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Abstract
An investigation into the performance of current speaker
verification technology within a multilingual context
is presented. Using the Oregon Graduate Insti-
tute (OGI) Multi-Language Telephone Speech Corpus
(MLTS) database, we found that the performance of text-
independent speaker verification depends fairly strongly
on the language being spoken, with equal error rates dif-
fering by more than a factor of three between the best
and worst performing languages. It was also found that
training language-specific universal background mod-
els, to normalize speakers’ scores, gives better results
than both language-independent background models and
background models derived from relevant language fam-
ilies.

1. Introduction
A speaker verification system needs to determine whether
or not a person is indeed who he or she claims to be,
based on one or more spoken utterances produced by that
individual [1]. A security system based on this ability
has great potential in several domains - it is, for example,
ideally suited for telecommunications applications since
it is non-intrusive, fast, and usable with normal land-line
or cellular telephones.

Two forms of speaker verification are typically dis-
tinguished, namely text-dependent and text-independent
verification [2]. In a text-dependent setup, a predeter-
mined group of words or sentences are used to enroll a
set of speakers, and these words or sentences are then
used to verify the speakers [1]. In a text-independent
system, no constraint is placed on what can be said by
the speaker. Text-dependent systems are typically used
in combination with pass phrases or personal identifica-
tion numbers in an explicit verification protocol, whereas
text-independent systems generally operate in the back-
ground, performing implicit verification while the user
is performing other tasks (e.g. talking to an agent or a
speech-recognition system). In the current paper, we fo-
cus our attention on text-independent verification.

The most popular modelling approach for text-
independent systems employs Gaussian mixture models
(GMMs) to model the probability densities of acoustic

vectors produced by a speaker. This semi-parametric
modelling method can represent an arbitrary probabil-
ity density [3], and can efficiently be calculated and up-
dated as additional data becomes available. In addi-
tion, no language-specific information is required for this
process; hence, multilingual speaker verification is rel-
atively straightforward compared to the complexities of
other multilingual speech-processing systems. An adap-
tive speaker training method proposed by Reynolds et al.,
(referred to as a coupled training scheme, since a specific
model is adapted from another model) has been shown to
outperform a decoupled training method, in which each
speaker’s model is trained independently [3]. In the cou-
pled training scheme, a speaker’s model is obtained by
adapting a combination of parameters from a universal
background model (UBM). A UBM is a GMM trained
with a combination of speakers from either the same
database as the test population, or a different database.
The adaptation of the UBM parameters is determined by
the speaker’s data [3] – thus, speaker specific models are
created.

In a speaker verification system a threshold (usually
a log-likelihood score) is used to either accept or re-
ject a speaker. The value of the threshold can be deter-
mined using extra data collected from the speaker dur-
ing the enrollment phase and can be altered during appli-
cation of the system, to more closely represent the op-
timal threshold value of a specific speaker, throughout
the use of the system. To improve a verification system’s
performance, [4] proposed that the log-likelihood score,
which results from applying a test utterance to a speaker’s
model, should be normalized. This is achieved by using
a score generated from a subsidiary model, known as the
cohort speaker model. A cohort is a selection of speak-
ers whose voice characteristics closely match the target
speaker. The cohort model is trained using the selected
group’s training data. It was found in [4] that as the co-
hort size increased so did the performance of the verifica-
tion system.

To date, a large majority of speaker verification sys-
tems have been operated in a single-language environ-
ment. For use in a highly multilingual context (such
as South Africa, India, and much of the developing
world), the effect of multiple languages on state-of-the-



art speaker verification systems needs to be investigated.
This paper investigates two important issues in multilin-
gual speaker verification, namely

• the dependence of text-independent speaker-
verification accuracy on the language spoken, and

• the design of an appropriate UBM for multilin-
gual speaker verification; in particular, whether it is
preferable to pool speech from different languages
in creating such a model.

The remainder of the paper is organized as follows: sec-
tion 2 describes the OGI database, section 3 details the
verification system, section 4 outlines the experimental
setup, data used in the experiments and results obtained.
Finally, section 5 discusses the results obtained, and pro-
poses refinements and extensions of this research.

2. MLTS Database
The OGI [5] multi-language telephone speech corpus was
used in all our experiments. The data present in the
database is telephone quality speech sampled at 8000
Hz. The database consists of speech in eleven lan-
guages, namely English, French, Farsi, Hindi, German,
Japanese, Korean, Mandarin, Tamil, Spanish and Viet-
namese [6]. With the collection of data, each partici-
pant was prompted for fixed, region-specific and uncon-
strained vocabulary speech.

In the fixed vocabulary section, speakers were asked
their native language (3s), language spoken most of
the time (3s), the days of the week (8s) and numbers
zero through ten (10s). Next, in the region-specific
section speakers were asked for hometown preferences
(10s), hometown climate (10s), occupied room descrip-
tion (12s) and a description of the their most recent meal
(10s). Finally, in the unconstrained section each speaker
was prompted to talk for one minute on a topic of their
choice. This minute of speech was then separated into a
fifty and ten second portion. The minute of free speech
was not just split into the two portions, as the speakers
were warned that the fifty second interval is up and that
they must bring their speech to a coherent end [6].

It must be noted that the database is incomplete
since many of the individual speakers have missing data
recordings.

