, thenifder;.q(Zm, Zm, oset(Zy,),r,s) = 1
it also follows thatorderqec(Zm, Zm, 0set(Zy,),r,s) = 1 (statement 16). The redundancy ordering
requirement therefore does not introduce any additiordgrimg requirements in the final rule graph,
but does provide a way to restrict the set of rule orderingly e in the rule extraction process.
If any two rulesZ’ are in asubset relationship with regard to some ruleas above, then it can
be shown that these two rules are also irvadier,.q(Z,, Zm, 0set(Z,,), r, s) relationship with re-
gard to anyZ,,, oset,,,(Z,,) pair that can be reached from the curretibwed_state (Statement 21).
Identified subset relationships can therefore be used to define initial ongsriprior to further graph
manipulation.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 88

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

The process of applying allowed operations (as discussegdtion 5.3.6) leads to further or-
dering requirements becoming visible. Below we define thaditimns under which anrder_req
relationship can be enforced between two rules. It can berstioat if two rulesr ands are in an
order_req(Z', Z.,oset(Z'), v, r, s) relationship with regard to a rukeas above, then these two rules
are also in awrder,..(Z', Z.,0set(Z'),r, s) relationship (statement 26). Theder_req relation-
ships therefore provide an indication of accuracy ordereguirements that emerge during rule set

extraction.

Let theorder_req(Z’, Z.,o0set(Z'),v,r, s) relation be true if two rules ands disagree
with regard to outcome, and have a non-empty sethafred_words, all of which agree
with rule » with regard to outcome, and at least one of which disagre#s nwie s with

regard to outcome:

Vr € Zsingle;s € Z',0 € Ze, Ze € Zim © Z' € Zeombineds

Voset'(Z") C allset(Z') :

order req(Z', Z.,0set(Z'),v,r,8) =1 =

direct_order(Z', Z,0set(Z'),r,s) = 1,

shared-words(Z', Z.,oset(Z'),v,1,s) # ¢,

Vw; € shared_words(Z', Z,o0set(Z"),v,r, s) : outcome(w;) = outcome(r),

Jw' € shared_words(Z', Z.,o0set(Z'),v,r,s) : outcome(w’) & outcome(s). (5.58)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 89

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

5.3.4 CHARACTERISTICS OF AN ALLOWED STATE

Let order_decided(Z', Z.,0set(Z"),r, s) indicate that the direction of rule ordering be-
tween two directly related rulesands in a rule setZ’ has been established based on an

identified containpat or supercomyp relationship, given some required subset of rifes
and some prior set of orderingset(Z’). More specifically:

Vr,s € Z', Ze CZ' C Zeompined, Voset' (Z') C allset(Z') :
order_decided(Z', Z.,0set' (Z'),r,s) =1 <=
containpat(Z'r,
”

s
or v € Z, : supercomp(Z', Ze,0set' (Z'),v,r,s) =

) =
orJoset(Z') C allset(Z') : order_subset(oset(Z'), oset' (Z"))

order_decided(Z', Z.,0set(Z'),r,s) = (5.59)

Let decided_set(Z', Z., 0set(Z")) take any rule sef’, required subsef, and set of rule
orderingsoset(Z'), and generate a set of all the currenter _decided relationships:

Vr,s € Z',Ze C 7' C Zeompined, Voset(Z') C allset(Z') :
(r,s) € decided_set(Z', Z,0set(Z")) <
path(order_decided(Z', Z.,0set(Z'),r,s)) = 1. (5.60)

Note that arorder_decided(Z', Z., 0set(Z'),r, s) relationship does not imply that ruteand s will
either or both be retained id,,, but only that if both were retained,would be ordered prior te.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 90

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Let order_possiblel(Z', Z., oset(Z'),r, s) indicate that, even though it has not yet been
established whether a rule ordering is required betweemuilgsr ands: if a rule ordering

is required, the direction of such an ordering will be fronterd to rule s because of the
existence of arder_req relationship between these two rules. More specifically:

Vr,s € 7', Z. C 7' C Zeompined, Voset(Z') C allset(Z') :
order_possible\(Z', Z.,o0set(Z'),r,s) =1 <=
Jv € Ze,{(v,7), (v,s)} € oset(Z") : order_req(Z’, Z.,o0set'(Z"),v,r,s) = 1. (5.61)

Let order_possible(Z', Z.,0set(Z'),r, s) indicate that the direction of rule ordering (if
any) has not yet been established between two minimal congpitsr and s that have
remainingshared_words when rule extraction is in staté’, 7., oset(Z'). More specifi-
cally:

Vros € 2", Ze CZ' C Zeompined, Yoset(Z') C allset(Z') :
order_possible(Z', Z.,0set(Z'),r,5) =1 <= mincomp(Z',r,s) =1,
shared-words(Z', Z., oset(Z'),r, s) # ¢,
order_decided(Z', Z,,0set(Z'),r,s) = 0.

order _possible\(Z', Z.,o0set(Z'),r,s) # —1. (5.62)

Let possible_set(Z', Z.,0set(Z')) take any rule sef’, required subsef, and set of rule
orderingsoset(Z'), and generate a set of all tHecided andpossible rule orderings. More

specifically:
Vr,s € Z',Ze C Z' C Zeompined, 0set(Z') C allset(Z') :
(r,s) € possible_set(Z', Z.,o0set(Z')) +=
path(order_possible/order_decided(Z', Z.,oset(Z'),r,s)) = 1. (5.63)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 91

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

Consider any?’, Z., oset(Z') combination such thatllowed_state(Z', Z.,0set(Z')) = 1. By defi-
nition (eq. 5.28 and eq. 5.29) it will always hold that:

Ze g Zm g Zcombined- (564)
Furthermore, it can be shown (statement 28 and 27) that:

order_subset(decided_set(Z', Z.,0set(Z")), 0setm(Zm))) = 1. (5.65)
order_subset(oset,,(Zy,), possible_set(Z', Z,, 0set(Z'))) = 1. (5.66)

Now consider any two rulesands that will be retained in the minimal rule sgt,,. From the above
it follows that if rulesr ands are ordered according tiecided_set(Z’, Z., oset(Z')) then these two
rules will retain this ordering in the minimal rule set orihey oset,,(Z,,). Also, any rule ordering
that will eventually be required inset,,, (Z,,) is currently listed irpossible_set(Z', Z., oset(Z'). For

any given stateZ’, 7., oset(Z'), the definite and possible rule orderings can therefore hergeed
automatically, and used to reason about further graph rakatipn options.

5.3.5 INITIAL ALLOWED STATE

The rules inZ.,.pinea describe the training data completely, but not necessadburately. Since

all possible rules are included T ompined, it follows that ¢ C Z,, C Z.ompinea for all
minimal rule setsZ,,. Furthermore, it can been shown that if the rulesZn,, pineq are or-
dered according teontainpat and supercomp relations, then no overly restrictive orderings will
be added. If the rule se¥.,.nineq 1S Ordered according to the rule set orderings generated by
decided_set(Zeompined, P, ¢), then the rule set is in aallowed_state (statement 33). This state

is used as the initial state prior to application of the vasiellowed_ops, as described below.

5.3.6 ALLOWED OPERATIONS

Eachallowed_op as defined in section 5.3.2.4 changes the state of the ryleegeired rule subset
and rule ordering set, from ondlowed_state to another, with the initiakllowed_state defined
in section 5.3.5. These operations are not unique, and bathger and weaker versions can be
constructed. While the framework up to this point has bedimeé rigorously, we now discuss a
number of possible operations in order to demonstrate hsmrdimework can be used during rule
extraction. We describe a number of operations that we hapéemented and tested in our rule
extraction system. Specifically, we describe allowed djmsra that can be applied to (1) delete rules,
(2) remove unnecessary edges, (3) mark rules as requiréd4aresolve conflicted rules.

When applying any of these operations it is assumed thatitegraph is in amllowed_state de-
fined by the tripleZ’, Z., oset(Z'). Prior to discussing these operations in further detashdéuld be
noted that the rule graph edges added according tddhided_set andpossible_set orderings have

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 92

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

two functions: On the one hand, these edges define the oradriam rules will occur, as discussed
up to this point. Secondly, these edges link any ruleltpossible ruleghat may potentially replace
or be replaced by the current ruBirect successorsr predecessorare identified by following both
decided_set andpossible_set orderings and identifying rules that either have to or caruodirectly
before or after the rule being considered. From these satsles it is possible to define the total
number of rules that (1) will definitely and (2) may poterjiglbased on decisions made in other
sections of the rule graph) be deleted if a current rule is@aged with a specific outcome.

5.3.6.1 DECREASING RULE SET SIZE

A rule r can only be deleted if it can be shown that the rule has becethendant, and will remain
redundant. This can occur for two reasons: (1) because giatigon of the specific rule in the rule
graph, all words that match this rule are already caught ¢uired rules (correctly identified as such)
that occur earlier in the rule set; or (2) because the ruldoeadmerged’ with a second rule occurring
at the same point in the rule extraction order. We define ttiifeerent allowed operations with regard
to rule deletion:

1. Aruler may be deleted if some rukeexists such that:

¢ Rulesr ands are resolveds(s € Z;,4) and agree with regard to outcome.

e Rulesr ands have identical relationships with identical predecesgboth possible and
definite).

e Rulesr ands have identical relationships with identical successomh(lpossible and
definite).

2. Aruler may be deleted if a set of rules exists such that:

e Thew; constitute all the direct successors of rule

¢ Ruler and all thev; are resolvedi(v; € Zgnq) and agree with regard to outcome. (No
rule ¢ with a potentially conflicting outcome can have an orderimat &llows it to occur
between rule: and anyv;.)

3. Aruler may be deleted if for some allowedthepossible_words(Z', Z., oset(Z'),v,r) = ¢.

5.3.6.2 REMOVING UNNECESSARY EDGES

Since decided orderings are transitive, it is possible to remove any e#pliordering
rule_order(Z',r, s) if it already holds thatule_order(Z’,r,t) = 1 andrule_order(Z',t,s) = 1
for somet € Z’. Note that this does not remoye, s) from oset(Z’).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 93

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

5.3.6.3 IDENTIFYING REQUIRED RULES

When a rule is identified agquired it is moved from the possible rule sgt to the set of required
rules Z.. This is anallowed_op for a ruler if the rule r itself has already been resolved (that is, it
can only predict a single outcome), and no further rulest éixét may potentially agree with regard
to outcome.

5.3.6.4 RESOLVING CONFLICT RULES

We define four different operations that can be used to resmnflicted rules. All of these operations
utilise the concept of aingle rule and acon flict_count. Arule s is identified as aingle rule if there
exists at least one word such that{w, s) € oset(Z’) and not exists such thatatch(w,t) = 1, un-
less(s, t) € oset(Z'). This means that word can only be predicted by rulg or by a later rule that
has a decided path from wordvia rule s. For each possible outcome we count the number of prede-
cessors that will definitely be deleted if rulds resolved to that specific outcomée(inite_count),

as well as the number of predecessors that may possibly beddossible_count). These counts
are not calculated per predecessor, but rather per worliated predecessor represents. For a prede-
cessors to contribute to ade finite_count), the predecessor must be resolved (that is, Z,;,,4:¢),

be identified as aingle rule, and have only one successor (the conflictedsrigelf).

1. Ifitis clear that rule- will provide an advantage if resolved to a specific outcorasplution is
performed, and the conflicted rule is replaced with a normial with the selected outcome. A
rule may only be resolved in this way, if thie finite_count for a specific outcome dominates
the sum of thede finite_count and possible_count for all alternative outcomes. It is also
required that at least one of the predecessors with a outooatehing the outcome selected
for rule resolution be aingle rule. This prevents an unnecessary rule from being genkaate
this point in the rule application order. (In a later steg tesolved conflict node will merge
with the single predecessor.)

2. If a conflicted rule- has no predecessors that can potentially agree with eaehwith regard
to a specific outcome, the rulemay be deleted. (We refer to this process &ssaconflic). A
rule may be resolved in this way if the sum of #hefinite_count andpossible_count is less
than or equal to one, for all possible outcomes.

3. If for any of the outcomes the sum of thefinite_count andpossible_count is less than or
eqgual to one, that outcome may be removed from the possildemes of the conflicted rule,
even though the rule remains a conflicted rule. If all excey@ outcome are removed in this
way, then at least one predecessor must bénale rule that agrees with regard to the final
outcome, as discussed with regard to the previous operator.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 94

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

4. The root node is not allowed to be resolved via operatoro(2)3). If operator (1) is not
applicable, the root node is resolved to the outcome thatregmost in the training data. This
operation is only allowed when all predecessors have besatves.

5.3.7 BREAKING TIES

Once all the possible operations have been applied to teegraph, and no further simplification is
possible, it does not necessarily mean that all conflicteshave been resolved. The extent to which
the rule graph is resolved, depends on the strength of theugaallowed operations defined. Note
that the set difference between the increasing ruleZsetind the decreasing rule sét provides a
clear indication of the extent to which the current soluttifi falls short of the minimal rule sef,,,.

If Z. equalsZ’, a minimal rule set has been obtained.

The remaining conflicted nodes can be solved by viewing tlesgnaph as a constraint satisfaction
problem (CSP). By assigning the various remaining (nodsifip) outcome values to each of the
remaining conflicted nodes, and searching through thetimegidearch space, the final solution can
be obtained. During the CSP search process, all conflictdesare solved simultaneously, and
the rule minimisation process proceeds rapidly using tm®wa deletion operations. By searching
through all the remaining allowed rule sets, the smalleskide set can be obtained.

The magnitude of this CSP is determined by the coverage obpleeations employed. If only
trivial operations were employed, and all conflicts werétethe CSP to resolve, a huge CSP would
result for even very small problems. The stronger the altbeperations defined, the smaller the
CSP to solve. Our current implementation has been used ¥e sahall tasks of, = 100 words,
and we have been able to extract rule sets that are smallertiba extracted bypefault&Refine
Various CSP-specific techniques can be applied to impravedmputational tractability of the task.
However, this is not the focus of the current chapter, whiofsao define a solid theoretical basis for
further experimentation: computational tractability Maié addressed in future work.

5.3.8 OPTIMISING GENERALISATION ABILITY

Once all conflicted rules have been solved, and the minintalset obtained, it is possible to refine
the rule set by choosing the best rule option among the varatiants available. Possible selection
criteria include smallest rule context, most symmetrie mintext, best coverage of the training data,
best fallback given the following set of rules in the spetifitiierarchy, and various others. Since
the choice of variant does not influence the number of rulesigeed, this provides flexibility in the
construction of the final rule set. When heuristics are eggaloduring rule extraction, choices are
limited earlier on: this framework allows heuristic chade be postponed as late as possible during
rule extraction, and makes those choices explicit.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 95

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

5.4 ALTERNATIVE ALGORITHMS AS SPECIALISATION OF GENERAL
FRAMEWORK

It is interesting to note that the rule extraction algorithaliscussed in Chapter 4 can be viewed
within the minimal representation grapframework. In the case of DEC the full set of rules in
Z is not constructed: only the rules that match the DEC formatgenerated. The rule graph is
not constructed prior to rule extraction but is grown durninbp extraction according teontainpat
relationships. Each additional conflicting word resultsunother leaf being added to the graph.

Default&Refinealso grows the graph from the root outwards, ordering ruteeming to rule
extraction order. At each level, a decision is made with mda the rule and associated outcome
that best predicts the set of words that must be caught aketvedtin the rule graph (that will not be
predicted correctly by a later rule). This is conceptualiyikr to generating a full rule graph prior
to rule extraction, and resolving rules strictly from thetroutwards according to a greedy heuristic
at each level. Since neither algorithm proceeds with altbegerations from an allowed initial state,
both will in general produce larger-than-minimal rule sets

5.5 EXTENSIONS

The current framework provides a solid theoretical basedasoning about the choices made during
grapheme-to-phoneme rule extraction. We are interestbdvinthis framework can be extended to
incorporate additional techniques, and this will be adslrdsn future work. Specific extensions that
may fit well within this framework include:

e Pronunciation variants: currently pronunciation varsaate not allowed (See eq. 5.13). If
a single pseudo-phoneme is generated for each alternaiingd sthe same framework can
be used to process pronunciation variants, with variantea®rd to drift towards the top of
the graph, unless clearly systematic. Further choiceseewdh regard to resolving conflict
between a single phoneme and a matching pseudo-phonemextms$ions to the current
framework may assist in resolving such issues.

e Class-based groupings: It is clear from rule set analyss ghnoups of graphemes tend to
influence neighbouring graphemes in systematic ways. lildhme possible to accelerate the
learning process by extracting such graphemic groups glutite set extraction. This may
require the interlinking of a number of minimal memory graf a single structure.

e Combining phonemic and graphemic context: The same ruleasebe generated in terms of
either graphemic or phonemic context. We are interestelddrativantages and disadvantages
of combining both approaches in a single rule set.

e Graphemic chunks: As all possible word sub-components emergted during rule set extrac-
tion, the extent to which the rule graph is manipulated kwitigs approach closer or removes

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 96

CHAPTER FIVE MINIMAL REPRESENTATIONGRAPHS

it further from pronunciation-by-analogy techniques. W imterested in the similarities and
differences between these two approaches.

