Bootstrapping in Language Resource Generation

Marelie Davel and Etienne Barnard

Human Language Technologies
CSIR icomtek, PO Box 395, Pretoria, 0001

mdavel@csir.co.za,

Abstract

This paper describes a method for improving the efficiency
of the language resource development process through boot-
strapping: iteratively combining machine learning and human
knowledge in a way that minimises the human intervention
required during the process. Applied to the development of
a 10,000-word pronunciation dictionary, it is shown that the
amount of human effort can be decreased to less than a quar-
ter of the effort typically required for the manual development
of a pronunciation dictionary, without sacrificing accuracy.

1. Introduction

Many speech processing and natural language processing tasks
require the availability of extensive language resources: pro-
nunciation dictionaries, large annotated text corpora, annotated
speech corpora or parallel text corpora. The development of
these resources involves significant effort, and can be a pro-
hibitively expensive task when speech and language technolo-
gies are developed for a new language.

Techniques that allow resources to be developed more
quickly and cost-effectively include the cross-language re-use
of information and bootstrapping approaches. For example,
when acoustic models are developed for a new target language,
an automatic speech recognition system can be initialised with
models from an acoustically similar source language, and these
initial models improved through an iterative process in which
audio data in the target language is automatically segmented
and used to retrain the models. The potential savings in ef-
fort achieved through such a process is aptly demonstrated by
Schultz [1].

Bootstrapping approaches are applicable to various lan-
guage resource development tasks, specifically where an au-
tomated mechanism can be defined to convert between vari-
ous representations of the data considered. In the above ex-
ample, two representations are utilised: annotated audio data
and acoustic models, and the mechanisms to move from one
representation to the other, are well defined through the phone-
alignment and acoustic modelling tasks respectively.

We apply this general approach to the task of creating a
pronunciation dictionary, using word/pronunciation pairs and
grapheme-to-phoneme (G2P) rules as alternative representa-
tions of the same information. In our approach we focus on sim-
plifying and minimising the human intervention required during
the bootstrapping process.

The remainder of the paper is organised as follows: Sec-
tion 2 provides background on the grapheme-to-phoneme con-
version problem. Section 3 describes our bootstrapping ap-
proach to the creation of pronunciation dictionaries utilising
G2P rules as an intermediate representation. Section 4 provides
an overview of experimental results.

ebarnard@csir.co.za

2. Grapheme-to-phoneme conversion

An accurate model for letter-to-sound conversion is required
for various speech processing tasks, including speech synthesis
and large vocabulary speech recognition. Typically modelled
through explicit pronunciation dictionaries, the relationship can
also be described using various letter-to-sound formalisms, in-
cluding explicit grapheme-to-phoneme mapping rules [2], neu-
ral networks [3], decision trees [4] and instance-based learn-
ing [5]. A letter-to-sound conversion mechanism is valuable,
not only in the absence of pronunciation dictionaries but also
to accommodate speech technology on small devices (with as-
sociated memory constraints) or to deal with out-of-vocabulary
words in speech synthesis.

The results when applying appropriate versions of the dif-
ferent formalisms mentioned above are comparable, with slight
variations in performance under specific conditions. For ex-
ample, neural networks provide stronger generalisation ability
than decision trees, and perform more consistently across mis-
matched test sets, while decision trees typically outperform neu-
ral networks where training and test data are closely matched.
[6]. Kohonen’s Dynamically Expanding Context (DEC), ini-
tially applied by Torkkola to the G2P problem [7], is a popular
instance-based learning algorithm that predicts phoneme real-
isation based solely on grapheme context. Variations of DEC
typically perform as well, or better, than similar decision tree
approaches.

Grapheme-to-phoneme conversion mechanisms can either
be defined on a per-grapheme level, or for a combined ‘chunk’
of graphemes. In the first case it is typically necessary to align
each grapheme to a specific phoneme prior to rule extraction.
This can be done manually, or through a forced Viterbi align-
ment, inserting graphemic or phonemic nulls as required [4].
(See section 3.3.)

2.1. DEC

The bootstrapping system described in this paper utilises a
variation of DEC as its rule extraction mechanism. In DEC,
each rule specifies a mapping of a single grapheme to a sin-
gle phoneme for a given left and right graphemic context, i.e
is of the form: (grapheme, context) — phoneme. Each word
in the training dictionary is aligned with its pronunciation on
a per-grapheme basis, as illustrated in Table 1. Rules are ex-
tracted by finding the smallest context that provides a unique
mapping of grapheme to phoneme. If an n—Iletter context is
not sufficient, the context is expanded to either the right or the
left. This ‘specificity order’ influences the performance of the
algorithm. Different orderings are illustrated in Table 2 as ap-
plied to grapheme ‘s’ in the word ‘interesting’. Context 1 is
expanded symmetrically on a right-grapheme-first basis, con-
text 2 is expanded symmetrically on a left-grapheme-first basis,

and context 3 favours the right context on a 2:1 basis.