3. The verification system
The speech signal processing and feature extraction were
performed with the HCopy program available as part of
the Hidden Markov Model automatic speech recognition
toolkit (HTK) [7], and reasonable parameters were cho-
sen based on a combination of experimentation and sug-
gestions in the published literature. A 36 dimensional
feature vector was used, made up of 18 mel-frequency

cepstral coefficients and their first-order derivatives. The
first-order derivatives were approximated over the three
previous and successive samples. The coefficients were
extracted from a 20-ms frame of speech every 10-ms,
with no liftering applied to the resulting coefficients. The
filter bank used in deriving the cepstral coefficients con-
sisted of 20 triangular filters and was constrained to a fre-
quency band of 300-3400 Hz. No linear or non-linear
channel compensation techniques were applied to the
speech signal or resulting coefficients.

The Gaussian mixture model used for both the UBM
and speaker model consisted of 512 mixtures and diag-
onal covariance matrices. The procedure to create the
UBM model was to train the speaker models using the
speaker’s data with the expectation-maximization (EM)
algorithm and then to find the average of all these models.
The speaker models were created from the UBM model
by adapting the mean vectors only and using a relevance
factor of 16 (based on results in [3]).

4. Experiments

We first selected a set of languages that were suitable for
our cross-language experiments: as mentioned above, the
MLTS database is incomplete in that some of the phone
records are missing or extremely brief for certain speak-
ers. Therefore, the first task was to find all speakers who
had produced a set of preselected recordings. The fifty
second free speech recording was chosen for training the
speaker models; the remaining ten second free speech
segment was used for testing, while the ten second home-
town climate recordings were used for determining the
speaker’s threshold scores.

Additionally, it was observed that the two shorter
recordings chosen for our experiments, which are each
nominally 10 seconds in duration, were actually much
shorter for many speakers; thus, further speakers were re-
moved from the database when a minimum duration limit
of five seconds for each recording was not met. Eventu-
ally, a total of 370 speakers remained in the experimental
database. The different languages and speaker numbers
that made up the experiment database are summarized in
Table 1.

As can be seen in Table 1 the Farsi, Hindi, Korean
and Vietnamese languages were removed from the exper-
iment since an insufficient number of speakers remained
in each of these languages.

The training termination criteria for both the EM
and adaptive training algorithms were chosen as follows:
when the value of the log-likelihood score went below
10% of the previous score’s value or if 30 training itera-
tions were reached, training was terminated.



Language Female Male
English 30 76
French 9 26
German 23 33
Japanese 16 30
Mandarin 15 20
Spanish 13 38
Tamil 5 36

Table 1: Languages from OGI MLTS that were used for
cross-language experiments, and the number of speakers
(female and male) per language.

4.1. Experiment 1

For the first experiment, both language-specific UBMs
and all-language UBMs were trained and used to normal-
ize individual speakers’ scores. The plots in figure 1 show
the DET curves [8] obtained for the seven languages in
our corpus; the legend indicates the language tested and
the language(s) used to train the UBM. The keyword “en-
tire” means that all the language data was used to train the
UBM, and the Spanish results are repeated in all three
graphs in order to provide a basis for comparison.

As can be seen in figure 1, the plots are somewhat
irregular, as is to be expected from the limited number of
test speakers per language. Spanish and Tamil were the
best performing languages, with equal error rates around
3%. For French, in contrast, the measured equal error rate
was almost 10%, and for German around 8%.

The other salient fact in these figures is that all lan-
guages, with the exception of Tamil, perform better when
a language-specific UBM is employed. This phenomenon
was explored in further detail in Experiment 2.

4.2. Experiment 2

In this experiment, we wanted to see whether UBMs in-
termediate to both the language-specific and language-
independent models could be found with better perfor-
mance than either. Thus, two “language-group” UBMs
were trained, namely a Germanic UBM (using English
and German data), and a Romance UBM (using French
and Spanish data). The two UBMs that resulted were
then used to normalize the languages involved in their
creation.

In both figures 2 and 3, the DET curves indicate that
the Germanic and Romance UBMs were a better choice
over the UBM trained with all the data. The Germanic
and Romance UBMs show comparable results in compar-
ison with the same-language UBM, but are consistently
somewhat inferior.
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Figure 1: The DET curves for different languages using
various UBMs. The UBMs were either trained with data
from the target language, or with the entire database (EN-
TIRE).
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Figure 2: DET curves for French and Spanish languages
using different UBMs. The UBMs were trained with a
specific language’s data, with the entire database (EN-
TIRE) or the Romance language-group data.
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Figure 3: DET curves for English and German languages
using different UBMs.The UBMs were trained with a
specific language’s data, with the entire database (EN-
TIRE) or the Germanic language-group data.

5. Conclusion
We find substantial differences in the speaker-verification
accuracies obtained with different languages. These dif-
ferences do not correlate with the number of training
speakers or the total duration of available speech, which
suggests that these are real inter-language differences.
The existence of such differences is not unexpected in
light of the differences in phonetic content, phonotactic
constraints, speaking rhythms, etc. that exist amongst the
different languages. However, the magnitude of the ob-
served language differences is quite surprising.

It is also consistently seen that language-specific

UBMs lead to improved verification over more general
background models (i.e. those trained with data within
a language family, or across all data). This is interesting
in light of the fact that fairly limited training data was
available, so that language-independent UBMs may have
been expected to benefit from the additional training data.
We therefore expect that this benefit of language-specific
UBMs will be even more pronounced in the presence of
larger training corpora.

All of the experiments in this paper were carried out
with the OGI MLTS corpus, which was originally not de-
signed for the purpose of speaker verification. It would be
interesting to repeat these measurements on other corpora
with larger numbers of speakers per language, in order to
assess how robust these results are. It would also be inter-
esting to systematically investigate other language fami-
lies, and to understand the factors that determine speaker-
verification accuracy in a given language.
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