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Abstract
In this paper we describe a new approach to rewrite rule extrac-
tion and analysis, usingMinimal Representation Graphs. This
approach provides a mechanism for obtaining the smallest pos-
sible rule set – within a context-dependent rewrite rule formal-
ism – that describes a set of discrete training data completely,
as an indirect approach to obtaining optimal accuracy on an un-
seen test set. We demonstrate the application of this technique
for a pronunciation prediction task.

1. Introduction
Occam’s razor has been an extremely useful heuristic in pattern
recognition: to control the trade-off between bias and variance,
it is generally useful to select the smallest model that satisfies
some accuracy criterion on a training set. In this contribution,
we propose a novel approach to applying this principle in the
context of rewrite rules.

Many pattern recognition tasks are suited to analysis within
a context-dependent rewrite rule framework – for example,
pronunciation prediction which attempts to predict the associ-
ated phoneme string, given the written form of a word. Vari-
ous machine learning algorithms have been applied to the ex-
traction of rewrite rules. For pronunciation prediction, pre-
vious approaches include decision trees [1], pronunciation-
by-analogy models [2], transformation-based learning [3] and
instance-based learning algorithms such as Dynamically Ex-
panding Context (DEC) [4], IB1-IG [5] and Default&Refine [6].

In [6] it was observed that if a rule set provides complete
recovery of a training set1, then the smaller the rule set, the
better it generalises on an unseen test set; a typical appearance
of Occam’s razor in pattern recognition. We therefore define an
approach that will obtain the smallest possible rule set (within a
rewrite rule formalism) that describes a set of discrete training
data completely, as an indirect approach to obtaining optimal
accuracy on an unseen test set.

The remainder of this paper is structured as follows: in sec-
tion 2 we describe the rationale for our approach, in section 3
we describe the implemented algorithm and initial results ob-
tained, and in section 4 we discuss further work.

2. Approach
The above-mentioned task can be described more explicitly us-
ing a typical rewrite rule formalism: Define each rule as the
mapping of a single feature (here grapheme2) to a single class

1The rule set obtains 100% predictive accuracy when tested on the
exact training data.

2While this approach is more widely applicable, we use a concrete
example from pronunciation prediction to illustrate the various con-
cepts.

(here phoneme) using the format:

x1..xm − g − y1..yn → p (1)

Hereg indicates the focal grapheme,xi andyj the graphemic
context, andp the phonemic realisation of the graphemeg. The
rule set is accompanied by an explicit rule application order. A
pronunciation prediction for any specific word is generated one
focal grapheme at a time, by applying the first matching rule
found when searching through the rule set according to the rule
application order.

In order to analyse the options available when attempting
to extract the smallest possible rule set given the above restric-
tions, we define a framework that relies on four main observa-
tions: (1) If, for every training word, we extract all the sub-
patterns of that word (as illustrated in Table 1), we obtain a list
of all the rules that can possibly be extracted from the train-
ing data. Some of these rules will conflict with one another
with regard to phonemic outcome, and we refer to these rules
as conflictedrules. By choosing any subset of the full set of
rules (referred to further as the setZ), and assigning a specific
outcome to each rule, all possible rule sets can be generated,
whether accurate in predicting the training data, or not.

(2)The full set of possible rulesZ cannot occur in any or-
der. It is possible to restrict the allowable orderings between any
two rules for two reasons: (a) if one rule is more specific than
another, the first rule must occur earlier in the rule set than the
second in any minimal rule set. If not, the second (more gen-
eral) rule will always be invoked when predicting a word that
applies to both rules, and the first rule will be redundant (which
is impossible if the rule set is minimal); and (b) if two rules
are applicable to the same word in the training data but conflict
with regard to outcome. For such rules the words shared in the
possible wordssets of each rule dictate the orderings that are
valid.

(3)During rule prediction, the relative rule application or-
der of two rules that occur in an extracted rule set is only of
importance if the two rules conflict with regard to outcome, and
if both can apply to a single word. No other rule orderings are
relevant. During rule extraction, the order in which two rules

Table 1: The relationship between a word and its sub-pattern
rules.

