
Using the CPU and GPU for Real-Time Video

Enhancement on a Mobile Computer

Asheer Bachoo

Optronic Sensor Systems

Defence, Peace, Safety and Security

Council for Scientific and Industrial Research

Pretoria, South Africa

Email: abachoo@csir.co.za

Abstract—Real-time video enhancement is generally achieved
using costly specialized hardware that have specific functions
and outputs. Commercial off-the-shelf hardware, such as desktop
computers with Graphics Processing Units (GPUs), are also
commonly used as cost effective solutions for real-time video
processing. In the past, the limitations in computer hardware
meant that real-time video enhancement was mainly done on
desktop GPUs with minimal use of the Central Processing Unit
(CPU). These algorithms were simple and easily parallelizable in
nature, which enabled them to achieve real-time performance.
However, complex enhancement algorithms also require the
sequential processing of data and this cannot be easily achieved
in real-time on a GPU. In this paper, the current advances in
mobile CPU and GPU hardware are used to implement video
enhancement algorithms in a new way on a mobile computer.
Both the CPU and GPU are used effectively to achieve real-
time performance for complex image enhancement algorithms
that require both sequential and parallel processing operations.
Results are presented for histogram equalization, local adaptive
histogram equalization, contrast enhancement using tone map-
ping and exposure fusion of multiple 8-bit grey scale videos of
size up to 1600×1200 pixels.

I. INTRODUCTION

Real-time execution of video and image processing algo-

rithms can improve operator feedback in decision critical

situations. For example, enhancement of low contrast video

scenes in high risk areas will improve the visual appearance

of dangerous objects that may otherwise be hidden. Different

types of hardware can be used to achieve real-time video

enhancement. Field Programmable Gate Arrays (FPGAs) and

specialized digital signal processing chips are widely used in

digital signal processing for real-time applications. Desktop

computers are used by most scientists and researchers due

to their low cost and programming flexibility. The CPUs of

desktop computers currently have multiple cores for high per-

formance computing. In recent years, the rendering pipeline of

the GPU has been made accessible to programmers through the

introduction of GPU programming languages. It employs the

Single Instruction Multiple Data (SIMD) technique to achieve

data and computing parallelism with huge performance gains

in certain applications.

Bing-jian et al. use an FPGA to enhance the contrast of

infrared images at 25 frames per second [1]. Their test images

had a size of 128×128 (8-bit pixel depth). The method they

implemented was plateau histogram equalization. A novel

image enhancement algorithm using an FPGA, which com-

pensates for the under- and over-exposed image regions, is

proposed by Iakovidou et al. [2]. Processing at approximately

32 frames per second is achieved for a 2 megapixel image.

Babenko and Shah present a GPU library for image processing

on the GPU [3]. They provide results for the homography

transform between 3-dimensional views and claim a 600 times

speedup on the GPU when compared to the CPU implementa-

tion. Implementations of various image processing algorithms

are also mentioned e.g. edge detection, optical flow and image

pyramid computation, but no meaningful results are presented

apart from their claims of improved running times. Castano-

Dı́ez et. al. evaluate the GPU for 3D image processing using

the Compute Unified Device Architecture (CUDA) [4]. They

report speedups over the CPU in the range of 5 to 67 times.

As seen from the above, previous video processing al-

gorithms on computers are typically data parallel in nature

and can easily be ported to the GPU hardware. However,

complex algorithms generally require the sequential processing

of data for particular information and these operations suffer

a considerable performance decrease on modern GPUs. In

this paper, implementations of four grey scale video enhance-

ment algorithms are presented that require sequential pro-

cessing of data: histogram equalization (HE), local histogram

equalization using interpolation (LHEI), a multiscale image

enhancement (MSIE) algorithm and exposure fusion (EF).

The algorithms execute in real-time on a mobile computer

by exploiting the CPU and GPU processing capabilities. In

the next section CPU and GPU processing is discussed. The

implemented algorithms are then presented. In the last two

sections experimental analysis and discussion followed by

concluding remarks are provided.

II. IMPLEMENTATION FOR THE CPU AND GPU

Computing hardware is designed to have particular types

of operation. For example, CPUs are good for sequential

operations while data parallel operations are efficient on GPUs.