5.6 CONCLUSION

In this chapter we described a theoretical framework thatlmused to analyse the grapheme-to-
phoneme prediction problem in a rigorous fashion. Using framework, it is possible to define a
number of ‘allowed operations’ that attempt to extract thalest possible rule set from any given
set of training data. By making the various options avadlaiileach stage of rule extraction explicit,
we obtain a better understanding of the grapheme-to-phemeetiction task itself. Furthermore, the
new framework provides a solid foundation for further reskan pronunciation prediction, including
the potential incorporation of pronunciation variantssst-based groupings and/or graphemic chunks
within a rewrite-rule based framework.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 97

CHAPTER SIX

BOOTSTRAPPING PRONUNCIATION MODELS

6.1 INTRODUCTION

In this chapter we apply the grapheme-to-phoneme rule aidramechanisms developed earlier
in order to bootstrap pronunciation models. We analyse t@strapping process by developing
pronunciation models in Afrikaans, a Germanic languagé witairly regular grapheme-to-phoneme
relationship, and describe a number of experiments coaduotevaluate specific aspects of the boot-
strapping process. In Section 6.5.4 we analyse the effigiehthe bootstrapping process according
to the framework defined in Chapter 3. The completed systesrsimae been used for the develop-
ment of dictionaries in a number of additional language& (s, Sepedi and Setswahpand these
dictionaries integrated in speech technology systemseswithed in Section 6.6.

6.2 BOOTSTRAPPING SYSTEM

Two bootstrapping systems were developed:

e System A: The bootstrapping approach as described in 8e8#fbwas implemented in Perl,
to run within a Web browser [72]. This prototype provided apeximental platform for the
evaluation of the various algorithms described in Chaptandt allowed initial measurements
with regard to developer efficiency and accuracy. The erpnts described in Sections 6.3
and 6.4 utilised this system.

e System B: Components of System A were re-implemented in ifagader to provide more
user-friendly interaction. The new system does not implenadl the algorithms evaluated in

Three more of South Africa’s official languages, from the Baiamily.

98

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

this thesis, but provides a more robust platform for dictigndevelopmerit System B was
used in the experiment described in Section 6.5.

Both systems implement the bootstrapping approach destiibSection 3.4, as described in more
detail from both the user and system perspective in the mexséctions.

6.2.1 USER PERSPECTIVE

E - G2Prunexperiment-Mozila e
_ File Edit View Go Bookmarks Tools Window Help
0,0 © © [§http://127.0.0.1/cgi-bin/g2p/intro_run.cgi -] [Search] <,
. @ Home &©=Bookmarks % The Mozilla Org... = Latest Builds
DictionaryMaker
gg‘;;’?ﬂg‘e“ Verify pronunciation:
Synchronise experiment
Show dictionary status innoverend > — i | n| u| f| e | r| 2| n| t][Cra]
Verify
Display dictionary .
Redo one of previous i‘ il ﬂ ﬂ J _Add |
Listen | u| a| g au|| Delete
o [[[o] e a| | uif
g f e e ooy | (51| (o] u | i
b p Bl @
! k| o] x| r]
®y | ai o] ai il iI ﬂ il
= [[= BB E o
= o= = o
L [[(e A
m [o][] [1] & iﬂ;flli%uous Cancel
o] Do JEw [n] [a]
=2 @4 B |Playing MD6 sound http://127.0.0.1/g2 pdocs/sound/Afrikaans/tmp/mareliel/inno... | ,ﬂﬁg‘;’_‘é

Figure 6.1:Correcting the predicted pronunciations (System A).

The dictionary development task as presented todhiéier is depicted in Fig. 6.1. The verifier is
presented with each word/pronunciation pair in turn, arkdés$o provide a verdict of pronunciation
accuracy. The verifier is required to verify all new prediog — none are assumed to be cofrect

2This system will be released as Open Source Software in thefoeure — see http://www.csir.co.za/hlt for more
information.
%In an alternative approach, Maskey al [68] utilised a confidence metric to assume the correctnbessroe of the

words. We preferred to verify all new predictions, giventmgredictability of some exceptions in pronunciation jirgdn
tasks.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 99

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

External data
A
Predicted A f------m Serify ------3 (User-readabl
representation)

Conversian Current I B Base data: Ul Current Conversian
i hase data set base G model
madel
B (Interim
representation)

m
-]

External data

Figure 6.2:The bootstrapping system concept.

Once the word list and phoneme set have been loaded and tleensgsepared, no further exper-
tise is required from the verifier apart from being able tdetdléntiate between correct and incorrect
pronunciations.

The verifier is presented with two representations of thaymaiation, namely a visual transcrip-
tion and an audio version. The audio version is created bgatenating pre-recorded samples of each
phoneme (i.e. the word is ‘sounded’ rather than synthekigduk verifier specifies a verdict: whether
the pronunciation isorrectas predicted, whether the word itselfimgalid, ambiguousdepending on
context, or whether the verifier isncertainabout the status of the word. If the pronunciation is
wrong, the verifier specifies the correct pronunciation mgaeing, adding or replacing phonemes in
the presented pronunciation. Once the verifier is certath@ficcuracy of a specific pronunciation,
he or she is encouraged to listen to the audio version of tlaé gimnunciation, and so identify po-
tential errors. At any stage the verifier cRedoa word, in order to correct a previous mistake. The
verifier can alsd.ist possible errorsvhich provides a list of exceptional pronunciations, asutsed
in more detail in Section 6.4.

6.2.2 SYSTEM PERSPECTIVE

Fig. 6.2 illustrates the bootstrapping concept from a sygterspective. The bootstrapping system is
initialised with a grapheme and phoneme set, and a large gbfdontaining no pronunciation infor-

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 100

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

mation). Each phoneme is associated with a pre-recorddd aathple. The system can be primed
with an existing rule set or dictionary, if available. If tiegr is available, the system will predict
empty pronunciations initially, which, when correctedinfiothe basis for further bootstrapping.

Bootstrapping occurs in two phases. During the initial phéilse grapheme-to-phoneme models
are updated whenever a word is verified as correct. In thenslggioase, a complete update (referred
to as a synchronisation event) only occurs after a set of svaad been verified as correct. In between
synchronisation events, learning can either be ceasedntinaed using an incremental algorithm
The dictionary developer chooses the number of words athwthie system progresses from the first
to the second phase, as well as the size of the set corredt@e Ipeodels are synchronised with the
new training data during the second phase. Once initigltbedfollowing steps are repeated:

1. The system analyses its current understanding of theatakjenerates the next word to con-
sider, as described in Section 6.2.3.

2. For the chosen word, the system generates a new prorionaiging its current grapheme-to-
phoneme rule set.

3. The system creates a ‘sounded’ version of each word usmgredicted pronunciation and
associated sound samples, and records the verifier’s fspdnse.

4. If aword has been verified as correct, the system incré@sagdate synchronisation counter.
If an update event is due, the system updates its graphepigstteme rule set based on the
new set of pronunciations.

This process is repeated (with increasingly accurate giieds) until a pronunciation dictionary
of sufficient size is obtained.

6.2.3 ALGORITHMIC CHOICES

In the experiments conducted here we either DE€-minor Default&Refinefor rule extraction, as
stated per experiment. We also state whether incremeatalite is utilised between synchronisation
events or not. A further algorithmic choice concerns the metssm whereby the next ‘best’ word
to add to the knowledge base is selected, as this can inflibapeed at which the system learns.
We utilise three different techniques in our experimentsyeferred to in the various experiment
descriptions:

e Evenly selected from corpus:
Here we order the available word list alphabetically, anéctesverynt” word in order to
obtain a subset of the required size.

4Such as incremental Default&Refine, described in Sectiémi4.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 101

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

e Systematic growth in context:
The system grows its understanding of pronunciationssimext systematically. Contexts of
varying sizes are ordered according to occurrence frequiengeneral text, creating a list of
‘contexts in question’. A continuous process predicts thet iest word to verify based on
the current state of the system: the shortest word is chdsgrcontains the next context in
question. If so required, the system will attempt to obta&irtainty on as many contexts of size
n as possible, before continuing to a context of sizé.

e Random:
A subset is chosen at random.

An alternative approach is suggested in [68], where wordoetered according to frequency in
general text, and the most frequent words are processedTis provides the advantage that more
frequent words are automatically included in the dictignlant can also decrease learning perfor-
mance if the more frequent words tend to have irregular proiations, as is possible, depending on
the specific language being considered.

6.2.4 SYSTEM CONFIGURATION

Fig. 6.3 depicts the options presented to the user prep#nmglictionary development process.
Displaying the current status, as shown here, is one tasknaéin experimental environment that
allows a user to manipulate and generate the various resmimeolved (the rule set, word list and
pronunciation dictionary) as required. For each experintba system logs the history of all activities
and archives the intermediary data resources for furthelysis.

6.3 EXPERIMENT A: VALIDATION OF CONCEPT

In this section we report on a series of experiments conduaterder to analyse the bootstrapping
approach. The experiments are aimed at understanding aenwhissues, including the following:

1. Can the bootstrapping approach be used to develop priationcdictionaries more quickly
than conventional transcription?

2. How important is the linguistic background of the dictoy developer? Is it possible for
a first language speaker without any phonetic training teelbgvan accurate pronunciation
dictionary? (As mentioned in Section 1.1, this is highlyngiigant in the developing world.)

3. How long does it take for a developer to become proficiett tiie bootstrapping system?

4. What are the practical issues that affect the speed andeayoof dictionary development using
the bootstrapping approach?

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 102

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

'a G2P Intro - Mozilla
. File Edit VWiew Go Bookmarks Tools Window Help |

" O @ @ ..‘%http:,’,flﬂ'.o‘o.l,r‘cgh] [Scsearch | Qigo |

- 48 Home F3Bookmarks % The Mozilla Org... % Latest Builds

[
[
¥

EINIm

DictionaryMaker

Ir

Experiment
Change language Change language
Create new
Show status
Load

Copy

Word List " Flemish
Import master list
View master list
L " isiZulu
Load
View " Sepedi

& Afrikaans

¢ English

© German

Generate
Werify format
Dictionary
Import

Load Cancel
Wiew

Generate

Correct

Werify format

Add eurrent to master dict
Add master to current dict
Wisw master diot

" Setewana

oK |

Clean master
Rules

Import

Load
Generate i
View

Analyse
Werify format
Info

Sounds

Rule accuracy
[=l I ﬂl&:é‘_g/

[

Figure 6.3:Preparing the bootstrapping system (System A).

In Section 6.3.1 we describe the experimental protocobfedid. Utilising the framework defined
in Chapter 3, we analyse the bootstrapping process fromaabtman factors perspective (Section
6.3.2) and a machine learning perspective (Section 6.B138ection 6.3.4 we analyse the efficiency
of the overall system, and compare expected and measungesyval

6.3.1 EXPERIMENTAL PROTOCOL

The first set of experiments involved three dictionary depets who created pronunciation dictio-
naries for Afrikaans. All three developers are first-largidfrikaans speakers; and in informal in-
terviews all three were found to employ a broadly similatetinof “standard” Afrikaans. Two of the

developers (whom we will refer to as A and B) have no formajuiistic training, whereas developer
C has significant linguistic expertise, and has previouseegpce in the creation of pronunciation

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 103

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

dictionaries.
The following protocol was used for all three developers:

1. A brief tutorial on the bootstrapping system, as well @&dhosen phonetic representation, was
presented by one of the experimenters.

2. Atraining set of 1000 words was drawn from a corpus of Afaiks words, and the developers
were given the opportunity to familiarise themselves with system (and the phoneme set)
by developing pronunciation rules for a subset of these svaring the bootstrapping system.
The process continued until the developers were satisfadhby were comfortable with the
software and phoneme set.

3. A new set of 1000 words was selected, and the developessagked to produce the most ac-
curate rules they could, by listening to the sounded vergioduced by the system, correcting
it if necessary, and repeating these two steps until satigfith the pronunciation.

4. Further sets of 1000 words were used to experiment wittowsrother factors, such as the
effect of giving developers the option not to use audio teasi®.

Each set of 1000 words was selected according to the ‘sysitegrawth in context’ word se-
lection technigue from an independent 40,000-word subset of the full Afrikaavord list. The
DEC-minalgorithm was used for rule extraction, and all experimevese conducted iphase lop-
eration, that is, the rule set was updated after every dedlemord. During these experiments we
measured several relevant variables, including: the takert to complete each verification; the num-
ber of phonemes changed per word verified; whether the desetthose to use the audio assistance;
whether a developer returned to a word to re-correct it aiea fage; and the amount of idle (resting)
time between sets of verifications.

6.3.2 HUMAN FACTORS
6.3.2.1 USER LEARNING CURVE

To measure a developer’s facility in using the bootstragsaftware, it is useful to obtain separate
measurements of how long it takes (on average) to verify svordvhich no corrections are made,
words where one correction is made, words where two coorstire made, etc. This eliminates the
confounding effect of the system becoming more accuratélaarns more rules (thus accelerating
apparent developer performance). By this measure, ak tthegelopers reached a satisfactory level
of performance within approximately 400 words. For examplg. 6.4 depicts how the times for
developer C to correct zero through four errors convergded sstable values; similar tendencies
were seen for the other developers as well.

Sas described in Section 6.2.3

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 104

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

60 T T T T T T T . ;
Correcting 0 errors ——
Correcting 1 errors --—->---
Correcting 2 errors ---x---
0 r Correcting 3 errors = -
»
< 40]
S
c
3=/ oo KB
S Fo &)
(o] 30 K g |
.t -
g
(] T SN—
IS L x S |
= 20 X% X Xk Y
"XX‘XX"><*><><*><><><><~>eé<>6><—><—><—><»><><><><”><‘><**»‘(\X—~x,»><\x><>e<——></><>< X
10 r WWM
0 I I L \) . | | |

100 200 300 400 500 600 700 800 900 1000 1100
Number of words verified

Figure 6.4: Average time taken by developer C to verify words requiriegp,zone, two or three
corrections, as a function of the number of words verifiece averages were computed for blocks of
50 words each.

This is highly encouraging, since the initial 400 words wepenpleted in less than two hours in
every case. Even linguistically untrained users can tbezdfecome proficient at using bootstrapping
within this length of time.

6.3.2.2 EFFECT OF LINGUISTIC EXPERTISE

The ability of linguistically untrained users to becomefimient at using the bootstrapping system
does not necessarily imply that the users were using therayetcurately. Itis an interesting question
whether it is at all possible for a first language speakerauttany phonetic training to develop an
accurate pronunciation dictionary.

In order to analyse the effect of linguistic sophisticatitre performance of developers A and B
(who have had no linguistic training) was compared with thfadeveloper C along the dimensions
of speed and accuracy. Because there is unavoidable amyhiguiefining “correct” pronunciations
(even within a particular dialect), we measured accuracsnagually comparing all cases where any
pair of developers chose different transcriptions for advém those cases, a transcription was flagged
as erroneous if (in the opinion of the author) it did not reprg an accurate transcription of the word.

Table 6.1:Estimated transcription accuracies of three developera gat of 1000 words.

Developer| Transcription experiencé Word accuracy
A None 83.6%
B None 98.0%
C Substantial 99.0%

Table 6.1 summarises the accuracies of the three devel@sszstimated using this process. Only
words marked as “valid” by a developer were included in thelwation. As expected, developer C

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 105

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

was found to be highly accurate. Interestingly, develop&vaB only slightly less accurate, whereas
developer A made significantly more errors than either ofothers. During analysis it was revealed
that developer A had not adhered to the protocol defined itid®e6.3.1: when confident of the
accuracy of a pronunciation, developer A had accepted piations without utilising the audio
assistance provided by the system. Two conclusions aresteghby these measurements:

e It is possible for a linguistically inexperienced develope use the bootstrapping system to
attain levels of speed and accuracy comparable to thoseighly Iproficient dictionary devel-

oper.

e Developers with limited linguistic experience should bguieed to listen to every transcription,
since it is easy to become over-confident about one’s altdlitgad phonetic transcriptions.

6.3.2.3 THE COST OF USING AUDIO ASSISTANCE

Since we found that the developer who did not sound words @atermany more errors than those
who did, it is important to investigate how much this subgass delays the process of verification.
To this end, we asked developer C to verify an additional 8200 words, only choosing to sound out
those words where she considered it useful. In Fig. 6.5 the taken to verify words with various

numbers of corrections is compared with the times when thetiaudio assistance was compulsory.

40
Compulsory audio assistance ——+— ‘
Optional audio assistance -
7 a
= T
- 20
X
K=l o
8 % g ‘
@ v
o 11
o 10
= .
|_
0
Uncertain Invalid Correct Edit1 Edit 2 Edit 3
-10

Verdict

Figure 6.5:Average time taken by developer C to verify words, with artdout compulsory use of
audio assistance.