Example grapheme e to phoneme E
in word ’test’

Word pattern #t-e-st#→ E
Sub-patterns -e-→ E,-e-s→ E,t-e-→ E

t-e-s→ E, t-e-st→ E, #t-e-s→ E
-e-st#→ E, #t-e-st→ E
t-e-st#→ E,#t-e-st#→ E



Figure 1:An example rule graph, corresponding to the word patterns in Table 2

occur in an interim rule set is only of importance if both can
apply to a single word in the training data, and that word has
not yet been ‘caught’ by any required rule occurring earlier in
the rule set. For each rule, we refer to the latter set of words as
thepossible wordsassociated with that rule.

(4) If all the orderings among the full set of possible rulesZ
that may be required by a subset ofZ to be accurate in predict-
ing the training data can be defined, then it becomes possible
to construct a rule graph of the full rule set according to all the
orderings possible, and to define appropriate operations that can
manipulate this rule graph in well defined ways. During graph
manipulation, specific outcomes can be assigned to rules and
rules identified asrequired or superfluous. Superfluous rules
can consequently be deleted, until only a minimalMinimal Rep-
resentation Graphis retained, which corresponds to a minimal
rule set.

Using the above observations, we can analyse a set of train-
ing data in order to understand the interdependencies among
words in the training data, and the options for extracting a min-
imal rule set.

3. Implementation
We illustrate the above approach using a simple 3-word exam-
ple, consisting of the words ‘test’,‘tea’ and ’west’ and consider
the steps required to extract a rule set for the letter ‘e’. As the
software that we developed to implement this approach uses a
single character representation of each grapheme and phoneme,
we do the same in this example.

Prior to rule extraction, aword patternis generated from
each aligned word-pronunciation pair in the training data, as
shown in Table 2. Hashes denote word boundaries. For each of
the word patterns, we generate a set of sub-patterns (as listed in
Table 1 for the word pattern #t-e-st#→ e). These sub-patterns
are arranged in a graph structure according to specificity, with

Table 2: Word patterns associated with the words ‘test’,‘west’
and ‘west’.

aligned ARPAbet
example

single character
representation

Words t e s t→ t eh s t t e s t→ t e s t
w e s t→ wh eh s t w e s t→ w e s t
t e a→ t iy φ t e a→ t i φ

Word
patterns

#t-e-st#→ eh #t-e-st#→ e

#w-e-st#→ eh #w-e-st#→ e
#t-e-a#→ iy #t-e-a#→ i

the more general rules later in the graph (closer to the root), and
more specialised rule earlier (higher up in the graph). Initially,
an ordering is only added between two rules where the context
of one rule contains the context of another, and we refer to these
orderings ascontain patternrelationships. A topological sort of
this graph will result in a rule set that is accurate, but contains a
large number of superfluous rules. From the outset, the process
assumes that any of the rules may be deleted in future. As it
becomes clear that certain rules are required in order to retain
accuracy over the training data (irrespective of further allowed
changes to the rule set), these rules are marked asrequiredrules.

This initialisation process is illustrated in Fig. 1. Word
nodes (one per word pattern) are indicated in green. Clear nodes
indicate rule nodes that can only predict a single outcome. For
these nodes, different coloured outlines indicate different out-
comes. Orange nodes are associated with more than one pos-
sible outcome: different choices with regard to outcome will
result in different rule sets. Black edges indicate that an order-
ing between two rules is required, irrespective of further rule
graph manipulation. In the initial graph these edges represent
contain patternrelationships. Currently no rules are marked as



Figure 2: Adding super complements to the rule graph of Fig.
1. (Minimal complements are not shown.)

required; if there were, these would be marked in yellow.
Orderings are transitive. If all the orderings implied by the

current set of edges are considered, then the only additional or-
derings that can possibly occur in the full rule set are between
rules that share a word in their respectivepossible wordssets,
and have not already been assigned a fixed ordering. We refer
to these rules asminimal complements. Theseminimal comple-
mentrelationships are added and utilised during rule extraction.
We do not indicate them explicitly on all the graphs used to
illustrate the current example, as the addition of minimal com-
plement relationships results in visually complex graphs. For
example, the rule ‘-e-st’ in Fig. 1 has eight minimal comple-
ments: ‘#t-e-’, ‘#t-e-s’, ‘t-e-s’, ‘t-e-’, ‘#w-e-’, ‘w-e-’, ‘w-e-s’
and ‘#w-e-s’. In figures where these relationships are indicated,
they are marked as orange edges.