For our implementations, sequential operations are first exe-

cuted on the CPU (this is typical of algorithms that require

an initial scan through the frame for computing particular

image information e.g. the image histogram); thereafter, the



fragment shader pipeline is utilized to process image pixels

using parallel operations on the GPU [5], [6]. Information

generated by the CPU is stored in textures that are transferred

to the GPU for parallel pixel processing.

Copying of image data between the CPU and GPU con-

sumes a large number of CPU clock cycles when using texture

fetches. This problem is averted by using the pixel buffer

object (PBO) provided by the OpenGL driver [6]. The PBO

provides regions of GPU memory that are directly accessible

through identifiers. It achieves fast data transfer across the

CPU/GPU bus by using direct memory access (DMA). The

texture type that is used to store the data generated by

the CPU is 32-bit single precision floating point. It has a

constant size for each particular algorithm and this ensures

that the DMA data transfer will have a fixed execution time.

For example, when performing 8-bit grey scale histogram

equalization (discussed in Section III), the texture size is

256×1 pixels. Algorithms that rely on data computed from

image blocks assume a texture size with the number of rows

equivalent to the largest number of image blocks possible.

This sort of information is derived by assuming a maximum

image size and a minimum block size. The CPU and GPU

code was optimized by reducing the number of arithmetic and

boolean operations. For example, replacing certain division

operations by multiplications (which execute much faster than

division operations). Other operations were reduced by pre-

computing frequently used variables and by using built-in

hardware functions on the GPU.

The software implementation can be summarized as follows:

1) Important image information that requires sequential

processing is generated using the CPU. The information

is stored in a 32-bit floating point texture.

2) The information texture is transferred to the GPU, using

the PBO for optimal data transfer, where it is used to

transform each pixel value in parallel.

III. IMPLEMENTED ALGORITHMS

A. Histogram Equalization

Global histogram equalization computes a histogram for the

entire image and then generates a new pixel mapping using this

histogram. Given an image with L grey levels, the probability

of occurrence of grey level g is:

p(g) =
ng

n
, g = 0, 1, . . . , L− 1 (1)

where n is the total number of pixels and ng is the number

of pixels having grey level g. The transformation function for

general histogram equalization is

h(g) = (L− 1)

(

g
∑

i=0

p(i)

)

(2)

where p(i) is the function described in Equation 1. The

transformation function (Equation 2) is computed on the CPU

and sent to the GPU for adjusting the pixel brightness values

in parallel.

r

s

yx

j−1 j+1

i−1

j

i

i+1

C

A B

D
p(l,m)

Fig. 1. Bilinear interpolation for pixel blending.

B. Local Histogram Equalization using Interpolation

Adaptive histogram equalization computes a local histogram

for every image pixel. However, this is a computationally

intensive task. It can also be performed efficiently using bilin-

ear interpolation [7]. The input image is divided into square

regions and the histogram mapping function for each region

is computed. Each pixel is then transformed by using the

mappings in surrounding regions to approximate its mapping

as a bilinear interpolation. More specifically, the mapping for

a pixel is derived from the four nearest square regions as a

weighted sum of their mappings (shown in Figure 1). Block

size is the only user input required.

Image blending at an interior pixel location (l,m) - a pixel

location surrounded by four blocks - is achieved by using the

histograms computed for blocks A,B,C and D (Figure 1).

The mapping for an interior pixel at location (l,m) with grey

value g is:

f(l,m) =
s

r + s

(

y

x+ y
hA(g(l,m)) +

x

x+ y
hB(g(l,m))

)

+

r

r + s

(

y

x+ y
hC(g(l,m)) +

x

x+ y
hD(g(l,m))

)

(3)

where hk(g(l,m)), k ∈ {A,B,C,D}, is a histogram transfor-

mation value (Equation 2) for grey scale value g(l,m) using

histogram hk. Figure 1 shows how the parameters r, s, x and

y are computed. Edge pixels with only two blocks in their

proximity are mapped using a linear combination of the two

image functions. Pixels at the corner of the image have only a

single mapping function i.e. the image function of the closest

block. The local histograms are computed on the CPU and

stored in a texture together with block location information.

This information and the original image are transferred to

the GPU for processing where pixel blending is executed in

parallel.