We found that this choice did not cause the developer to coamyierrors; however, the reduction
in verification time was also relatively small (3.6 secondsagerage). This confirms the suggestion
in Section 6.3.2.2 that it is generally better not to makeue of audio assistance optional.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 106

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.3.2.4 THE COST OF PHONEME CORRECTIONS

The number of phoneme corrections required is the domiatdif in determining verification time.
For example, analysis shows that the length of the words t@bfed correlates with the verification
time if no corrections are required, but not if one corratti® required, and that word length is the
less important of these two factors. (Word length similades not predict verification time if two or
more corrections are required.) Developers take compadabitions to perform their verifications,
as shown in Fig. 6.6.

50
Developer A —+—
Developer B =---x-- . ,, |
40 r Developer C - | i

30 +

10 |

Time per action (in s)
N
o
T

Uncertain Invalid Correct Editl Edit2 Edit3 Edit4
Verdict

-10

Figure 6.6: Average time taken by three developers to verify words requdifferent numbers of
corrections (or to mark words as invalid or ambiguous/utiair). The averages were computed for
the same set of 1000 words as above.

6.3.2.5 RELATED FACTORS

Our experiments have underlined a number of practical fadtmat need to be taken into account
when developing pronunciation dictionaries using boapgimg:

¢ Relatively informal instruction of the developers is suéit, if they are given the opportunity
to learn by using the system.

e The appropriate definition and usage of the phoneme setresggbme care. When a new lan-
guage is being developed, it is advisable to do this in aatiter fashion: developers develop
a small dictionary, and their comments as well as trangoriptare reviewed to determine
whether any phonemes are absent from the set being usedsand determine what conven-
tions are required to ensure consistency of the dictionary.

e For a linguistically inexperienced dictionary develogbe audio samples used should ideally
match the developer’s regional accent.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 107

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

e When developers have limited linguistic experience, theyufd be required to listen to every
word prior to final acceptance of a transcription.

6.3.3 MACHINE LEARNING FACTORS
6.3.3.1 SYSTEM CONTINUITY

The faster the system learns, the fewer corrections arereeaf the human verifier, and the more
efficient the bootstrapping process becomes. The most tangaaispect that influences the speed at
which the system learns relates to the continuity with whiahsystem updates its knowledge base.
A continuous process was chosen, whereby the system regeméis prediction models after every
single word verified. This has a significant effect on systeximing responsiveness, especially during
the initial stages of dictionary development when the sydtas access to very little information on
which to base its predictions.

6.3.3.2 PREDICTIVE ACCURACY

The increasing likelihood that the system will correctledgict pronunciations as more words are
verified is depicted in Fig. 6.7, which shows the average ramalh phoneme corrections required
as a function of the number of words verified by developer Be imber of corrections decreases
steadily as more words are verified, producing an incresiccurate dictionary and enabling the
developer to process subsequent words more rapidly.

2.2

2

o)
14 \
o}
Lo

Number of phoneme corrections per word

0.8
\/w
V\\\M\N\ww
0.6 e
0.4
0 100 200 300 400 500 600 700

Number of words verified

Figure 6.7:Expected number of phonemes that required correction bgldeer B as a function of
the number of words verified.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 108

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.3.3.3 VALIDITY OF BASE DATA

A final factor that influences the speed of dictionary develept concerns the validity of the initial
word lists. In this set of experiments word lists were oledifrom Internet text and contained up to
15% invalid words.

6.3.4 SYSTEM ANALYSIS

We can combine the information in Figs. 6.7 and 6.6 to deriv@del of how long it will take system
users such as developers B and C to create pronunciatioongidges of various sizes. To do this, we
fit an exponential curve through the smooth part of the grag¥id. 6.7 (i.e., for 100 or more words
verified), and estimate a linear model for the expected eatifin time as a function of the required
number of corrections. Fig. 6.8 shows how machine learnnoglyces slower-than-linear growth
in development time, and that a fairly sizeable dictionaayp be created in fewer than 20 hours of
developer time. The bootstrapping approach is comparedataual verification at 19.2s and 30s
per word. (19.2s was the fastest average time observed ilalooiratory using a proficient phonetic
transcriber, and represents an optimistic time estimate.)

Also note that the model of expected development time, wiviaehbased on measurements of the
time taken by Developer B, predicts Developer C’s measunésneith reasonable accuracy.

35 T T T T T T
Manual transcription: 30s per word ———
Manual transcription: 19.2s per word --—--—--
30 F Bootstrapping: predicted time -
Bootstrapping: measured time (Dev C) +

25
A
3 20
ey
E
Q
£ 15
'_

10

-
+ R A
5 - T
,/// Jf’
0 p;ﬁk"’
0 500 1000 1500 2000 2500 3000 3500 4000

Number of words verified

Figure 6.8:Expected time (in hours) required to compile an Afrikaarenpinciation dictionary, as a
function of dictionary size.

From this set of experiments we conclude that a bootstrgpgiproach can be used to generate
pronunciation dictionaries efficiently. Encouraginglynsar estimates are found for an experienced
creator of pronunciation dictionaries (with significamduistic training), and a developer with no
prior exposure to formal linguistics.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 109

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.4 EXPERIMENT B: SEMI-AUTOMATIC DETECTION OF VERIFIER
ERRORS

Dictionary developers are typically required to enter it predictions for several thousand words
in order to develop dictionaries of sufficient accuracyhaligh our interface attempts to assist devel-
opers in this task (e.g. by audibly sounding out the chosenuprciations and by providing automatic
predictions for every word), it is inevitable that errordharise from time to time.

Fortunately, theDefault&Refineapproach is well suited to assist in the detection of suabr&rr
Since every rule in the hierarchy is selected to describetecpkar set of words, and errors are likely
toresultin rules that are applicable to few words beside€ttoneous one, one expects that erroneous
transcriptions will tend to show up as rules which suppont ¥eords. Of course, there may also be
valid pronunciation rules which are not supported by marangples; it therefore is an experimental
issue to determine how useful this guideline is in pradicaétecting transcription errors. Different
languages will differ in this regard — a highly “regular” umge such as Spani§twill generally
have many examples of each valid rule, whereas the idioagims of English pronunciation will
produce a large number of valid special cases. As a conseguenr approach is expected to be
more successful for languages such as Spanish.

To investigate the utility of the proposed method for detectranscription errors, we conduct a
number of simulation experiments with Afrikaans. Heudaliy, we expect Afrikaans to lie some-
where in the middle of the continuum between regular angjlee languages. Our experiments use
a verified dictionary with 4 923 valid word#\frikaans A. Based on earlier experience with dictio-
nary developers who are error prone (see Section 6.3.2e&2griificially corrupt a fraction of these
transcriptions and then measure the efficiency of the nuobeords guideline to indicate the words
with corrupted transcriptions. This is the similar to theqass followed in Section 4.7.4 where we
evaluated the effect of noise on the predictive ability efilefault&RefineandDEC-growalgorithms.

As in Section 4.7.4 we introduce two types of corruptions ihie transcriptions:

e Systematic corruption®flect the fact that users are prone to making certain trgntien errors
- for example, in the DARPA phone sety is often used wherey is intended. We allow a
number of such substitutions, to reflect observed confgdigrAfrikaans transcribers.

e Random corruptionsimulate the less systematic errors that also occur inipegaéh our sim-
ulations, random insertions, substitutions and deletamhonemes are introduced.

We generate four corrupted data sets (systematic submtgytrandom insertions, substitutions and
deletions), where 1% of the words are randomly selecteddisuption. Default&Refinerule sets are
then generated for each case, and the percentage of ersoweods that are matched by the most
specific rules are determinédIn Fig. 6.9 we show the fraction of errors that remain unclet

®That is, a language with a very regular mapping between phesend graphemes.
’SinceDefault&Refinealways applies rules in the order most to least specific,uleeardering used for prediction was

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 110

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

against the fraction of words examined, as this thresholdpetificity is adjusted. Note that this
depiction is closely related, but not identical, to that lie wwell known Detection Error Tradeoff
(DET) curves [73].

100 T T T T 100 T T T T
oo ol
40 - 40 .
20 e 20 : R
0 1 1 1 0 1
40 60 80 100 80 100
€Y (b)
100 T T T T 100
80 oot g0
of 60
40 - 40 N
20 - 20
| .
0 L L 0
0 20 40 60 80 100 0 20 40 60 80 100

(© (d)

Figure 6.9: Fraction of erroneous words that are not detected as a fonctf the fraction of all
words examined, when words are examined in the order of thest specific rules, for various
types of corruptions: (a) random substitutions (b) randarseirtions (c) random deletions and (d)
systematic substitutions.

These results suggest that this method has significant ugecilerating the process of error
detection. For all three types of random errors, more th& 80the errors can be identified after
inspecting fewer than 20% of the transcriptions. As far assystematic errors are concerned, about
half the errors occur in the first 5% of the words inspectedthay time, the systematic patterns are
obvious, and can be used to select other candidate wordewiese same errors may have occurred.

In practice, the error-detection process can be combintddtiaé synchronisation event, with pos-
sible errors flagged by the bootstrapping system and cedeghere necessary by a human verifier,
prior to continuing with the next session. This then becomsisnple and efficient way of identifying
errors during bootstrapping. Alternatively, the errotedtion process can be used as a stand-alone
technique, in order to identify possible errors in a pronatien dictionary developed via different
means.

used as measure of specificity. The specificity of a word isrtads the specificity of its most specific grapheme, since a
transcription error may result in one or more rules becorhiggly specific to that word.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 111

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.5 EXPERIMENT C: BUILDING A MEDIUM-SIZED DICTIONARY

In the final controlled experiment we build a medium-sizedilisfans dictionary utilising the new
techniques developed in this thesis. In section 6.5.1 waealefiir experimental protocol and in the
remainder of this section we analyse the efficiency of thegss according to the framework defined
in Section 3.

6.5.1 EXPERIMENTAL PROTOCOL

Up to this point, the various dictionaries developed dugrgerimentation were fairly small (approx-
imately 1000 to 2000 words). In this experiment, we verify #ffectiveness of the various techniques
when building a medium-sized dictionary in a continuouscpss. Since we are growing the dictio-
nary from a previous baseline we are specifically interestdde extent to which the bootstrapping
process supports the extension of an existing dictionary.

We utilise one of the developers (Developer C) who has pusvixperience in using the boot-
strapping system. We perform bootstrapping using Systeam@ jnitialise the bootstrapping system
using the dictionanAfrikaans &. We use increment@efault&Refinegfor active learning in between
synchronisation sessions, and standaedault&Refineduring synchronisation. We set the update
interval (number of words modified in between synchroniseg) to 50, and order words randomly
(in the list of new words to be predicted).

At the end of the bootstrapping session we perform errorctiete (No additional error detection
is performed during bootstrapping.) We first extract thedfsgraphemic nulls, and identify possible
word errors from the graphemic null generators. We theraekDefault&Refinerules from the full
dictionary with the purpose of utilising these rules to itiflgrerrors, similar to the process described
in Section 6.4. We list all words from word sets that resulainew rule and contain fewer than five
words as possible errors, and verify these words martually

6.5.2 HUMAN FACTORS ANALYSIS

We measure the time taken by the verifier (developer C) toopmrfeach verification action, and
analyse the effectiveness of the verification process frdmuraan factors perspective. Fig. 6.10
illustrates the verification process as the dictionary grénem 5500 to 7000 words. We plot the time
taken to verify each valid word, indicating whether 0,1 23@orrections are required, for each word
as it is added to the dictinary. (The number of training wardghe x-axis includes both valid and
invalid words.)

We note the following:

8As described in Section 4.3, we create #fekaans Adictionary by cross-analysing the dictionaries from theous
experiments run to date and manually verify discrepancies.

°A word set associated with a rule tends to have either onlyoomeo words associated with it, or a large set of words:
within an acceptable range, the error detection process isamsitive with regard to the exact cut-off point selected

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 112

CHAPTER SIX

BOOTSTRAPPING PRONUNCIATION MODELS

Time in seconds

30

25

20

15

10

T T
0 corrections
1 corrections
2 corrections
3 corrections

x
x
20X Tx
x
4
+ ><++
ot

x
x XX

o+ + ey T

R T+ + & g nTE et

e e TRl T
1

5600 5800 6000 6200 6400 6600

Number of words in training dictionary

6800 7000

Figure 6.10:Time taken to verify words requiring zero, one, two or thregections, as a function of
the number of words verified. For the first three measuresatleeages were computed for blocks of

5 words each.

e User learning curveDeveloper C was proficient in using the system prior to theesurboot-

strapping session, and further training was not reqtftred

Cost of intervention:In this experiment we utilised two intervention mechanismwarifying

predictions, and verifying the list of possible errors. [€h.2 provides the average verification

times observed for Developer C where the intervention ma@shais a single verification of

a prediction §,c,; y(single,s)) fOr words that are in different statesprior to verification. Ver-

ification of the list of possible errors took approximately rdinutes (for approximately 3000

words).

Table 6.2:Statistics of the time taken to verify words requiring 0dr,3 errors, or to identify a word
as invalid or ambiguous(is the mean, and the standard deviation.).

Verdict Time in seconds
o’ o
correct 1.95 1.35
1 error 5.79 2.30
2 errors 10.74 3.19
3 errors 17.91 6.12
invalid 3.39 4,71
ambiguous| 8.92 5.08

e Task difficulty: During the bootstrapping process, 3019 words were addeaetalittionary,

of which 181 were invalid or ambiguous. During error detaati9 errors were found in the

remaining 2838 valid words. Given our analysis in Sectighvée estimate that this represents

%The value oft;.qin during the initial session was 120 min.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

113

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

at least 50% of the errors, and therefore estimate the aetuail rate to be).6%11. It is
interesting to note that, while our error detection proteesulted in a re-verification &.3% of
the full dictionary (1832 grapheme-specific patterns, aual300 words), the average position
of each error in the ordered error prediction list wa$.67% of the full training dictionary,
with the majority of errors found in the firét 1% of words, i.e. the first or second pattern on
the per-grapheme list of potential errors.

e Difficulty of manual taskerror_rate,,onua 1S assumed to be 0.5%, which is an optimistic
estimate for the range of manual development speeds esdluat

e Manual development speeDifferent values ot 4., are used for comparison, ranging from
19.2s, again an optimistic estimate.

e Initial set-up cost: As this is an extension of an existing system, no furtherupetost was
incurred?.

6.5.3 ANALYSIS OF MACHINE LEARNING FACTORS

0.32

|

R
. W& / RM/\/

0.22

Average number of corrections required

5400 5600 5800 6000 6200 6400 6600
Number of words in training dictionary

Figure 6.11:The average number of corrections required as a functiomeiumber of words veri-
fied. Averages were computed for blocks of 50 words each.

From a machine learning perspective, the following is olmsr

e Predictive accuracy of current bas®easured directly during experimentation, the number of
corrections required per word added to the diction@ne_n(s,n)) is depicted in Fig. 6.11.
We plot the running average (per blocks of 50 words) of thelmmof corrections as a function
of the number of words verified.

1118 errors in 2838 valid words.
2In the previous experimemtecup bootstrap - tsetup-manual < 60 min.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 114

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

¢ On-line conversion speed:he average time taken for a synchronisation eventifals$ sec-
onds ¢ = 7.72s). This value increased gradually fro3ds during the initial cycle, tdh6s in
the final cycle.

¢ Quality and cost of verification mechanisnihe computational times required for both verifi-
cation mechanisms are included in the verification timesadliditional processing is required.

¢ Validity of base datavalid_ratio = 94%.

6.5.4 SYSTEM ANALYSIS

Based on our observations during this experiment, we cagraapproximate values to the different
costs and efficiencies involved during bootstrapping of &iikAans dictionary up to 10,000 words.
We list these values in Table 6.3.