Note that the minimal complements associated with any
ruler can only occur in a restricted range: the context of the ear-
liest rule may not contain ruler, and the context of the latest rule
may not be contained byr itself. As this range is restricted, the
number of additional orderings that may be required is similarly
restricted. Each additional minimal complement pair added to
the graph introduces two possible orderings. This increases the
number of options to consider when making any single decision
(whether to resolve a conflicted node to a single outcome, or
whether a specific rule is required or can be deleted.) We would
like to remove as many of the ‘double orderings’ as possible,
and replace these with orderings that indicate a single direction.
In some cases additional information is available to choose one
of the orderings and discard the other without restricting further
graph manipulation options:

(1) If the possible words associated with a ruler is a subset
of the possible words of a second rules, ruler must always oc-
cur earlier in the rule extraction order thans. The reasoning is
similar to that followed when adding the initial contain pattern

orderings, but now holds for minimal complements that are not
necessarily in a contain pattern relationship. We refer to these
relationships assuper complements. While contain pattern rela-
tionships can be added to the graph from the outset,super com-
plementsemerge as the rule set extraction process progresses.
As more rules are marked asrequired, the possible words sets
of later rules decrease, and super complement relationships start
to emerge. Once an ordering is added between two super com-
plements, this relationship is not changed at a later stage during
rule manipulation3

Figure 3: Removing unnecessary edges from the rule graph of
Fig. 2. (Minimal complements are not shown.)

(2) If a rule r predicts a single outcome, and accurately
matches all the words in the intersection of the possible words
of rule r and the possible words of another rules, and there is
at least one word in this set thats will predict incorrectly given
any of its allowed outcomes, then ruler has to occur before
rule s for the rule set to be accurate. We refer to these rela-
tionships asorder requiredrelationships. If neither of the two
rules matches the full set of shared words, the relationship is
still inconclusive. As with super complement relationships, or-
der required relationships also emerge as the rule set extraction
process progresses. In Fig. 2 we identify and add additional su-
per complement relationships. The current rule graph does not

3As more rules are marked as required, the possible words sets of all
other rules become smaller. If a set of possible words associated with a
rule r is the subset of the possible words associated with a rules, this
relationship will be maintained unless both sets become equal. In the
latter case, one of the two rules is redundant and will be deleted during
rule extraction, as discussed later. Since eitherr or s will be deleted,
the ordering between these two rules become insignificant, and the prior
ordering based on their previous super complement relationship may be
retained without restricting the options for manipulating the rule graph.



Figure 4: Removing unnecessary rules from the rule graph of
Fig. 3.(Minimal complements are not shown.)

have any order required relationships among nodes.
Since orderings are transitive, we can remove any definite

orderings that are already implied by others. For example, in
Fig. 2 the relationship between rules ‘t-e-st’ and ‘#t-e- is al-
ready implied by the relationships between rules ‘t-e-st’ and
‘t-e-s’, and between rules ‘t-e-s’ and ‘#t-e-’. Such redundant
edges can be removed without losing any information currently
captured in the rule graph. This process is illustrated in Fig. 3.
Note how the relationships become simpler and the graph more
loosely connected from Fig. 1 to Fig. 3.

If we have added all the necessary orderings (caused by
contain pattern, super complement or order required relation-
ships) and we keep track of all minimal complement relation-
ships that still have an uncertain ordering, we now have a rule
graph that both contains all possible rules, and specifies all pos-
sible orderings that may be required to define a valid rule appli-
cation order. We can now use this rule graph as basis to make
decisions about which outcome to select where a rule is con-
flicted (has more than one outcome), or even decide when a
rule can be deleted or not.