C. Multiscale Image Enhancement

Tao and Asari [8] describe a multiscale approach for en-

hancing images. They perform dynamic range compression

and then adaptive contrast enhancement. Luminance informa-

tion I(x, y) is first normalized i.e. In(x, y) ∈ [0, 1]. Thereafter,

dynamic range compression is performed using the following



TABLE I
AVERAGE EXECUTION RATE FOR VIDEO ENHANCEMENT ALGORITHMS (IN FRAMES PER SECOND)

Video Size
Method

LHEI(32) LHEI(64) LHEI(128) LHEI(256) HE MSIE

256×256 61.24 62.36 62.93 - 208.29 161.47

512×512 50.57 51.36 52.75 53.50 127.83 67.42

1024×1024 30.41 30.62 31.07 32.19 50.05 19.43

1360×1024 25.63 26.29 26.85 26.92 39.27 14.20

1600×1200 19.37 19.72 20.48 19.92 30.27 12.27

transform:

In
′ =

In
(0.75z+0.25) + 0.4(1− In)(1− z) + In

(2−z)

2
(4)

where z is an image dependent parameter [8]. Multiple

Gaussians Gi are then used to smooth the original image

I(x, y) at different scales, producing different blurred images

IGi
(x, y). For each blurred image, a parameter Ei is computed

as follows:

Ei(x, y) = ri(x, y)
p =

[

IGi
(x, y)

I(x, y)

]p

(5)

The parameter p is an image dependent parameter defined as:

p =











3 for σ ≤ 3
27−2σ

7 for 3 < σ < 10

1 for σ ≥ 10

(6)

where σ is the global standard deviation in the original image.

In
′ is then enhanced at multiple scales

Si(x, y) = 255In
′(x, y)Ei(x,y) (7)

The final enhanced image is produced as follows:

S(x, y) =
∑

i

wiSi(x, y) (8)

where wi is a weight factor for each output. To achieve a

high processing frame rate for this algorithm, the integral

and squared integral image [9] are computed on the CPU.

These are scan primitives that enable rapid computation of

the mean and standard deviations for an image region. Another

advantage is that a blurred image can be computed at several

scales quite efficiently using the integral image for averaging

pixels. The other parameters (p and z) are also easily computed

on the CPU. Once the integral images and parameters are

computed, they are transferred to the GPU for the image

blurring and pixel tone mapping.

D. Exposure Fusion

Multiple different exposures of the same scene can be

fused to enhance pixels that are under- or over-exposed in a

single exposure. We use a variation of Goshtasby’s algorithm

[10]. n input frames with different exposures are provided

as input to the fusion algorithm. Each frame is tiled and

the Shannon entropy [11] is computed for each tile. Our

algorithm selects the image block with the highest entropy and

performs blending between all selected blocks using bilinear

interpolation. This is similar to Equation 3.

TABLE II
AVERAGE EXECUTION RATE FOR EXPOSURE FUSION (IN FRAMES PER

SECOND).

Video Size
Block Size

32 64 128 256

256×256 195.37 196.56 198.23 -

512×512 101.75 103.55 103.83 104.61

1024×1024 28.14 34.09 35.84 35.95

1360×1024 19.75 26.59 27.87 27.65

1600×1200 19.92 20.21 20.25 20.31

Image blending at an interior pixel location (l,m) - a pixel

location surrounded by four blocks - is achieved by using

the pixel values at location (l,m) in the frames having the

exposures of the surrounding blocks. The mapping for an

interior pixel is:

fnew(l,m) =
s

r + s

(

y

x+ y
eA(l,m) +

x

x+ y
eB(l,m)

)

+

r

r + s

(

y

x+ y
eC(l,m) +

x

x+ y
eD(l,m)

)

(9)

where ek(l,m), k ∈ {A,B,C,D}, is a pixel value at location

(l,m) in an acquired frame having exposure k. The entropies

of the image blocks and block spatial information, computed

on the CPU, are stored in a single texture when copied to the

GPU for maximum entropy block selection and pixel blending.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The algorithm implementations were tested on a Dell Lat-

itude D830 Laptop with Intel Core2 Duo 2.2 GHz processor,

4GB memory and an entry level NVIDIA Quadro 140M NVS

256MB graphics card. The GNU/Linux (Debian) operating

system was utilized. C++ and OpenGL Shading Language

for GPU processing through OpenSceneGraph are also used.

The algorithms were tested on 5 grey scale (8-bit pixel depth)

videos with different dimensions. It must be pointed out that

the algorithms operate independently of the video content i.e.

the execution time will be approximately the same for video

with the same dimensions, pixel depth and format. In order

to mitigate the effects of disk read, it was ensured that data

was cached so that there was minimal latency in data reading.