Table 6.3:Typical observed values for various bootstrapping paramset

Bootstrapping parameter Estimated value
Training cost tirain < 120 min
Verification cost for single words, With X t,c,i y(singie,s) (2 +4.5z) sec
corrections required for a word in state $:
Verification cost during error detectiont,c,; y(error—det) < 10 min
(per 1000 words):
Verification cost during error detectiont,,; y(error—det) < 3 min
(per 400 words):
Task difficulty - bootstrapping, no errar error_rateyootstrap 0% — 1%
detection
Task difficulty - bootstrapping, error dg-error_rateypotstrap 0% — 0.5%
tection
Task difficulty - manual error_ratemanual 0—-0.5%
Manual development speed tdevelop 19.2 — 30 sec
Initial set-up cost tsetup_bootstrap - tsetup_manual < 60 min

We use eq. 3.4 to analyse our results, and for the single weniler we combine the values
Of Lauto(s,single) WIth tyerify(s,single) @S @ Single measurement, as discussed in the previousnsectio
We also combine the value fye With t,c.;fy(error—det), @S these two events both occur during
synchronisation. We then obtain the following expected 0b$vV cycles of bootstrapping:

E[tbootstrap(N)] - E[tsetup_bootstrap] + E[ttrain] + E[titerate (N)] (61)
N-1
E[titerate(N)] = Z < Z (E(tverify(sa sz'ngle)).E(inc_n(s, x)))
r=1 “s€Estatus
N-1
+ Z <tidle(inc—n(valid> x + 1)) + tverify(errorfdet) (inc—n(valida x + 1))) (62)
r=1

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 115

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

We assume an update event after every 100 errors (appretym®i0 words verified.) A%,
is dominated by, ; ry(error—der) dUring the initial 10,000 words, we keep this value constanthe
number of words in the training dictionary increaSesnd estimate it at:

toerify(error—det) (400) + tiq1¢(400) = 180 seconds (6.3)

From Table 6.3 we estimat&(t,.,is, (s, single)) as ty + t.x seconds, where: is an in-
dication of the number of corrections requirey, = 2 andt. = 4.5. In order to estimate
Zf:_ll E(tyerify(s, single))E(inc-n(s, x)) for different states (different numbers of corrections per
word) we smooth the number of errors across the training -dats if a word could only have one
error — and fit an exponential curve through the accuracy mmeasents depicted in Fig. 6.11. That
is, we assume the probability that the system will prediceaor when the training dictionary is of
sized is given byp.(d), where:

pe(d) = Poefg
i.e. logpe(d) = logPy— — (6.4)

and Py andk are parameters to be estimated. The time required farrections?’(d) (excluding
synchronisation events) is then given by:

T
L

T(d) = (to + tePo)

N
Il
o

d—1
= dtg+t. Py Ze_ ’
=0

1=

ESlISH

e

1o
= dtg+t.Fy ¢ T (6.5)
l—e %
For the specific data depicted in Fig. 6.11 we obtain the estm
logPy = —1.274
1
- = —3.49%107° (6.6)

We can combine eq. 6.2 and eq. 6.5 in order to estimate the HI&|t;;erqtc (d/400)] for
various values of total dictionary sizk

ESlISW

1—e™
E[titerate(d/ZIOO)] = dty+ teFp T
1—ed
d
+400 * (tverify(error—det) (400) + Lidie (400)) (67)

BThis value is influenced by the number of words corrected pelec- a number that remains constant per cycle.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 116

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

90 T T T
bootstrapping ——
80 manual (19.2s) ----x---
manual (30.0s) % .
0 70 o
3 T
< 60 -
£ .
o ¥
E 50
- * X
c
o 40 =
> - -
Q X
0 20 R
>< ,,/*‘/7‘
/4/’—”’”’—*’,—*—//”—/

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of words in training dictionary

Figure 6.12:Time estimates for creating different sized dictionarid&anual development is illus-
trated for values of 4.0, (1) 0f 19.2 and 30 seconds, respectively.

In Fig. 6.12 we plot eq. 6.7 for different values &f using the estimates from eq. 6.3 and eq.
6.6. On the same graph we plot the cost of manual dictionavgldement (again excluding setup
cost) using eq. 3.5 and estimates f@¥,¢,,(d) of 19.2 and30 seconds, both optimistic estimates.
For these estimates we assume that the same base data &=t ald@a with a similiar validity ratio)
is used for both approaches. We also assume that the eresrfoatthe bootstrapping system with
error detection and the manual process are approximatelyl.etn Fig. 6.13 we plot the efficiency
estimates of the bootstrapping process as compared to aahdiationary development process for
the same values as Fig. 6.12.

10

9

8.5 19.2s
30.0s -

8

7.5

Efficiency ratio

7

6.5

[Em——

55
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of words in training dictionary

Figure 6.13:Estimates of the efficiency of bootstrapping, as comparédmwanual development for
values 0ft geyer0p(1) 0f 19.2 and 30 seconds, respectively.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 117

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.6 BUILDING SYSTEMS THAT UTILISE BOOTSTRAPPED DICTIONARI ES

In the work up to this point we have verified the bootstrapgimgcess through (1) simulated ex-
periments in which an actual pronunciation dictionary &ds and was utilised as a pseudo-verifier,
and (2) by creating multiple dictionaries using differentrian verifiers and comparing the results.
In this section we describe a number of speech technologgragsthat were developed using the
bootstrapped dictionaries.

6.6.1 ISIZULU TEXT-TO-SPEECH

The first system developed using a bootstrapped dictionay avgeneral purpose text-to-speech
(TTS) system developed in the Festival [74] framework as$ @ithe Local Language Speech Tech-
nology Initiative (LLSTI) [75], a collaborative projectahaims to support the development of speech
technology systems in local languages. A small graphenpixdmeme rule set was generated using
the bootstrapping system and converted to the Festivattisound format. (ThBictionaryMaker
prototype can automatically export a developed dictiorameither a Festival-formatted lexicon or
Festival-formatted letter-to-sound rules.)

The TTS system used thdultisyn approach to synthesis and is described in more detail in [76]
and [77]. The completed system was evaluated for intelligitand naturalness by both technologi-
cally sophisticated and technologically unsophisticateers, as described in [78].

Table 6.4:Parameters of the isiZulu text-to-speech dictionary

Number of graphemes in orthography 26
Number of phonemes in phoneme set 50
Number of words in dictionary 855
Number of derived rulesEC-min 84

6.6.2 SEPEDI SPEECH RECOGNITION

During 2004, the University of Limpopo collected a first caspof Sepedi (Northern Sotho) speech
with the purpose of creating an automatic speech recognih&R) system, and required a pronun-
ciation dictionary in order to proceed with further devetamt. In collaboration with partners from
the University of Limpopo, a bootstrapped dictionary wasated. Again a fairly small number of
words were bootstrapped in order to develop a concise settefdo-sound rules. These were then
used to develop a speech recognition system using the HTrBi@ework, as described in [80].

6.6.3 AFRIKAANS TEXT-TO-SPEECH

Much of the initial experimentation with the bootstrappiagproach was performed for Afrikaans,
as described in previous sections of this thesis. The Adrikadictionary was used to develop a

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 118

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

Table 6.5:Parameters of the Sepedi speech recognition dictionary

Number of graphemes in orthography 2ff
Number of phonemes in phoneme set 41
Number of words in dictionary 2827
Number of derived ruledEC-min) 90

Afrikaans TTS system for the South African Centre for Pullarvice Innovation (CPSI), who are
using the voice to pilot a system that will allow citizens mbeiract with a governmental service that
deals with passport applications via a number of interactiechanisms not previously available.
One of the mechanisms tested includes the use of cellph@esl l#hort Message Service (SMS) to
communicate, and converting such SMSs to voice when a usfarpra voice-based service — mainly
in order to ensure accessibility to all citizens, includilliterate system users, and system users with
specific disabilities. This system is currently being pbht

Table 6.6:Parameters of the Afrikaans text-to-speech dictionary

Number of graphemes in orthography 40
Number of phonemes in phoneme set 43
Number of words in dictionary 7782

Number of derived rulesdefault&Refing 1471

6.6.4 OTHER SYSTEMS

The CPSI pilot project described above aims to provide sesviin four languages: English,
Afrikaans, isiZulu and Sepedi; a Sepedi voice similar testhdescribed in Sections 6.6.1 and 6.6.3
was therefore developed, using the dictionary built asritestt in Section 6.6.2. Further development
on the Sepedi voice is currently under way, specifically dimeimproving the intonation contours
of the current voice.

Furthermore, an initial isiZulu ASR system and an Afrika&®&R system were developed, with
further optimisation currently in progress. A first Setsaalictionary was developed, and will be
refined and integrated in similar systems as part of the Opamd®[81] project, a project sponsored by
the International Development Research Centre (IDRC) lam®ijpen Society Initiative (OSI), which
aims to make telephony services more accessible to infasmaervice providers in the developing
world.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 119

CHAPTER SIX BOOTSTRAPPING PRONUNCIATION MODELS

6.7 CONCLUSION

In this section we demonstrated the practical applicatibthe bootstrapping system, evaluating

the efficiency of the approach from both a human factors anéehime learning perspective. We

found that, even with optimistic estimates for the time fiegfito develop a single instance of a

pronunciation dictionary manually, the bootstrappingcess provides a significant cost saving, as
illustrated in Fig. 6.12. We also described a number of dpéechnology systems developed using
newly bootstrapped dictionaries. In the next chapter (@&rap) we discuss the implications of our

results.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 120

CHAPTER SEVEN

CONCLUSION

7.1 INTRODUCTION

As initially discussed in Section 1.4, the aim of this thesés two-fold: (a) to obtain a mechanism
for pronunciation modelling that is well suited to bootgpang; and (b) to analyse the bootstrapping
of pronunciation models from a theoretical and a practiesbpective, as a case study in the boot-
strapping of HLT resources. In this chapter we evaluate ené in which we were able to reach
these goals. We summarise the contribution of this thes@discuss future work.

7.2 SUMMARY OF CONTRIBUTION

This thesis was able to demonstrate conclusively that thpgzed bootstrapping approach is a prac-
tical and cost-efficient way to develop pronunciation dictiries in new languages. The specific
contributions made in the course of this research are thenfivig:

e A demonstration of a fully interactive (on-line) bootstpapy approach to the development of
pronunciation dictionaries, in Section 6.5 [82].

e Development and evaluation of a practical system that allasers (without specialist linguis-
tic expertise) to develop such pronunciation dictionaresd an analysis of the factors that
influence this process, in Section 6.3 [83, 84].

e The development obefault&Refine a new algorithm for grapheme-to-phoneme prediction,
in Section 4.6 [85]. This algorithm has a number of desirdbldures, including language
independence, rapid generalisation from small data set&l gsymptotic accuracy, robustness
to human error, and the production of compact rule sets.

121

CHAPTER SEVEN CONCLUSION

A number of algorithmic refinements to ensure a practicaltsicapping system, including

optimised alignment and an incremental (on-line learnirggion of the g-to-p algorithm used
during bootstrapping, in Sections 4.4.2 and 4.6.4 [84, 86].

e The development and evaluation of a novel error-detectimh that can assist in the verifi-
cation of pronunciation dictionaries — both during bo@spiing and in support of alternative
dictionary development approaches, in Section 6.4 [86].

e Definition of a conceptual framework that can be used to d@sthe bootstrapping process in
general, and the bootstrapping of pronunciation dicti@san particular, in Chapter 3.

e Development of usable pronunciation dictionaries in a nemdf South African languages
(isizulu, Sepedi, Afrikaans and Setswana), and the integraf these dictionaries in actual
speech technology (speech recognition and speech sysjtgstems, in Section 6.6.

e The development ahinimal representation graphs theoretical framework that supports the
rigorous analysis of instance-based learning of rewrie sats, in Section 5. This framework
aims to derive the smallest possible rule set describingengget of discrete training data.

7.3 FURTHER APPLICATION AND FUTURE WORK

The current thesis forms the basis for three main directmfniture research, related to (1) the
process of bootstrapping pronunciation dictionaries,gf2pheme-to-phoneme conversion, and (3)
further refinement of theninimal representation grapfiamework.

The current bootstrapping process provides an effectattqoin for the development of pronun-
ciation dictionaries but further gains are likely to arisenfi future improvements. Specific issues that
we would like to address in future include:

e Active learning during bootstrapping: determining optimays in which to choose the next
instance or set of instances to utilise during bootstrappin

¢ An evaluation of the implications of different initialisah mechanisms, for example when a
limited rule set is known prior to dictionary creation, orevha pronunciation dictionary exists
in a phonologically similar language.

e Further analysis of the ways in which algorithmic requiraetsechange for different phases of
the bootstrapping process.

e Practical support for phone set manipulation during beapgting, including re-bootstrapping
of appropriate sections of the dictionary after phone setipudation.

e Support for the bootstrapping of other linguistic entitsesh as intonation, stress or hyphen-
ation.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 122

CHAPTER SEVEN CONCLUSION

G-to-p conversion algorithms in general have been wellistyespecially with regard to asymp-
totic accuracy and computational complexity. Howevetlelitvork has been published to date in
evaluating and improving initial learning efficiency (acacy when trained on very small data sets)
and robustness to noise (transcription errors occurrirtartraining dictionaries) — two aspects that
are of importance during bootstrapping. We are interesthdtler further improvements may be
obtained from the following sources:

e Adapting the algorithm (or its parameters) according tosiiiecific grapheme extracted. As all
rule extraction and rule application occurs on a per-graghbasis, it should be possible to in-
troduce further algorithmic refinements suitable to therati@ristics of the specific grapheme
being considered. We would like to analyse the current grapt behaviour in further detail.

¢ Utilising this algorithm within a framework that includedditional data sources (such as part-
of-speech tags).

e Learning from and predicting multiple pronunciations inmorating word-level pronunciation
variants).

e Incorporating class-based learning in the current allgritcombining graphemes according
to predictive behaviour in such a way that learning is acetel.

e Investigating the threshold for valuable exceptions. loti®a 6.4 it was clearly shown that the
effect of errors in the training data tend to accumulate elést10 — 20% of rules extracted.
For Default&Refinespecifically (and for noisy training sets) all exceptionsymat contribute
to predictive accuracy.

Some of the above questions related to grapheme-to-phocemersion may be better analysed
in terms of theminimal representation grapfiamework. The current framework provides a theoreti-
cal basis for understanding the task of instance-baseditepof rewrite rules. Further work related
to this framework specifically include:

e Further development of the set of allowed operators utiighe framework, as well as a rigor-
ous analysis of the legality and optimality of the set of apers.

e The application of established techniques related to theiso of constraint satisfaction prob-
lem, in order to improve the computational tractability bétcurrent graph solution process.
This will be required before a rigorous evaluation of theaxtied rule sets on larger training
dictionaries will become possible.

Additionally, theDefault&Refinealgorithm provides an interesting perspective on the gray
to-phoneme conversion task, viewing pronunciation as eatdhy of regularity — with systematic
instances and exceptions occuring in a continuum of reiylaWe are interested in applying the
same algorithm to other natural language processing thgkgxhibit similar behaviour.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 123

CHAPTER SEVEN CONCLUSION

7.4 CONCLUSION

This thesis has developed a number of tools in support ofdbéstrapping process, and has demon-
strated the value of this approach for the practical and-effsttive development of pronunciation
dictionaries. Human language technologies have greahiaitealue in the developing world, and
bootstrapping will undoubtedly play a significant role ircakerating the development of such tech-
nologies. We therefore hope that theoretical interest aadtipal importance will continue to drive

developments in this area.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 124

APPENDIX A

THE ARPABET PHONE SET

The ARPAbet phone set was developed as part of the ARPA Spdedérstanding project (1971-
1976), and is included with the TIMIT speech corpus [87].

Table A.1:ARPAbet phone set [87]

no example no example no example

1 iy Dbeat 22 r red 43 zh measure

2 ih it 23 'y yet 44 sh shoe

3 eh Dbet 24w wet 45 v very

4 ae bat 25 m mom 46 f fief

5 ix roses 26 em buttom 47 dh they

6 ax the 27 n non 48 th thief

7 ah butt 28 nx flappedn 49 hh hay

8 uw boot 29 en button 50 hv Leheigh

9 uh book 30 ng sing 51 dcl dclosure

10 ao about 31 eng Washington | 52 bcl b closure

11 aa cot 32 ch church 53 gcl gclosure

12 er bird 33 jh judge 54 tcl tclosure

13 axr diner 34 b bob 55 pcl pclosure

14 ey bait 35 p pop 56 kcl kclosure

15 ay bhite 36 d dad 57 q glottal stop

16 oy boy 37 dx butter 58 epi epinthetic
closure

17 aw bought 38 t tot 59 qcl dclosure

18 ow boat 39 g ogag 60 h# begin silence

19 ux beauty 40 k kick 61 #h endsilence

20 | led 41 z zoo 62 pau between silence

21 el Dbottle 42 s sis

125

APPENDIX B

SOME THEOREMS REGARDINGM INIMAL
REPRESENTATIONGRAPHS

This appendix contains a number of proofs supporting theraemts in Chapter 5.

B.1 WORD SETS

Statement 1 (contextimplies_matchwords)

Vr,s € Z/7 Z' C Zcombined
context(r) D context(s) —

matchwords(r) C matchwords(s). (B.1)

Consider any wordv € matchwords(r), thenmatch(w,r) = 1 (eq. 5.34), and thetontext(w) 2
context(r) (eq. 5.11). Now als@ontext(w) 2O context(r) O context(s), somatch(w,s) = 1
(eq. 5.34), and themw € matchwords(s). Since this holds for alkv € matchwords(r),

matchwords(r) C matchwords(s).

Statement 2 (subsetransitive)

Vr,s € Z'\v € Ze, Ze C 7' C Zeompined, Voset(Z') C allset(Z')
path(subset(Z', Zo,0set(Z'),v,r,8)) =1 =
subset(Z', Z.,0set(Z"),v,r,8) = 1. (B.2)

126

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

If path(subset(Z',Z,,o0set(Z"),v,r,s)) = 1, then there exista > 2 rulest; = r,to,...,t, =
s such that for each;,t;; pair it holds thatsubset(Z', Z.,o0set(Z'),v,t;,ti+1) = 1. Then
possible_words(Z', Z.,oset(Z'),v,t; = r) C ... C possible-words(Z', Z.,oset(Z"),v,t;) C
possible_words(Z', Ze, 0set(Z'),v,tiy1) C ... C possible-words(Z', Z.,oset(Z'),v,t, = s),
and thensubset(Z', Z., oset(Z'),v,r,s) = 1 (from eq, 5.51).