Rules are eliminated by deleting redundant rules, identify-
ing required rules and resolving conflict rules via a small set of
allowed operations. Thestate of rule extraction can always be
described by a triple consisting of the possible rules that can be
included in the rule set (Z′), the rules that have been marked as
required (Ze), and the orderings that are definite (oset(Z′), the
black edges in the graph). Additional orderings that are possible
can automatically be generated from such a state. Each allowed
operation changes the state of rule extraction, from oneallowed
stateto another, with the initial allowed state as depicted in Fig.
1.

One example of such an allowed deletion operation can be
illustrated as follows: The rule graph in Fig. 3 clearly contains a
number of superfluous rules. Whenever a ruler exists such that
(1) it is not conflicted, and (2) all the possible words associated
with ruler can be caught by one or more immediate successors
that agree with ruler with regard to outcome, and (3) ruler
does not have any immediate successors that can potentially dis-
agree with regard to outcome, then ruler can safely be deleted

from the rule graph. All rules that meet these conditions, can be
deleted from the rule graph, as illustrated in Fig. 4. Since the
rule graph is now significantly simpler, we start displaying the
remaining minimal complements from Fig. 5 onwards.

Figure 5: Removing unnecessary rules from the rule graph of
Fig. 3.(Minimal complements are shown.)

Where the possible words associated with ruler are exactly
the same as the possible words of any one of its successorss,
rule r and rules are deemedrule variants. Either of two rule
variants can be generated at the same point in the rule extraction
order, without influencing the number of rules in the final rule
set. The process keeps track of all deleted rules that are variants
of retained rules. In this way, while a rule node is physically
deleted, the rules are in effect merged, and either of the two
rules may be utilised in the final rule set, as discussed later.

Additional deletion operations identify rules that have an
empty set of possible words, and rules that are true variants of
another, that is, two rules that are both resolved to a single out-
come, and have identical relationships with identical predeces-
sors and successors. While these deletion operations create a
rule graph that is significantly simpler, we have not yet made
any decisions with regard to the best choice of outcome for any
of the conflicted nodes. Prior to rule resolution, we first identify
any ruler assinglewhere – given the current state of rule ex-
traction – at least one word can only be predicted by either rule
r or by another rule directly in the path ofr. In the remaining
figures, these single rules are marked ‘*S’.

There are various conditions under which a conflicted rule
can be resolved, one of which we illustrate here. Conflicted
nodes can be thought of as ‘default’ or ‘fallback’ nodes. During
pronunciation prediction, a fallback node will only be invoked
if a more specialised rule is not available that matches the word
being predicted. These nodes therefore only need to be retained
if, in some way or another, the rule can generalise from its im-
mediate predecessors. This requires that at least two predeces-
sors should predict a similar outcome. If this is not the case,
the fallback node does not provide any further advantage, and
can be removed from the rule graph without constraining the



Figure 6:Resolving conflicted rule ‘t-e-’.

Figure 7:Resolving conflicted rule ‘#t-e-’.

rule set in a way that does not allow final minimisation4. This
process is illustrated in Fig. 6 and Fig. 7.

Note that in Fig. 7, none of the minimal complement rela-
tionships have been retained. Additional resolution operations
analyse the definite and possible predecessors and select a spe-
cific outcome based on this analysis. When resolving a con-
flicted rule to a specific outcome, it is required that at least one
of the predecessors that has an outcome that matches the out-
come selected for resolution must be marked as asingle rule.
If such a single rule exists, this implies that some rule with the
selected outcome will be generated at this point in the rule ex-
traction order. While there is not certainty that such a rule is
required, the conflicted rule may not yet be resolved. Apply-
ing the same deletion operator discussed earlier, three additional
rule nodes can be deleted, as illustrated in Fig. 8.

4This does not apply to the root node, which maps the context-free
grapheme to a phoneme. The root node is handled as a special case, as
discussed below.

Figure 8:Removing unnecessary rules ‘-e-st’, ‘-e-st#’ and ‘t-
e-s’.

Figure 9:Resolving conflicted rule ‘-e-’.