Window sizes in {32, 64, 128, 256} pixels were used for LHEI

and EF. The EF algorithm fuses 3 video frames (short, medium

and long exposures). Three blur radii (scales) were supplied

for MSIE by multiplying the image height by a ratio in {0.03,

0.1, 0.45}. Figures 2 and 3 show some enhanced videos.



(a) Original Video (b) HEQ (c) LHEQI (d) MSIE

Fig. 2. Video Enhancement

(a) Exposure 1 (b) Exposure 2 (c) Exposure 3 (d) Fused Video

Fig. 3. Exposure Fusion

The average execution rates for the algorithms, in frames

per second, are shown in Table I and II. The size of the

image blocks for LHEI appear in brackets. For a video size

of 1024×1024 (approximately 1 million) pixels, most of the

algorithms run at greater than 20 frames-per-second. The

MSIE algorithm is generally slower than the others since

a large number of statistics are computed and there is a

significant amount of texture fetches. The same can be said

of the EF algorithm, which has to process 3 video streams

and then fuse them. Video frames with dimension 1360×1024

and 1600×1200 are those acquired using high-performance

Prosilica video cameras. These high-resolution frames are

processed at a minimum frame rate of close to 20 frames-

per-second except for the MSIE algorithm (minimum frame

rate of 12.27 frames-per-second).

The current performance is limited by GPU hardware.

Utilizing a graphics card with a higher number of processing

pipelines will increase the execution rate. For example, the

frame rate almost doubles when using a NVIDIA 9600GT

GPU. Our future work will consider looking at optimization

techniques on multi-core CPUs and improved shader code for

the GPU. More complex image partitioning, automatic block

size selection and multiscale blending of image regions will

also be considered. New measures for exposure selection will

also be examined.

V. CONCLUSION

This paper presented new implementations of several video

enhancement algorithms for real-time execution. With the

exception of the computationally intensive MSIE method, all

of the algorithms achieve a minimum frame rate of close to

20 frames per second. This is achieved using the sequential

and parallel processing capabilities of low cost computer

hardware. The high processing frame rates achieved for large

video resolutions, using a mobile computer, introduces new

possibilities in terms of mobility and testing in the real world.

REFERENCES

[1] W. Bing-jian, L. Shang-qian, L. Qing, and Z. Hui-xin, “A real-time
contrast enhancement algorithm for infrared images based on plateau
histogram,” Infrared Physics and Technology, vol. 48, pp. 77–82, 2006.

[2] C. Iakovidou, V. Vonikakis, and I. Andreadis, “FPGA implementation of
a real-time biologically inspired image enhancement algorithm,” Journal

of Real-Time Image Processing, vol. 3, pp. 269–287, 2008.
[3] P. Babenko and M. Shah, “MinGPU: a minimum GPU library for

computer vision,” Journal of Real-Time Image Processing, vol. 3, pp.
255–268, 2008.

[4] Daniel Castano-Dı́ez, Dominik Moser, Andreas Schoenegger, Sabine
Pruggnaller, and Achilleas S. Frangakis, “Performance evaluation of
image processing algorithms on the GPU,” Journal of Structural

Biology, vol. 164, pp. 153–160, 2008.
[5] R.J. Rost, OpenGL(R) Shading Language (2nd Edition), Addison-

Wesley Professional, 2006.
[6] D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL Programming

Guide, Addison-Wesley Professional, 2007.
[7] SM Pizer, EP Amburn, JD Austin, R Cromartie, A Geselowitz, T Greer,

BM ter Haar Romeny, JB Zimmerman, and K Zuiderveld, “Adaptive
histogram equalization and its variations,” Computer Vision, Graphics

and Image Processing, vol. 39, pp. 355–368, 1987.
[8] L Tao and VK Asari, “Adaptive and integrated neighbourhood dependent

approach for nonlinear enhancement of colour images,” Journal of

Electronic Imaging, vol. 14, no. 4, 2005.
[9] Franklin Crow, “Summed-area tables for texture mapping,” in SIG-

GRAPH ’84, 1984.
[10] Asheer Bachoo, “Real-time exposure fusion on a mobile computer,” in

The Twentieth Annual Symposium of the Pattern Recognition Association

of South Africa (PRASA), 2009.
[11] RC Gonzalez and RE Woods, Digital image processing, Addison-Wesley

Publishing Company, 2002.