Statement 3 (possiblevords_rulewords)

V1, s € Zey Ze C Zeombined, Voset(Ze) C allset(Z,) :
w € possible-words(Ze, Ze, 0set(Ze),r,r) <=

w € rulewords(Ze, oset(Z,),r). (B.3)

If w € possible_words(Ze, Z., 0set(Z),r,r), thenmatch(w,r) = 1 and there exists no rule €
Z, such thatmatch(w,s) = 1 and(s,r) € oset(Z.) (eq. 5.36). Them € winningrule(Z’,
oset(Z'),w) (eq. 5.12), and thew € rulewords(Z,,oset(Z.),r) (eq. 5.35); and vice versa.

Statement 4 (wordsrelations)

VreZ' Z. CZ' C Zeombined, Voset(Z') C allset(Z'),

Yo € Ze,v=r0r (v,7) € oset(Z') :

rulewords(Z',oset(Z'),r) C

possible_words(Z', Z.,0set(Z'),v,1) C
matchwords(r). (B.4)

If w € rulewords(Z',oset(Z'),r), thenmatch(w,r) = 1 and there exists ne € Z’ such that
match(w,s) = 1 and(s,r) € oset(Z') (eq. 5.35 and eq. 5.12). Then, singg C Z’, there also
exists no suchs € Z., and thenw € possible-words(Z', Z., oset(Z'),v,r) with v = r the only
valid value forv (eq. 5.36). For any’ in possible_words(Z', Z,0set(Z'),v,r) it also holds by
definition thatmatch(w',r) = 1 (eq. 5.36), sav’ in matchwords(r) (eq. 5.34).

Statement 5 (complementdirectpath)

Vr,s € Z',Ze C Z' C Zeombineds
Voset(Z') C allset(Z') :
complement(Z', Zo,0set(Z'),r,8) =1 =
mincomp(Z', Z,0set(Z'),r,s)) =1
or path(containpat(Z',r,s)) = +1. (B.5)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 127

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

Letr, s € Z’ be any two rules such thavmplement(Z', Z., oset(Z'), r, s) = 1; and consider all the
options for acontainpat path betweem ands. If path(containpat(Z’,r,s)) = +1 the statement
holds. If neithemath(containpat(Z’,r,s)) = 1 nor path(containpat(Z',r,s)) = —1, then, since
complement(Z', Z,0set(Z'),r,s) = 1, it follows thatmincomp(Z’', Z., 0set(Z'),r,s) = 1 by
definition (eq. 5.49).

Statement 6 (rulewordssub_rulewords)

Vr € Z/, z' - Zcombineah
Voset(Z') C oset' (Z') C allset(Z') :
rulewords(Z',oset'(Z'),r) C rulewords(Z',oset(Z'),r). (B.6)

Let w be any word such thaty € rulewords(Z’;oset'(Z"),r). By definition (eq 5.35 and eq.
5.12) it follows thatmatch(w,r) = 1 and there exists ne such thatmatch(w,s) = 1 and
(s,r) € oset'(Z"). Now oset(Z') C oset’(Z"), which means thabset(Z') has fewer restric-
tions thanoset'(Z’) and if (s,r) & oset’(Z') for an s as above, then als@,r) ¢ oset(Z’), and
thenw € rulewords(Z',oset(Z"),r). Since this holds for anw € rulewords(Z',oset’(Z'),r),
rulewords(Z',oset'(Z'),r) C rulewords(Z’,oset(Z'),r).

Statement 7 (rulewordsredundant)

Vr € Z', 7' C Zeompined, Yoset' (Z') C allset(Z') :
Joset(Z') C oset'(Z') : rulewords(Z’, oset(Z'),r) = ¢ <

ris a redundant rule i&@’, oset’(Z'). (B.7)

For any oset'(Z') 2 oset(Z'), it follows directly from statement 6 that ifulewords(Z’,

oset(Z'"),r) = ¢ alsorulewords(Z',oset'(Z'),r) = ¢ (sincerulewords(Z’,oset’(Z"),r) C

rulewords(Z',oset'(Z'),r)). In all orderings that includeset(Z’), rule r will never be invoked
to predict a word. Also, if- is a redundant rule inset’(Z') thenrulewords(Z', oset'(Z'),r) = ¢.

For at leastset(Z') = oset’'(Z'), but possibly also for other sets of orderings, it then hokdg
rulewords(Z',oset(Z'), r) = ¢.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 128

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

B.2 CHARACTERISTICS OF Z),

Statement 8 (possiblyminimal _single)

Vr e Zm, Zm - Zcombined :

possibly_minimal(Z,,) =1 = r € Zgingle (B.8)

Consider any' € Z, € Zeombined- TheNT € Zeonflict—resolved Y Zno—conflict Y Zeon flict—combined
(eq. 5.21). Sincepossibly-minimal(Z,,) = 1, there exists an orderingset(Z,,) such that
minimal(Zyy,, oset(Z,,)) = 1 (eq. 5.26). According to this ordering, rutewill be invoked by at
least one wordv in T'D, otherwiser would be a redundant rule inrainimal rule set, which is im-
possible. Ifr € Z.op fiict—combined, T WOUId predictw with at least two different outcomes depending
on which of the specific alternative outcomes are selectgd54.9). Since this is not possible in an
accurate set of rule orderingspinimal(Z,,, oset(Z,,)) # 1, and then it is not possible to find the
requiredoset(Z,,), andZ,, cannot be aossibly_minimal rule set. Fopossibly_minimal(Z,,) =
1to hold,r & Zeon fiict—combined, @Nd them € Zeon flict—resotved U Zno—con flict» Which is the same
as stating that € Z,,4. (9. 5.22). Note that anyossibly_minimal rule setZ,, can therefore be
assumed to be a subsetaf;;, g

Statement 9 (rulewordseq invalid)

Vr,s € Zm, Zm C Zgingle, possibly_minimal(Z,,) = 1,
Voset(Zy,) C allset(Zy,) : valid(oset(Zy,)) =1 =
rulewords(Zy,, oset(Zy,),r) # rulewords(Zy,, oset(Zy,), s). (B.9)

Consider any rules and s ordered according to thealid orderingoset(Z,,), and letoset'(Z,,)
be the final ordering used during word prediction, wheset'(Z,,) 2 oset(Z,,). Irrespective of
whether there is aule_order(.) relation between rules ands or not, or the existence of any ad-
ditional rules; in the final rule numbering assignment basedset’'(Z,,), eitherrulenum(r) <
rulenum(s) or rulenum(s) < rulenum(r). Chooser to be the rule such thatulenum(r) <
rulenum(s), and letrulewords(Z,,, oset(Zy,),r) = rulewords(Z,, oset(Z,,),s). Letw be any
word pattern inT'D such thatw € rulewords(Z,,,oset'(Z,,),s). At least one such a word pat-
tern must exist, otherwise (from statements7is a redundant rule in @ossibly_minimal rule
set. Since, from statement 6ulewords(Zy,, oset'(Zy,),s) C rulewords(Zy,,o0set(Zy,),s) =
rulewords(Zy,, oset(Z,,),r), it follows that match(w,r) = 1 = match(w,s) (eq. 5.35). For
any additionalt such thatmatch(w,t) = 1, one of the following situations can occur: (1) no
sucht exists, (2)(t,r) & oset'(Zy),(t,s) & oset'(Zy),) {(t,r),(t,s)} € oset'(Zy,), (4)
(t,r) € oset'(Zn)),(t,s) & oset(Zy,), or (5) (t,r) & oset(Zy,),(t,s) € oset(Zy,). If (1) or
(2) occurs, thenw € rulewords(Zy,,oset'(Zy,),r) andw € rulewords(Z,,, oset'(Zy,), s) (€q.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 129

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

5.35), but since-ulenum(r) < rulenum(s), rule s will never be invoked to predict word pattern
w. If (3) occurs, then rule will always be invoked to predict word pattetn, and neither rule:

or s will be invoked for this purpose. If (4) occurs, then eitheor s can be invoked, but since
rulenum(t) < rulenum(r) < rulenum(s) only t will be invoked. If (5) occurs, either ruleor r
can be invoked, but again rulewill not be invoked to predict word pattern. Rule s will therefore
never be invoked to predict word patteun irrespective of the option that occurs. Since this holds
for all w € rulewords(Z,,oset'(Z,,), s), rule s is a redundant rule in possibly_-minimal rule
set, sovalid(oset' (Z,,)) # 1. Butoset’(Z,,) was not restricted in any other way than by requiring
thatoset' (Z,,) 2 oset(Z,,) whererulewords(Z,,, oset(Zy,),r) = rulewords(Zy,, oset(Zy,), s).

It is therefore not possible thatulewords(Z,,,oset(Zy,),r) = rulewords(Zy,,oset(Zy,),s).

If rulewords(Z,,,oset(Zy,),r) # rulewords(Z,,,oset(Z,,),s) then it is possible that a word
w' € rulewords(Z,,, oset(Z,,), s) exists such thatatch(w', s) = 1, match(w',r) # 1, and that

s can be invoked to prediat’ irrespective of whetherulenum(r) < rulenum(s); and a similar
contradiction does not occur. Exactly the same argumeidishibk is chosen to be the rule such that

rulenum(s) < rulenum(r).

Statement 10 (poswordsredundant)

V1,8 € Zm,r # Sy Zm S Zeombined, Voset(Zy,) C allset(Zy,) :
minimal(Zy, 0sety(Zy)) =1 =

Vs € Zy, : possible.words(Zy,, Zm, 08ty (Zm,),r,1) #

possible_words(Zy,, Zm, 08€tym(Zm), T, 8). (B.10)
From statement 3 and 7 it follows that ifminimal(Z,,,osetn(Zy,)) = 1, then
possible_words(Zy, Zm, 08€ty, (Zm), 1) = rulewords(Zy,,o0sety(Zm),r) # ¢ . |

(r,s) & osety(Zy), then (sincer # s) possible-words(Zy,, Zm, o0sety,(Zm),r,8) = ¢
(eq. 5.36), and then the statement holds. Now consider thatisin if (r,s) € oset,,(Zy):
possible_words(Zy,, Zym, 08€tym (Zm), v, 1) = possible_words(Zy,, Zm, 08€ty(Zm), 1,)
implies that for each word patternv € possible_words(Zy,, Zm, osety,(Zy),r,s) also
match(w,r) = 1. Then, if(r,s) € osety,(Zy,), possible_words(Zy,, Zm,08€tm(Zm),s,8) = ¢
(eq. 5.36). But thenrulewords(Z,,oset,(Zy),s) = ¢ (statement 3) and them
becomes a redundant rule (statement 7), which is impossiblee s € Z,. Then
possible_words(Zy, Zm, 08€ty, (Zm),ry1) # possible_words(Zy,, Zy, 0s€tym(Zm),r,s), and
the statement again holds.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 130

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

B.3 Zy, AS ASUBSET OF ZconBinED

Statement 11 (poswordssub_poswords)

Vr € Zp,v € Zy,VZq C Zy C ZB C© ZA C Zcombined:
Voseta(Za) C allset(Za),Vosetp(Zp) C allset(Zp),
order_subset(oset4(Z 4),0setp(Zp)) =1
possible_words(Zp, Zy, 0setp(Zp),v,r) C

possible_words(Za, Zq,0setA(Z4),v,T). (B.11)

Let w be any word such thaty € possible_words(Zp, Zy,0setg(Zp),v,r). By definition (eq
5.36) it follows thatmatch(w,r) = 1 and that there exists no € Z;, such thatnatch(w,s) = 1

and {(s,7),(s,v)} € osetp(Zp). Now order_subset(oseta(Za),osetg(Zp)) = 1, which

means thatoset4(Z4) has fewer restrictions thawmsetp(Zp) and, if for no such match-
ing s € Z, it holds that (s,r) € osetg(Zp), there also exists no such € Z, such
that {(s,r),(s,v)} € oseta(Za) (eq. 5.27). And sinceZ, C Z,, there also exists
no suchs € Z,, and thenw € possiblecwords(Za,Z,,o0seta(Za),v,r) (eq. 5.36).
Since this holds for allw in possible_words(Zp, Zy,0setp(Zp),v,r), it follows that

possible_words(Zg, Zy, 0setp(Zp),v,r) C possible_words(Za, Z,,0set A(Z4),v,7).
Statement 12 (sharedwordssub_sharedwords)

Vr € Zp,v € Zy,NZq C Zy C Zp C Za C Zcombined:
Voseta(Z) C allset(Z4),Vosetg(Zp) C allset(Zp),
order_subset(oset(Z4),0setp(Zp)) =1:
shared_words(Zp, Zy, 0setg(Zp),v,r,s) C

shared_words(Za, Zy,0set A(Z4),v,7,8). (B.12)

Let w be any word pattern such that € shared-words(Zp,Zy,0setg(Zp),v,r,s). Then
w € possible_words(Zp, Zy,0setp(Zp),v,r) andw € possible_words(Zp, Zy, osetg(Zp), v, s)
(eq. 5.42). Sincerder_subset(oseta(Z4),0setp(Zp)) = 1, it follows from statement 11 that also
w € possible_words(Z A, Zg,0setA(Z4),v,r) andw € possible_words(Za, Zg,0seta(Z4),v, s),
and thenw € shared-words(Za, Z,,0sets(Z4),v,r,s) (€q. 5.42). As this holds for all
w € shared-words(Zp, Zy,0setg(Zp),v,r,s), shared-words(Zg, Zy,0setg(Zp),v,r,s) C

shared_words(Z s, Zq,0setA(Z), v,r,5).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 131

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

Statement 13 (poswordssub_poswords later_v)

VreZ',Zy C Zy C 7' C Zeompined, Voset(Z') C allset(Z'),
Yo € Zg,v=ro0r(v,r) € oset(Z’),
Vt € Zy,t =vor{(v,t),(t,r)} € oset' (Z') :
possible_words(Z', Zy, 0set(Z'),t,r) C

possible_words(Z', Z,, 0set(Z'),v,r). (B.13)

Consider any word patterm € possible-words(Z', Zy,0set(Z'),t,r). Thenmatch(w,r) = 1
and there exists n@ € Z, such thatmatch(w,q) = 1 andq = t or (q,t) € oset(Z’). Since
t = wvor(v,t) € oset(Z'), there therefore also exists no such matchjng 7, such thaty = v
or (q,v) € oset(Z'). SinceZ, C Z,, there also exists no such € Z,. By definition then
w € possible_words(Z', Z,,o0set(Z"),v,r) (€q. 5.36). Since this holds for all word patternsc
possible_words(Z', Zy, 0set(Z'),t,r), it follows that possible_words(Z', Z,,o0set(Z"),t,r) C
possible_words(Z', Zy, oset’ (Z'),v,r).