If the resolution operator discussed previously were to be
applied to the root node, the rule set would remain valid. How-
ever, this would result in the root node being deleted, and it
is easier in practise to manipulate the graph assuming a sin-
gle root node. Also, we would like to generate some ‘default
rule’ that can be used to predict any word pattern not previously
seen. Therefore the root node is always resolved to a single out-
come, once all its predecessors are resolved (and not deleted, as
would be the case if the standard resolution operator were ap-
plied). Resolving the root node to a single outcome when stan-
dard application of a deletion operator indicated that it should
have been deleted, is similar to choosing one variant of a rule
above another variant of the same rule. As all variants are re-
tained during rule extraction, and the final choice with regard
to which variant to select is postponed until after graph min-
imisation, manipulating the root node as a special case does not
restrict the rule extraction process in any way. In Fig. 9 the root
node is resolved to one of its possible outcomes.

If for at least one word patternw in the possible words set of
a ruler, there exists no other rule than can possibly predict word
patternw correctly, given the current state of rule extraction
(the remaining rule set, the required rule set and the decided
orderings); then ruler is arequired rule and can be marked as
such. When a rule is identified as a required rule, all words in
the possible words set of ruler are removed from the possible
words sets of rules occurring later in the rule graph. In Fig
10 two rules are marked as required, with a yellow colouring.
One final deletion (using the standard deletion operator) and the
minimal rule set is obtained, as depicted in Fig. 11.

The rule set that can now be extracted from the rule graph
by performing a topological graph traversal. This results in the
rule set listed in Table 3. For each extracted rule, a number
of possible variants are listed. A rule can be replaced by any
of its variants without affecting the accuracy of the rule set, or
requiring the inclusion of additional rules. Note that for any
single word that gives rise to a single rule (such as the word
pattern #t-e-a# in this example), all word sub-patterns that have



Figure 10:Identifying required rules ‘-e-a’ and ‘-e-’.

Figure 11:The final (minimal) rule graph.

not been identified as currently part of the rule set are included
as variants.

Table 3:The final rule set generated from the words in Table 2,
including possible variants.
Rule number Extracted rule Possible variants

1 -e-a→ i #t-e-a #t-e-a# -e-a# t-e-a# t-e-a
2 -e-→ e -e-st# -e-s -e-st

At this stage, heuristic choices related to characteristics
such as rule context size, rule context symmetry, or variance
with regard to the training data can be utilised to choose the
most appropriate rule set. In larger rule sets, many rules do not
have variants, but a relatively large proportion of rules retain
at least one variant. The ability to make heuristic choices late
in the rule extraction process, provides significant flexibility in
obtaining the appropriate rule set.

The algorithm was implemented inPerl and results were
compared to similar rule sets extracted usingDefault&Refine,
the most compact rule set generator tested previously [6]. The
initial prototype allowed us to test the theoretical concept on
small data sets, but became computationally slow when dealing
with larger problems. For such small data sets (20-40 words)
smaller rule sets (than extracted usingDefault&Refine) that still
provide100% training data recovery were obtained. However,
for real-world problems, the current solution process becomes
computationally intractable. Further research currently focuses
on increasing the computational tractability of the algorithm by

defining the graph solution process as a constraint satisfaction
problem (CSP) and using proven CSP techniques to address the
time complexity of the solution process.

4. Conclusion
Minimal representation graphs provide an interesting perspec-
tive on rewrite rule extraction: a pattern recognition problem
that has not typically been viewed from a graph theoretical per-
spective. By formalising the choices made during rule extrac-
tion according to orderings and outcomes, a better understand-
ing is obtained of the underlying task.

Further work currently focuses on two main aspects: (1)
formalising the theoretical concepts discussed here and proving
the various statements relating to optimality in a more rigorous
fashion; and (2) improving the current implementation of the
algorithm from a computational perspective, in order to support
the solution of larger problems.

In a sense the extraction of minimal representation graphs
seeks for a global optimum, rather than the local optimum ob-
tained with the greedy search ofDefault&Refine. It is there-
fore interesting to consider whether this approach can be ex-
tended to similarly extend the greedy search of error-driven
transformation-based learning [7].
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