Statement 14 (poswordssub_poswords later_all)

Vr € Zp,v € Zp,V2q C Zy C Zp C Za C Zeombineds

Voseta(Za) C allset(Za),Vosetp(Zp) C allset(Zp),

order_subset(oset A(Z), 0setp(Zp)) = 1,

Yo € Zg,v=ro0r(v,7) € oset(Z’),

Vt € Zy,t =vor{(v,t),(t,r)} € oset' (Z') :

possible_words(Zp, Zy,0setp(Zp),t,r) C
possible_words(Za, Zq,0setA(Z4),v,T). (B.14)

Sincepossible_words(Zp, Zy, 0setg(Zp),t,r) C possible.words(Za, Z,,0setA(Z4),t,r) (state-
ment 11), anghossible_words(Za, Zy, 0set A(Z4), t, 1) C possible_words(Z s, Zq,0setA(Z), v,T)
(statement 13, choosing, = Z), it follows that possible_words(Zp, Zy, 0setp(Zp),t,r) C

possible_words(Za, Zq,0setA(Z4),v,T).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 132

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

Statement 15 (relationssupersetminset)

V7, 8,0 € Zm, Ze C Zim € Z' C Zeombineds
Voset(Z') C allset(Z'), 0sety(Zm) C allset(Zy,),
allowed_state(Z', Z,o0set(Z')) = 1

Y (Zm, 08€tm(Zm)) € minrules(Z', Ze, 0set(Z')) :

containpat(Z',r,s) =1 = containpat(Zy,r,s) = 1. (B.15)
containpat(Z',r,s) = —1 = containpat(Zy,,r,s) = —1. (B.16)
path(containpat(Zy,,r,s)) = 1 <= path(containpat(Z’,r,s)) = 1. (B.17)

complement(Zy,, Zym, 0set(Zy,),v,r,s) =1 =
complement(Z', Z.,o0set(Z'),v,r,s) = 1. (B.18)
mincomp(Zy, Zm, 0set(Zpy),v,1,8) =1 =

mincomp(Z', Z,o0set(Z'),v,r, s) = 1. (B.19)

Consider each relationship separately, and note thatdlstes specifically te, s,v € Z,,:

e Eq. B.15: Ifcontainpat(Z’,r,s) = 1, thencontext(r) D context(s) and not € Z’ exists
such thatontext(r) D context(t) D context(s) (eq. 5.47). Sinc&, C Z,, C Z', no sucht
can exist inZ,, either, and therontainpat(Z,,,r,s) = 1.

e Eq. B.16: If containpat(Z’,r,s) = -1, then containpat(Z',s,r) = 1. Then
containpat(Z,,, s,r) = 1 (from eq. B.15), and theeontainpat(Z,,,r,s) = —1.

e Eq. B.17: Ifpath(containpat(Z,,,r,s)) = 1, thencontext(r) O context(s) (eq. 5.48) and
thenpath(containpat(Z',r, s)) = 1; and vice versa.

e Eq. B.18: Ifcomplement(Z,,, Zpm,0set(Zy,),v,r,s) = 1 then there exists a rule € Z,,
and wordw such thatw € shared-words(Zy,, Zy,,o0set(Zy,),v,r,s) (eq 5.43). Since
order_subset(oset(Z'), oset(Zy,)) = 1 andZ, C Z, C Z’' by definition (eq. 5.29), it
follows from statement 12 that also € shared-words(Z’, Z.,o0set(Z'),v,r,s), and then
complement(Z', Z., oset(Z"),v,r,s) = 1 (eq 5.43).

e Eq. B.19: Ifmincomp(Zy,, Zm, 0set(Zy,),v,r, s) = 1thencomplement(Z,,, Zm,, 0set(Zy,),
v,r,8) = 1 and path(containpat(Z,,,r,s)) = 0 (eq. 5.49). Then also
complement(Z', Z,0set(Z'),v,r,s) = 1 (eq. B.18) antbath(containpat(Z’ r,s)) = 0
(eq. B.17), and themincomp(Z', Z., 0set(Z'),r, s) = 1.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 133

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

B.4 RULE ORDERING IN Zy

Statement 16 (redimplies_acc)

V7,8 € Zmy Zm C Zeompineds Possibly_minimal(Z,,) = 1,
Voset(Zy,) C allset(Zy,),valid(oset(Z,,)) =1 :
orderyed(Zm, 0set(Zy,),r,s) =1 = ordergec(Zm,0set(Zy,),r,s) = 1. (B.20)

If order,eq(Zm, oset(Zy,),r,s) = 1 then requirings to occur before- causes some ruleto become
redundant given any state’,,, Z,,, oset'(Z,,)), whereoset' (Z,,) 2 oset(Z,,) U (s,r) (eq. 5.55).
If it were possible that for any sucbset’(Z,,) it could hold thataccurate(Z,,, oset'(Z,)) = 1,
then rulet could be removed from the rule set and the new rule set wollllthstaccurate. However,
then the new rule set would have fewer rules thap, which is impossible, given that,, is a
possibly_minimal rule set (eq. 5.26 and eqg. 5.25). This means that if baihd s are inZ,,, and
orderyed(Zm, 0set(Zy,),r,s) = 1, then alswrderc.(Zm, oset(Zy,),r, s) = 1.

Statement 17 (orderimplies_acc)

V1,8 € Zmy Zm C Zeompineds Possibly_minimal(Z,,) = 1,
Voset(Zy,) C allset(Zy,),valid(oset(Z,y,)) =1 :
order(Zy,0set(Zy),r,8) =1 = orderacc(Zm, oset(Zy,),r,s) = 1. (B.21)

This follows directly from statement 16 and eq. 5.56.

Statement 18 (directorder_implies_.complement)

V7,8 € Zmy Zm, C ZcombinedapOSSibly—minimal(Zm) =1,

Voset(Zy,) C allset(Zyy,),valid(oset(Zy,)) =1 :
direct_order(Zm, oset(Zy,),r,s)) =1 =

Yo € Zp, (v,1), (v, 8) € oset(Zy,) : complement(Zy,, Zy,, 0set(Zy,),v,r,8) = 1. (B.22)

Since Z,, is a possibly-minimal rule set, order(Z,,,oset(Zy,),r,s) = 1 implies that
orderaee(Zm,o0set(Zy,),r,s) = 1 (statement 17). The accuracy ordering between any two
rulesr ands can be caused in two ways: (1) A direct ordering requiremeség from one or more
word patterns that each create the need for such an ordedegéndently. (2) An indirect ordering
requirement is caused by a set of word patterrni§ in predicted one after the other, each prediction
an independent event. Such a set of word patterns may ragiéreto occur earlier than another rule
v, and again require rule to to occur earlier than rule, creating an indirect ordering requirement
from ruler to rule s. If direct_order(Z,,, oset'(Z,,),r,s) = 1, then by definition there exists no

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 134

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

rule t such thatorder(Z,,, oset' (Z,,),r,t) = 1 andorder(Z,,, oset'(Z,,),t,s) = 1, even though
order(Zy,, oset' (Z,),r,s) = 1. It therefore follows that the ordering betweerand s is a direct
ordering (as in (1) above) caused by at least one (singled watternw. Such a word patterm will
be predicted incorrectly ifulenum(s) < rulenum(r) (sinceorderqec(Zm,0set(Zy),r,s) = 1)
and predicted correctly for at least one ordering which ireguthatrulenum(r) < rulenum(s)
(sincewalid(oset(Z,,)) = 1). This is only possible if the word pattern is predicted accurately
by ruler and incorrectly by rules. Thenmatch(w,r) = 1 andmatch(w,s) = 1, and nov € Z,,
exists earlier in the rule set tharsuch thatmatch(w,v) = 1. Since such a exists, it follows that
complement(Zy,, Zm, 0set(Zy,),v,r,s) = 1 for all v such that{ (v, r), (v, s)} € oset(Z,,).

Statement 19 (ordeccomplementorder)

Vr, s € Zm, Zm C Zsingle, possibly minimal(Zy,) = 1,
Voset(Zy,) C allset(Zy,) :

(
orderacc(Zm, Zm, 0s€t(Zy),rys) =1 = Yo : {(v,7),(v,s)} € oset(Z,,) :
)

path(complement&direct_order(Zy,, Zm, 0set(Zy,),v,1,8)) = (B.23)
If orderyce(Zm,o0set(Zy,),r,s) = 1 then by definition, order(Z,,,oset(Z,,),r,s) = 1
(eq. 5.56) andpath(direct_order(Zy,,oset(Zy,),r,s)) = 1 (eq. 5.57). Now con-
sider any rulest;,t;;1 along the path fromr to s. Since for eacht;, t;;q pair it
holds that direct_order(Z,,,oset(Zy,),ti,tix1) = 1, it follows from statement 18 that
complement(Zyy,, oset(Zy,),v,t;, tir1) = 1 for a valid v. Since this holds for alk; along

this path, it follows thapath(complement&direct_order(Zy,, Zm, oset(Zy,),v,r,s)) = 1.

Statement 20 (subsetmplies_red_min)

Vr, 8,0 € Zmy Zm € Zsingle, possibly-minimal(Zy,) = 1,
Voset(Zy,) C allset(Zy,),
subset(Zy,, 0set(Zy),r,r,8) =1 =

order eq(Zm, 0set(Zy,),r,s) = 1. (B.24)

If subset(Zy,,o0set(Zy,),r,r,s) = 1 it follows by definition thatpossible_words(Z,, Zy,,
oset(Zy,),r,r) C possible_words(Zy,, Zm,o0set(Zy,),r, s) (eq. 5.51), and then it will hold for any
word patternw € possible_words(Zy,, Zm, oset(Zy,),r,r) that alsomatch(w, s) = 1 (eq. 5.36).
Sincepossible_words(Zy,, Zm, 0set(Zy,),r,r) = rulewords(Zy,, oset(Z,,),r) (statement 3), this
set provides a list of all the words 1RD that may possibly invoke ruleduring pronunciation predic-
tion (eq. 5.35). It therefore follows that, éfoccurred before, all words that could possibly mateh
would first be matched againstandr would never be invoked. Rulewill then be a redundant rule
within a possibly_minimal rule set, which contradicts the definition ofpassibly_minimal rule

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 135

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

set. Since rule becomes redundant if rukeoccurs before rule when enforcing all the restrictions
required byoset(Z,,), it follows thatorder,cq(Zy,, oset(Z,,),r,s) = 1 (eq. 5.55).

Statement 21 (subsetmplies_red)

V1,8 € Zmyv € Zey Ze C Zimy € Z' C Zeombined, Voset(Z') C allset(Z'),
V(Zm, 0setym(Zy) € minrules(Z', Z., 0set(Z")) :
subset(Z', Ze,0set(Z'),v,7,8) =1 =

order eq(Zm,0set(Zp,),r,s) = 1. (B.25)

Choose anyv € Z. and r,s € Z, such thatsubset(Z’, Z., oset(Z'),v,r,8) = 1.
Thenv = r or {(v,r),(v,8)} € oset(Z") and possible.words(Z', Z.,oset(Z'),v,r) C
possible_words(Z', Z,0set(Z'),v,s) (eq. 5.51). Now consider any word pattern
w € possiblecwords(Zy,, Zm,0set(Zy,),r,r). Since order_subset(oset(Z'), osetym(Zm)) =

1 and Z. C Z, (eq. 5.29) it follows from statement 14 that alsw €
possible_words(Z', Ze, 0set(Z'),v,r). Since possible_words(Z', Z.,o0set(Z'),v,r) C
possible_words(Z', Z,,0set(Z'),v,s) (as given above), it follows that alsow €
possible_words(Z', Z, 0set(Z'),v,s). This implies thatmatch(w,s) = 1 and noq € Z.
exists such thatnatch(w,q) = 1 andg = v or (¢g,v) € oset(Z'). Now sincev = r
or {(v,r),(v,s)} € oset(Z') this means no such matching € Z. exists such that
g = r or{(qgr),(qgs)} € oset(Z'). Then noq € Z, exists such thay = r or
{(q,7),(q,8)} € osetm(Zy) (sinceZ. C Z,, andorder_subset(oset(Z'), osetm(Zy)) = 1),
and thenw € possible.words(Zy,, Zm,o0setm(Zm),r,s). Since this holds for allw €
possible_words(Zy,, Zm, 0set(Zy,),r,r), it follows that possible_words(Z,, Zm, osetym(Zm),
r,r) C possible-words(Zy,, Zm,0sety(Zy),r,s). But from statement 10 it is not possible
that possible_words(Z,, Zm, 0sety(Zm),r,1) = possible_words(Zy,, Zm, 05ty (Zm), 1, s),
S0 possible_words(Zy,, Zy,, 0sety(Zy,),r,1r) C possible_words(Zy,, Zy,, 0setm(Zy,),r, s), and
then subset(Z,,, Zpm, osety(Zm),r,r,s) = 1 (eq. 5.51). Then it follows from statement 20 that
order eq(Zm,0set(Zy,),r,s) = 1.

Statement 22 (containpat_implies_order_min)

V7,8 € Zmy Zom € Zeompineds Possibly_minimal(Z,,) = 1,valid(oset(Zy,)) = 1

path(containpat(Zy,,r,s)) =1 = order,eq(Zm,0set(Zy,),r,s) = 1. (B.26)

If path(containpat(Zy,,r,s)) = 1 then context(r) DO context(s) (eq. 5.47) and then
matchwords(r) C matchwords(s) (statement 1). Lebset’(Z,,) be any ordering that includes
(s,r)Uoset(Zy,). Then for every word patterw such thatnatch(w,r) = 1 alsomatch(w, s) = 1,
and sinces, r) € oset'(Z,,) and boths andr in Z,,,, possible_words(Z,, Zy,, oset'(Zy,), s,1) = ¢

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 136

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

(eq. 5.36). Sincerulewords(Zy,,oset' (Zy,),r) C possible_words(Zy,, Zm, oset' (Zy), s,1)
(statement 4) alseulewords(Z,,,oset' (Zy,),r) = ¢, which means that has become a redun-
dant rule (statement 7). Since this holds for anyt'(Z,,) 2 oset(Z,,) U (s,r) it follows that
orderyed(Zm, 0set(Zy,),r,s) =1 (eq. 5.55).

B.5 RULE ORDERING IN Z,; AS ASUBSET OFZcomBIiNED

Statement 23 (pathorder_min)

V7,8 € Zmy Ze C Zm C Z' C Zeombined

Voset(Z') C allset(Z'), allowed_state(Z', Z.,0set(Z")) = 1,

Y (Zm, 0setm(Zm) € minrules(Z', Z,., 0set(Z")) :

containpat/supercomp/rule_order(Z', Z.,0set(Z'),r,s) =1 =
(r,8) € osetm(Zym). (B.27)

Choose any, s € Z,,:

o If rule_order(Z', Z,o0set(Z'),r,s) = 1, then (r,s) € oset(Z') (eq. 5.7). Since
allowed_state(Z', Z., 0set(Z')) = 1, order_subset(oset(Z'), osety,(Z,y)) = 1 (eq. 5.29)
and then(r, s) € oset,,(Zy,).

o If supercomp(Z', Z.,0set(Z'),r,s) = 1, thensubset(Z', Z.,0set(Z"),r,s) = 1 by defini-
tion (eq. 5.52) and then, from statement 21 it follows thaier,..q(Z,,, osety (Zp,),r, s) = 1,
and again(r, s) € osety,(Zpm,).

e If containpat(Z',r,s) = 1thencontainpat(Z,,,r,s) =1 (eq. B.15) and then it follows from
statement 22 thatrder,eq(Zpm,, 0setm (Zm), r,s) = 1. Again(r, s) € osety,(Zy,).

Statement 24 (ordecnot_order)

V?”, s € ZI7 Ze - ZI - Zcombinedv
Voset(Z') C allset(Z'), allowed_state(Z', Z.,0set(Z")) = 1 :
order(Z', Z,0set(Z'),r,s) =1 = order(Z', Z.,0set(Z'),s,r) # 1. (B.28)

Consider anyr,s € Z' and first consider theorder,. relation specifically. If
orderacc(Z', Ze,0set(Z'),r,s) = 1, then nooset'(Z') O oset(Z') U (s,r) exists such that
allowed_state(Z', Z.,0set'(Z')) = 1 (eq. 5.54). But sincellowed_state(Z', Z.,o0set(Z')) = 1
at least on€Z,,,, oset,(Z,,) pair exists such thatZ,,, oset,,,(Z,,)) € minrules(Z', Z., oset(Z'"))
(eq. 5.29), such thatinimal(Z,,, osety(Zm)) = 1 (eq. 5.28). Clearly(s,r) & osety(Zm),
which means that either (1), s) € oset,,(Z,,) or (2) that the relationship betweenand s is

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 137

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

indeterminate, that is, that eithetlenum(r) < rulenum(s) or rulenum(s) < rulenum(r) is
allowed without affecting the value afccurate(Z,,, oset,,(Zy,)), or that (3) either or both of
ands are not inZ,,. In all the above case$r, s) can be added toset,,(Z,,), and it will still hold
that minimal(Z,,, oset,,(Z,)) = 1. Thenorderq..(Z', Ze,0set(Z'),s,r) # 1. The same can
be shown to hold with regard t@-der,.q(Z’, Z.,0set(Z'),r, s) using eq. 5.55 in the same way as
above, and therefore this statement also holds with regattebrder relation in general.

Statement 25 (ordeccomplementoptions)

Vr,s € 2", Ze C 7' C Zeompined, Yoset(Z') C allset(Z) :
complement&order(Z', Z.,oset(Z'),r,s) =1 =
path(containpat(Z', Z,0set(Z'),r,s))) = 1
or mincomp(Z', Z.,o0set(Z'),r, s) = 1. (B.29)

If complement&order(Z', Z,0set(Z'),r,s) = 1 then bothcomplement(Z', Z.,0set(Z'),r,s) =
1 andorder(Z', Z.,0set(Z'),r,s) = 1 (eq. 5.44). Sinceomplement(Z', Z,,o0set(Z'),r,s) = 1

it follows from statement 5 that eithemincomp(Z’, Z,., o0set(Z'),r,s)) = 1 or that
path(containpat(Z',r,s)) = =+1. However, if path(containpat(Z',r,s)) = —1, then
path(containpat(Z',s,r)) = 1 (eq. 5.47 and eq. 5.44) and therder,.q(Z’, Z.,0set(Z'),s,r) =
1 (statement 22). Since it is not possible that bather(Z’, Z.,oset(Z'),s,r) = 1
and order(Z',Z.,oset(Z'),r,s) = 1 (statement 24), it is therefore impossible that
path(containpat(Z',r,s)) = —1. So either mincomp(Z', Z,,0set(Z'),r,s)) = 1 or

path(containpat(Z',r,s)) = 1.
Statement 26 (oregimplies_acc)

\V/Ta 5 € Z/, Ze c z' - Zcombineda
Voset(Z') C allset(Z'), allowed_state(Z', Z.,0set(Z')) = 1 :
Jv € Z : order req(Z', Ze,0set(Z'),v,r,8) = 1,

ordereqg(Z', Ze, 0set(Z'),r,5) =0 =

direct_order(Z', Z.,o0set(Z'),r,s) # —1. (B.30)
If order_req(Z', Z.,oset(Z'),v,r,s) = 1, then by definition (eq. 5.58) it follows that
direct_order(Z', Zo,0set(Z'),r,s) = 1, shared-words(Z', Z.,oset(Z'),v,r,s) # ¢, and

for all w; € shared-words(Z', Z.,o0set(Z'),v,r,s) it holds thatoutcome(w;) = outcome(r).
Furthermore, there exists at least oné in shared_words(Z', Z.,o0set(Z'),v,r,s) such that
outcome(w') &€ outcome(s). The value ofdirect_order(Z’', Z.,oset(Z'),r,s) can be0,1 or —1.
Since order,eq(Z', Ze,0set(Z'),r,s) = 0 the value of direct-order(Z', Z.,oset(Z'),r,s)

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 138

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

depends on the value obrder,..(Z', Z,oset(Z'),r,s), which also can be0,1 or —1

(eq. 5.57). Now consider anyZ,,,oset,,(Zy)) € minrules(Z', Z.,o0set(Z')). Since
allowed_state(Z', Z.,0set(Z')) = 1, at least one such &,,,oset,,(Z,,) pair exists. Since
shared-words(Zy,, Zm, 0sety(Zm),v,r,s) C shared-words(Z', Z.,0set(Z"),v,r, s) (statement
12) it still holds that for all ther; € shared-words(Zy,, Zy,, 0sety(Zy), v, 1, s) outcome(x;) =

outcome(r). If it were possible thatdirect_order/orderye.(Z', Ze,0set(Z'),s,r) = 1, then
there would exist at least one word patterisuch thats would predicty accurately, and would

predict y incorrectly. But since for all ther; above outcome(z;) = outcome(r), no suchy

can exist, and therefordirect_order/orderq..(Z’', Ze,0set(Z'),s,r) # 1 which implies that
direct_order(Z', Z,0set(Z'),r,s) # —1.

B.6 CHARACTERISTICS OF AN ALLOWED STATE
Statement 27 (allowedstate decided)

VZ. C Z' C Zeombined, Yoset(Z') C allset(Z'),
L,

allowed_state(Z', Z.,o0set(Z'))
V(Zm, 08ty (Zm)) € minrules(Z', Z,, 0set(Z")) :
order_subset(decided_set(Z', Z.,0set(Z")), 0set, (Zm)) = 1. (B.31)

Choose any Z,,, oset,,(Zy,)) € minrules(Z', Ze, 0set(Z')). Thenminimal(Zy,, 0sety,(Zy,)) =
1, Z. C Z,, € Z' andorder_subset(oset’ (Z'),oset,,(Zy)) = 1, by definition (eq. 5.28). Now
consider any, s € Z,, N Z' such that(r, s) € decided_set(Z', Z.,o0set'(Z")). Thenr,s € Z,, and
path(order_decided(Z', Z., oset'(Z'),r,s)) = 1 (eq. 5.60). From the definition @f-der_decided,
this implies that there exists a path = r,vq,...,v, = s, all v; € Z’, such that either (1)
containpat(Z' v, vi41) = 1, or (2) supercomp(Z', Z,, oset(Z'),v;, vi11) = 1 or (3) (v, vi41) €
oset(Z'). Now lett; be only those); such thav; € Z,. Then there exists apath= r, t,t, = s
such that for each;, path(containpat/supercomp/rule_order(Z’', Z.,o0set(Z'), t;, tiv1)) = 1,
with all ¢; € Z,,. From statement 23 it then follows that for eatht;; pair it holds that
order(Z', Z.,oset(Z'),t;,t;+1) = 1, and then(t;, t;11) € oset,,(Zy,). Since these; form a path
from r to s, it follows that also(r, s) € oset,,(Z,,) (eq. 5.7). Since it holds for any s € Z,,, N Z’
that if (r,s) € decided_set(Z', Z.,oset'(Z')) then also(r, s) € oset,,(Zy,), it follows (from eq.
5.27) thatorder_subset(decided_set(Z', Z, 0set(Z")), osety(Zm)) = 1.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 139

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

Statement 28 (allowedstate_possible)

VZ. C Z' C Zeombined, Yoset(Z') C allset(Z'),

allowed_state(Z', Ze,0set(Z')) =1 =

V(Zm, 0sety,) € minrules(Z', Zq, 0set(Z")) :
order_subset(osety,(Zy,), possible_set(Z', Z., 0set(Z'))) = 1. (B.32)

Choose any(Z,,, oset,,) € minrules(Z', Z.,0set(Z')), and anyr,s € Z,, such that(r,s) €
osety(Zy). Since(r,s) € osety(Zy,), it follows that order,cc(Zm, Zm, 0set(Zy,),rys) =

1 (statement 17) and theputh(direct_order&complement(Zy,, Zy,, 0setm(Zy),v,r,8)) = 1

for all v such that{(v,r), (v,s)} € oset,,(Z,) (statement 19). This means that a path of
n > 2 rules exist witht; = r,ts,t3,...,t, = s, all thet; € Z,. For each of these
ti, tir1 pairs bothdirect_order(Zy,, Zm,0setym(Zm),ti,tiv1) = 1 and complement(Zy,, Zpm,
osetm(Zm), vyt tiv1) = 1. Since complement(Zy,, Zm, 08€ty (Zm), v, ti tiv1) = 1, it
follows that complement(Z’', Z.,0set(Z'),v,t;,t;v1) = 1 (eq. B.18), and then either (1)
path(containpat(Z' t;,t;v1) = 1 0r (2)mincomp(Z', Z.,0set(Z'), v, t;, t;r1) = 1 (Statement 25).

In both caseshared_words(Z', Z., oset(Z'), v, t;, tiv1) # ¢ (€q. 5.43).

e If (1) path(containpat(Z' t;,t;11)) = 1, then path(order_decided(Z', Z.,o0set(Z'),
ti,tiv1)) = 1 (eq. 5.59), and theft;, t;11) € possible_set(Z', Z.,0set(Z')) (eq. 5.63).

o If (2) mincomp(Z', Z,0set(Z'),v,t;, t;11) = 1then (sinceshared_words(Z', Z., oset(Z'),
v, ti, tir1) # ¢) it follows that the value oforder_possible(Z', Z., 0set(Z'),v,t;,tiv1),
depends on the values of (aprder_decided(Z’',Z.,o0set(Z'),t;,t;v1), and (b)
order_possiblel(Z', Z.,0set(Z'), t;, t;+1) (€q. 5.62).

First consider the possible values for (a), and asswm&r_possiblel(Z', Z,,oset(Z'),
ti,tiv1) # —1, the least restrictive choice. Wrder_decided(Z', Z.,o0set(Z'),t;, ti11) =

0, then the value obrder_possible(Z', Z,,0set(Z'),t;,t;iv1) = 1 (eq. 5.62), and then
(ti,tiv1) € possible_set(Z', Z.,0set(Z")). If order_decided(Z', Z.,0set(Z'),t;y1,t;) = 1,
then also(t;,t;11) € possible_set(Z', Z.,0set(Z')) (eq. 5.63). Sinc€t;, tit1) € Zm
and direct_order(Zy,, Zm, 08€tm(Zm), ti, tiv1) = 1 it follows from statement 27 that
direct_order(Z', Z,0set'(Z'),t;,t;+1) # —1. For the two valid options it then holds that
(tiytiv1) € possible_set(Z', Z.,0set(Z'")).

Now consider the possible values for (b), and assumedhétr_decided(Z’, Z., oset(Z'),
ti,ti+1) = 0, again the least restrictive choice olfder possiblel(Z', Z., 0set(Z'), t;, ti11) #
—1, then order_possible(Z', Z.,0set(Z'),t;,t;+1) = 1. If it were possible that
order_possiblel(Z', Z.,0set(Z'), t;, tix1) = —1, then order_possible(Z', Z.,oset(Z'),
ti+1,t;) = 1 (eq. 5.62) and then it would hold thatder_req(Z’', Z., oset(Z'), v, ti11,t;) = 1
for a valid v (eq. 5.61), and thewirect_order(Z', Z.,oset(Z'),ti11,t;) # —1 (state-

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 140

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

ment 26), or stated differentlydirect_order(Z', Z.,oset(Z'),t;,t;41) # 1. But

since direct_order(Zy,, Zm,osetm(Zm), ti,tix1) = 1, this causes a contradiction.
Then it must hold thatorder_possiblel(Z', Z., oset(Z'),t;,t;v1) # —1, and then

(ti,tiv1) € possible_set(Z', Z.,0set(Z")).

Since it holds for al(¢;, ;1) along a path from to s that(¢;, t;+1) € possible_set(Z', Z., 0set(Z')),

it follows that (r,s) € possible_set(Z', Z.,0set(Z')) (eq. 5.63). Since this holds for any
(r,s) € osety(Zn), it follows thatorder_subset(oset,,(Zy,), possible_set(Z', Z., oset(Z')) = 1
(eq. 5.27).

B.7 INITIAL ALLOWED STATE

Statement 29

Yw € TD,r,w' € Z',w' aword pattern matching word, Z' C Z.ompined :

match(w,r) =1 <= path(containpat(w',r)) = 1. (B.33)

Letw be any word pattern i ompineq @ndw’ its associated word patterniD. If match(w,r) = 1,
then, context(w) 2O context(r) by definition (eq. 5.11). Given the construction Bf,,,.pined, the
only rule s that can exist such thabntext(w) = context(s) is thats which is the word pattern
w', socontext(w) = context(w’) D context(r). Sincecontext(w’) D context(r) it follows from
eq. 5.48 thapath(containpat(Z',w',r)) = 1. Similarly, if path(containpat(Z’,w',r)) = 1,
then (again from eq. 5.48pntext(w’) D context(r), and thencontert(w) = context(w’) D
context(r), and thenmatch(w,r) = 1 (eq. 5.11).

Statement 30 (onlyword _patterns) If, prior to any rule resolution, all rules irZ.,,.pineq are or-
dered according to the set of relationshigecided_set(Z ompined, ¢,), then predicting any word
w € T'D will only invoke the word pattera’ € Z,,,—con flict -

Sinceoset(Zeompined) = ¢ does not contain any orderings whatsoever, it follows diyfcom the

definition ofrulewords (eq. 5.35 and eq. 5.12) amdatchwords (eq. 5.34) thainatchwords(r) =

rulewords(Zeompineds ¢, 7). Letw € TD be any word to be predicted, and € Z.,pineq b€

each associated word pattern. Given the way in wHigh,.»:n.a has been constructed;” exists
for each wordw, match(w,w’) = 1, and furthermore there may exist a set of rufes} such
that alsomatch(w’,r;) = 1. From statement 29 it follows that for each of thesehere exists
a path(containpat(Zeompined, W',7i)) = 1. Sincepath(containpat(Zeompined, w',7:)) = 1, then
alsopath(order_decided(Zeompined, > ¢, w',7i)) = 1 (€9.5.59) and even if sueh exist, none will
be invoked — onlyw’. Since word variants are not allowed, € Z,,,_con frict-

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 141

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

Statement 31 (complete)The set of rulesz,,,_ .. riic: describes the training data accurately and
completely.

Consider any training word pattetn. If any sub-patterns existed ifi that matched both this word
pattern and a conflicting one, it would have been removed . ., r1:- Therefore, if a rule
iN Zno—confiict 1S applicable, it will be accurate. There are no word vagantZ'D; therefore, for
each grapheme in each word pattern there exists at leastubrpattern (the word pattern itself)
that describes the grapheme in a way that does not conflibtamiy other pattern, implying that an
applicable rule will always be found.

Statement 32 (initiaLsuperpath_.implies_subset)

VT, ENS an Zm g ZI g ZcombineahpOSSibly—minimal(Zm) =1:
path(containpat /supercomp(Z', ¢, ¢, vg,7,58)) =1 =
subset(Zm, Zm, ¢, 00,1, 8) = 1. (B.34)

Consider anyw € possible_words(Z', ¢, p,vo,7), Z,m < Z'. Since ¢ contains no order-
ings whatsoever, then any sebssible_words(A, B, ¢,vg,x) will consist of all the words
in TD matched byz, irrespective of the constitution oA or B, except thatA and B
should meet the requirements specified by eq. 5.36 piersible_words(A, B, ¢, vg,x) tO
be defined. Thenmatchwords(x) = possible_words(A, B, $,vqg,x) for all valid val-
ues of A,B and z; and then it also holds that for af € Z,,: matchwords(y) =
possible_words(Z', ¢, d,vg,y) = possible_words(Zy,, Zm, ¢,v0,y) = rulewords(Zy,, ¢,y). For
anyr,s € Zp, if path(containpat/supercomp(Z', ¢, ,r,s)) = 1 then there exists a set of rules
v1 = r,ve,..,v, = s such that for eacliv;, v;+1), either (1)containpat(Z’, v;,v;11) = 1 or (2)
supercomp(Z', &, ¢, v, v, vi01) = 1. If (1) containpat(Z',v;, viy1) = 1 thencontext(v;) D
context(viy1) (€q. 5.47) and thematchwords(v;) C matchwords(v;y1) (Statement 1); and then
rulewords(Zy,, ¢, v;) C rulewords(Zy,, ¢,viv1). If (2) supercomp(Z', ¢, ¢, ,vo,vi,vip1) = 1,
then possible_words(Z', ¢, ¢,v;) C possible_words(Z', ¢,¢,v;+1) by definition (eq. 5.51),
and then alsaulewords(Z,, ¢,v;) C rulewords(Z,,¢,vi+1). Then it holds for allv; that
rulewords(Zy,, p,v1 = r) C rulewords(Zy,, p,v2) C ... C rulewords(Z,, ¢,v, = s); and
then rulewords(Z,,, ¢,r) C rulewords(Z,,$,s). But since bothr and s in Z,,, and since
valid(¢) = 1, it is not possible thatulewords(Z,,, ¢,r) = rulewords(Z,,, ¢,s) (Statement
9). Sorulewords(Zy,,o,r) C rulewords(Z,,®,s), and thenpossible_words(Z', ¢,¢,r) C
possible_words(Z', ¢, ¢, s), and thensubset(Z’, ¢, ¢,r,s) = 1 (eq. 5.51).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 142

APPENDIX B SOME THEOREMS REGARDINGMINIMAL REPRESENTATIONGRAPHS

Statement 33 (Initial allowed state) If the rule setZ....uineq iS Ordered according to the rule set
orderings generated byecided_set(Z ompined, @,), then the rule set is accurate, complete and in
an allowed_state, i.e:

7' = Zeombined, Ze = ¢,0set(Z') = decided_set(Z', ¢, ¢) =
accurate(Z',oset(Z')) = 1,allowed_state(Z', Z.,0set(Z')) = 1. (B.35)

Let w be any word inl’D andw’ its associated word pattern &y,,—con iict- It follows from state-
ment 30 that predicting word according toZ’, oset(Z’) will always invoke the word pattern’ €
Zno—conflict» Which always exists. Since there is always such a wordnpattiee new rule set will be
complete. Since only rules i#,,,—con f1ict Will be invoked, and the rule sef,,,_ .o, riic: IS accurate
(from statement 31), the new rule set will also be accurate;thenaccurate(Z’,oset(Z')) = 1.
From the definition ofminimal (eq. 5.25), if a rule set can be accurate and complete, dt leas
one rule set and rule ordering set will always exist such thatimal(Z,,, oset,,(Z,,)) = 1.
Since Z.ompineq CONsists of all possible rules, all suéh, will be a subset ofZ.,,,pineq, @nd then

¢ =2Z. C Znm CZ' = Zeompinea- NOW consider any, s € Z,, such that alsdr, s) € oset(Z’),
i.e. (r,s) € decided_set(Z', ¢, ¢). Thenpath(order_decided(Z',$,¢,r,s)) = 1 (eq. 5.60), and
thenpath(containpat / supercomp/rule_order(Z', ¢, ¢,vo,r,s)) = 1 (eq. 5.59). Since contains
no orderings whatsoever, this is only possibledth(containpat/supercomp(Z', ¢, p,r,s)) = 1.
Then subset(Z', ¢, ,7,s) = 1 (statement 32)prder,eq(Zm, Zm, 0s€tm(Zm),r,s) = 1 (state-
ment 21), and therir,s) € oset,,(Z,) (eq. 5.56 and eq. 5.7). Since this holds for all
(r,s) € Zy, it follows that order_subset(decided_set(Z', ¢, §), oset,,(Zm)) = 1 (eq. 5.27), and
thenorder_subset(oset(Z'), oset,,(Z,,)) = 1, and themllowed_state(Z', Z,, oset(Z')) = 1 (eq.
5.29).

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 143

REFERENCES

[1]

2]
[3]

E.Barnard, J.P.L Cloete, and H. Patel, “Language andntelogy literacy barriers to accessing
government services[ecture notes in Computer Scieneel. 2739, pp. 37-42, 2003.

Ethnologue, Languages of the Warlattp://www.ethnologue.com, 1 April 2005.

B. Wheatley, K. Kondo, W. Anderson, and Y. Muthusumy, “Awaluation of cross-language
adaptation for rapid HMM development in a new language Plioceedings of the International
Conference on Acoustics, Speech and Signal Processings@pAdelaide, 1994, pp. 237—-
240.

[4] A. Constantinescu and G. Chollet, “On cross-languageeements and data-driven units for

[5]

[6]

[7]

[8]

[9]

[10]

ALISP,” in Proceedings Automatic Speech Recognition and Understgnt®97, pp. 606—613.

Rita Singh, Bhiksha Raj, and Richard M. Stern, “Autoroaéneration of phone sets and lexical
transcriptions,” inProceedings of the International Conference on Acous8pgech and Signal
Processing (ICASSPIstanbul, Turkey, 2000, pp. 1691-1694.

Rita Singh, Bhiksha Raj, and Richard M. Stern, “Autoratiustering and generation of con-
textual questions for tied states in hidden markov modatsProceedings of the International
Conference on Acoustics, Speech and Signal Processings@EAPhoenix, Arizona, March

1999, vol. 1, pp. 117-120.

Catherine Soanes;ompact Oxford English Dictionary of Current Englis®@xford University
Press, 2003.

“Wikipedia Public Encyclopaedia,” 14 April 2005t t p: / / en. wi ki pedi a. or g/ wi ki /
Boot st rappi ng.

L. Osterholtz, A. McNair, I. Rogina, H. Saito, T. Slobqdd. Tebelskis, A. Waibel, and
M. Woszczyna, “Testing generality in JANUS: A multi-linduspeech to speech translation
system,” inProceedings of the International Conference on Acous8pgech and Signal Pro-
cessing (ICASSPY1992, vol. 1, pp. 209-212.

J. Glass, G. Flammia, D. Goodine, M. Phillips, J. Polifi; S. Sakai, S. Seneff, and V. Zue,
“Multilingual spoken-language understanding in the MITysger system,'Speech Communi-
cation, vol. 17, pp. 1-18, 1995.

144

REFERENCES

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Tanja Schultz and Alex Waibel, “Fast bootstrapping ASR systems with multilingual
phoneme sets,” iRroceedings EurospeecRhodes, Greece, 1997, pp. 371-374.

T. Schultz and A. Waibel, “Language-independent anglemge-adaptive acoustic modeling for
speech recognition,Speech Communicatipwol. 35, pp. 31-51, Aug. 2001.

C. Callison-Burch and M. Osborne, “Bootstrapping flataorpora,” inNorth American Chap-
ter of the Association for Computational Linguists (NAA@I9rkshop, Building and using par-
allel texts: data driven machine translation and beypEdmonton, Canada, 2003.

Jan Daciuk, “Computer-assisted enlargement of mdggical dictionaries,” inFinite State
Methods in Natural Language Processing, Workshop at 13thfgan Summer School in Logic,
Language and InformatigrHelsinki, Finland, August 2001.

Kemal Oflazer and Sergei Nirenberg, “Practical boafgting of morphological analyzers,”
in Proceedings of Computational Natural Language LearningNCL) Workshop at the An-
nual Meeting of the European Chapter of the Association fam@utational Linguists (EACL)

Bergen, Norway, June 1999.

J. Zavrel and W. Daelemans, “Bootstrapping a taggeguthrough combination of existing
heterogeneous taggers,” Broceedings of the Second International Conference on lLage
Resources and Evaluation (LREC-200@hens, Greece, 2000, pp. 17-20.

“The CMU pronunciation dictionary,” 1998, http://ww. speech. cs. cnu. edu/
cgi - bi n/ crmudi ct .

R. Mitten, “Computer-usable version of Oxford Advadceearner’s Dictionary of Current
English,” Tech. Rep., Oxford Text Archive, 1992.

P. Mertens and F. Vercammen, “Fonilex manual,” Teclp.R€.U.Leuven CCL, 1998.

T.J. Sejnowski and C.R. Rosenberg, “Parallel netwahnies learn to pronounce English text,”
Complex Systempp. 145-168, 1987.

K. Torkkola, “An efficient way to learn English graphefteephoneme rules automatically,”
in Proceedings of the International Conference on Acoustgech and Signal Processing
(ICASSP)Minneapolis, USA, April 1993, vol. 2, pp. 199-202.

O. Andersen, R. Kuhn, A. Lazarides, P. Dalsgaard, J.sHaad E. Noth, “Comparison of
two tree-structured approaches for grapheme-to-phon@meersion,” inProceedings of the
International Conference on Spoken Language Process®gL(P) Philadelphia, USA, 1996,
vol. 3, pp. 1700-1703.

A. Black, K. Lenzo, and V. Pagel, “Issues in building geal letter to sound rules,” iBrd ESCA
Workshop on Speech Synthedmsnolan Caves, Australia, November 1998, pp. 77-80.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 145

REFERENCES

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

W. Daelemans, A. van den Bosch, and J. Zavrel, “Fonggixceptions is harmful in language
learning,” Machine Learningvol. 34, no. 1-3, pp. 11-41, 1999.

R.l. Damper, Y. March, M.J. Adamson, and K. Gustafsonivaluating the pronunciation
component of text-to-speech systems for English: a pedaoa comparison of different ap-
proaches,”"Computer Speech and Languagel. 13, pp. 155-176, April 1999.

Timothy J. Hazen, I.Lee Hetherington, Han Shu, and Kaiigescu, “Pronunciation modelling
using a finite-state transducer representaticBgfeech Communicatiprol. (article in press),
2005.

J. Allen, M.S. Hunnicut, and D. KlattFrom Text to Speech: The MITalk syste@ambridge
University Press, Cambridge, 1987.

Cecil H. Coker, Kenneth W. Church, and Mark Y. LibermdMorphology and rhyming: two
powerful alternatives to letter-to-sound rules for spesghthesis,” inProceedings of ESCA
Workshop on Speech Synthegigtrans, France, 1990.

H.S. Elovitz, R. Johnson, A. McHugh, and J.E.Shore, tt&eto-sound rules for automatic
translation of English text to phonetics|JEEE Transactions on Acoustics, Speech and Signal
Processingvol. 24, pp. 446—459, December 1976.

Yousif A. El-lmam, “Phonetization of Arabic: rules amdigorithms,” Computer Speech and
Languagevol. 18, pp. 339—-373, October 2004.

J.C. Roux, “Grapheme-to-phoneme conversion in XHosquth African Journal of African
Languagesvol. 9, pp. 74—78, 1989.

P.C. Bagshaw, “Phonemic transcription by analogy #i-te-speech synthesis: novel word
pronunciation and lexicon compressionComputer Speech and Languagel. 12, pp. 119—
142, April 1990.

Neil McCulloch, Mark Bedworth, and John Bridle, “NETegk: A re-implementation of
NETtalk,” Computer Speech and Languagel. 2, pp. 289-302, 1987.

J. Hakkinen, J. Suontausta, S. Riis, and K Jensen, ‘#ging text-to-phoneme mapping strate-
gies in speaker independent isolated word recognitiddgeech Communicatiprol. 41, pp.
455-467, 20083.

K.P.H. Sullivan and R.l. Damper, “Novel-word pronuation: a cross-language studgpeech
Communicationvol. 13, pp. 441-452, 1993.

F. Yvon, “Grapheme-to-phoneme conversion using rplgdtunbounded overlapping chunks,”
in Proceedings of Conference on New Methods in Natural LangrRmgcessing (NeMLaP)
Ankara, Turkey, 1996, pp. 218-228.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 146

REFERENCES

[37] R.l. Damper and J.F.G. Eastmond, “Pronunciation bylaga impact of implementational
choices on performancel’anguage and Speectol. 40, pp. 1-23, 1997.

[38] Y. Marchand and R.l. Damper, “A multi-strategy appdrac improving pronunciation by anal-
ogy,” Computational Linguistigsvol. 26, pp. 195-219, 2000.

[39] R. Luk and R. Damper, “Stochastic phonographic trantda for English,” Computer Speech
and Languaggevol. 10, pp. 133-153, 1996.

[40] C.X. Ma and M.A. Randolph, “An approach to automatic pétic baseform generation based
on bayesian networks,” iRroceedings of Eurospeechalborg, Denmark, September 2001, pp.
1453-1456.

[41] V. Hoste, W. Daelemans, E.T.K. Sang, and S. Gillis, “dtarning for phonemic annotation of
corpora,” inProceedings of the International Conference on Machinerhieg (ICML-2000)
Stanford University, USA, 2000.

[42] T. Mark Ellison, The machine learning of phonological structureh.D. thesis, University of
Western Australia, 1992.

[43] Gary Tajchman, Eric Fosler, and Daniel Jurafsky, “Biri multiple pronunciation models
for novel words using exploratory computational phonology Proceedings of Eurospeech
Madrid, Spain, September 1995.

[44] Walter Daelemans, Steven Gillis, and Gert Durieux, &Htquisition of stress: a data-oriented
approach,”"Computational Linguistigsvol. 208, pp. 421-451, 1994.

[45] Ove Andersen and Paul Dalsgaard, “Multi-lingual tegtiof a self-learning approach to
phoneme transcription of orthography,” Btoceedings of EurospeedMadrid, Spain, Septem-
ber 1995.

[46] M.J. Dedina and H.C. Nusbaum, “PRONOUNCE: A programgasnunciation by analogy,”
Computer Speech and Languagel. 5, pp. 55-64, 1991.

[47] F. Yvon, “Self-learning techniques for grapheme-tmpeme conversion,” 1994ht t p: //
citeseer.ist.psu.edu/yvon94sel fl earning. htm .

[48] D.W. Aha, D. Kibler, and M.K. Albert, “Instance-Basecearning algorithms,Machine Learn-
ing, vol. 6, pp. 43766, 1991.

[49] W. Daelemeans, A. van den Bosch, and T. Weijters, “I@Tgsing trees for compression and
classification in lazy learning algorithmsAtrtificial Intelligence Revieywol. 11, pp. 407-423,
1997.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 147

REFERENCES

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

T. Kohonen, “Dynamically expanding context, with ajgption to the correction of symbol
strings in the recognition of speech,” Rroceedings of the 8th International Conference on
Pattern Recognition (8th ICPRIParis, France, Oct 1986, pp. 1148-1151.

Timothy Baldwin and Hozumi Tanaka, “A comparative studf unsupervised grapheme-
phoneme alignment methohds,” Tihe 22nd Annual Meeting of the Cognitive Science Society
(CogSci2000Philadelphia, 2000, pp. 597-602.

V. Pagel, K. Lenzo, and A. Black, “Letter to sound rules &ccented lexicon compressoin,”
in International Conference on Spoken Language Process®8L(P) Sidney, Australia, 1998,
vol. 5, pp. 2015-2018.

P. Dalsgaard, O. Andersen, and A.V. Hanser, “Theory a@mplication of two approaches to
grapheme-to-phoneme conversion,” Tech. Rep., ONOMASTp&Aect, May 1995.

O. Andersen and P. Dalsgaard, “Multilingual testingao$elf-learning approach to phonemic
transcription of orthography,” iRProceedings of Eurospeechladrid, Spain, September 1995,
vol. 2, pp. 1117-1120.

A.J. Viterbi, “Error bounds for convolutional codescha asymptotically optimum decoding
algorithm,” IEEE Transactions on Information Theomol. 13, pp. 260-269, 1967.

C. Schillo, G.A. Fink, and F. Kummert, “Grapheme basetbgnition for large vocabularies,” in
Proceedings of the International Conference on Spoken wageg Processing (ICSLPBeijing,
China, October 2000, pp. 129-132.

Stephen Kanthak and Hermann Ney, “Context-dependemisiic modelling using graphemes
for large vocabulary speech recognition,” Fmoceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASS#ando,Florida, 2002, pp. 845-848.

Mirjam Killer, “Grapheme based speech recognitiongcfi. Rep., Interactive Systems Labo-
ratory: Carnegie Mellon University / Swiss Federal Ingétof Technology, Pittsburgh, USA,
March 2003.

M.A. Hearst, “Noun homograph disambiguation,”Rmoceedings of the 7th Annual Conference
of the University of Waterloo Centre for the New OED and Teegdrch Oxford, 1991, pp.
1-19.

D. Yarowsky, “Unsupervised word sense disambiguatiealing supervised methods,” iCL-
95, Cambridge, 1995, pp. 88-95.

B. Efron, “Bootstrap methods: another look at the jatikl” The Annals of Statisticyol. 7,
pp. 1-26, 1979.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 148

REFERENCES

[62] T. Schultz and A. Waibel, “Polyphone decision tree spieation for language adaptation,”
in Proceedings of the International Conference on Acoustgech and Signal Processing
(ICASSP)Istanbul, Turkey, June 2000, vol. 3, pp. 1707-1710.

[63] Alberto Lavelli, Bernardo Magnini, and Fabrizio Setiasi, “Building thematic lexical re-
sources by bootstrapping and machine learningPrizceedings of the LREC Workshop on Lin-
guistic Knowledge Acquisition and Representation: Boapgiing Annotated Language Data
Las Palmas, Spain, 2002.

[64] Pedro J. Moreno, Chris Joerg, Jean-Manuel van ThordyQaan Glickman, “A recursive algo-
rithm for the forced alignment of very long audio segmenits Proceedings of the International
Conference on Spoken Language Processing (ICSL998.

[65] I. Aldezabal, K Gojemola, and K. Sarasola, “A bootspimg approach to parser development,”
in Proceedings of the International Workshop on Parsing Tetdgies (IWPT) Trento, 2000.

[66] Sebastian Stuker, “Automatic creation of pronunoiatdictionaries,” Tech. Rep., Interac-
tive Systems Laboratory: Carnegie Mellon University / UWmaitat Karlsruhe, Pittsburgh, USA,
April 2002.

[67] Alan W. Black and Kevin A. Lenzo, “Building synthetic ia@s,” Tech. Rep., Language Tech-
nology Institute, Carnegie Mellon University, PittsburddSA, January 2003.

[68] S. Maskey, L. Tomokiyo, and A.Black, “Bootstrappingqgutetic lexicons for new languages,”
in Proceedings of Interspeecheju, Korea, October 2004, pp. 69-72.

[69] David Cohen, Zoubin Ghahramani, and Michael Jordargtit& learning with statistical mod-
els,” Journal of Artificial Intelligence Researchol. 4, pp. 129-145, 1990.

[70] Matthias Seeger, “Learning with labeled and unlabelath,” Tech. Rep., Institute for Adaptive
and Neural Computation, University of Edinburgh, Edinttyrdecember 19 2002.

[71] Richard Sproat, Branimir Boquraev, Steven Bird, Domdie, Martin Kay, David McDonald,
Hans Uszkoreit, and Yorick WilksA Computational Theory of Writing SystemSambridge
University Press, Cambridge, 2000.

[72] M. Davel, “DictionaryMaker v1.0 manual,” Tech. Rep.S(R, Pretoria, South Africa, 2004.

[73] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M.Zbocki, “The DET curve in
assessment of detection task performance,’Piioceedings of the European Conference on
Speech Communication and Technolat§97, pp. 1895-1898.

[74] A. Black, P. Taylor, and R. Caley, “The festival speegimthesis system,” 1999,ht t p:
|/ festvox.org/festival/.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 149

REFERENCES

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

“Local language speech technology initiative (LLSTL) April 2005, ht t p: / / www. | | sti .
org.

M. Davel and E. Barnard, “LLSTI isiZulu TTS project repd Tech. Rep., CSIR, Pretoria,
South Africa, November 2004.

J.A. Louw, M. Davel, and E. Barnard, “A general purposi€ilu TTS system,” irBouth African
Journal of African Languages (submitted for publicatioR{05.

M. Davel and E. Barnard, “LLSTI isiZulu TTS evaluatiogport,” Tech. Rep., CSIR, Pretoria,
South Africa, September 2004.

S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchand P. Woodland, “The htk book.
revised for htk version 3.0,” July 2000t t p: / / ht k. eng. cam ac. uk/ .

Tebogo M. Modiba, “Aspects of automatic speech rectigmiwith respect to Northern Sotho,”
M.S. thesis, University of the North, South Africa, 2004.

“The openphone project,” 1 April 20051t t p: / / www. mer aka. org. za/ hl t/.

M. Davel and E. Barnard, “Bootstrapping for languagsotece generation,” iRroceedings of
the Symposium of the Pattern Recognition Association ahS¥ftica, South Africa, 2003, pp.
97-100.

M. Davel and E. Barnard, “The efficient creation of praiaation dictionaries: human factors
in bootstrapping,” irProceedings of Interspeecheju, Korea, October 2004, pp. 2797-2800.

M. Davel and E. Barnard, “The efficient creation of praniation dictionaries: machine learn-
ing factors in bootstrapping,” ifProceedings of Interspeeclieju, Korea, October 2004, pp.
2781-2784.

M. Davel and E.Barnard, “A default-and-refinement aggmh to pronunciation prediction,” in
Proceedings of the Symposium of the Pattern Recognitioacikd®n of South AfricaSouth
Africa, November 2004, pp. 119-123.

M. Davel and E. Barnard, “Bootstrapping pronunciatidictionaries: practical issues,” in
Proceedings of Interspeech (accepted for publicatitugboa, Portugal, September 2005.

J. S. Garofolo, Lori F. Lamel, W. M. Fisher, J. G. Fiscils, S. Pallett, and N. L. Dahlgren,
“The DARPA TIMIT acoustic-phonetic continuous speech ¢@pNIST order number PB91-
100354,” February 1993.

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 150