Table 1: Word alignment and rule extraction in DEC

Alignment examples | rose —10z0
rows—r1r00z
root—rult

o in context-o — u
o in context -se — O
o in context o- — 0

Rule examples

Table 2: Different examples of context expansion order in DEC

size | context 1 | context2 | context3
0 S s S
1 st es st
2 est est sti
3 esti rest esti
4 resti erest estin

3. Approach

In this section, we describe our approach to the development of
a pronunciation dictionary, both at the process level and with
regard to the specific algorithms utilised.

3.1. Process: User perspective

The system is developed to allow a speaker fluent in the target
language to develop a pronunciation dictionary without requir-
ing expert linguistic knowledge. The system predicts a pronun-
ciation and presents the human with an audio version of the
word: the human acts as a ‘verifier’ and provides a verdict with
regard to the accuracy of the pronunciation (correct, wrong, or
uncertain). If the word is wrong, the verifier can either provide
the correct pronunciation or flag the phones that are considered
wrong. This process is repeated (with increasingly accurate pre-
dictions) until a pronunciation dictionary of sufficient size is
obtained.

. File Edit View Go Bookmarks Tools Window Help

W QOQ G G [% htp/127.0.0.1/cgi-bi <gi

. 4 Home [JBookmarks < MandrakeSoft % Mandrake Linux < S “ MandrakeClub % MandrakeOnli
Menu Manually correct pronunciations

Experiment Dore | Cancel

Create new

Show [Comeet |[Not verified [Wrong [Changed (this session)

Load

o Word Sound Status
Word List bat bAt Play | Right | Wrong | Notsue | Undo | bAt 1
Import master list bit bit Play | Right | Wrong | Notswe | Undo | bit 1
View master list boat bOt _Play | Right | Wrong | Notsue | Undo | bOL I
Import boot but Play | Right | Wrong | Notswe | Undo | but 1
Load cold kOl Play | Right | Wrong | Notswe | Undo | kOId1
Niew) date " dyte | Pray || Right || Wrong || Notsure || undo [dyte]-1
G”‘er“:“ cight yt Play | Right | Wrong | Notswe | Undo | yt 1

i

e gyte Play || Right | Wrong | Notsure

Undo [| gyte]-1

Ri

gt get _Play | Right | Wrong | Notswe | Change 0

glow glO Play | Right | Wrong | Notsure | Change o

goat gOt Play | Right | Wrong | Notsure | Change | [
0
0

got got _Play | Right | Wrong | Notsue | Change
gn gan Play | Right | Wrong | Notsue | Change |

Figure 1: Correcting the predicted pronuncations

The dictionary correction task as presented to the verifier

wortlist

J

from
23

initial rules F----- 3 GIP rules

L

rules from.
dats

inttial
word examples

pronunciation pairs

correct
errrors

dala : | .
driven flag errars : : lagt errors

progess || feea 3 TR

knowletigs
based
process

Figure 2: General bootstrapping system concept

is shown in Figure 1. This is one task within an experimental
environment that allows a user to manipulate and generate the
various resources involved (the rule set, word list and pronun-
ciation dictionary) as required. Per experiment, the system logs
the history of all activities and archives the intermediary data
resources for further analysis.

3.2. Process: System perspective

The general bootstrapping system concept is illustrated in
Figure 2. Extracted rules are used to generate additional
word/pronunciation pairs, which in turn are used to extract bet-
ter rules. Errors are flagged when information is presented to
the verifier as a list of word/pronunciation pairs. The system
is initialised with an initial small rule set or a small transcribed
wordlist. If neither is available, the system will predict ran-
dom pronunciations, which, when corrected, form the basis for
further bootstrapping. Currently all verification is done by a hu-
man verifier, but data-driven approaches to error identification
can be included in the general system, if additional data (such
as acoustic information in this example) becomes available.
The overall process consists of the following steps:

o The system analyses its current understanding of the task
(number and type of pronunciations from the overall
word list that are correct, wrong and uncertain) and gen-
erates an optimal list of words to be considered next.

e For each of the words on the above list, the sytem gener-
ates a new pronunciation using its current G2P ruleset.

e The system creates a ‘sounded’ version of each word us-
ing the predicted pronunciation and standard IPA sound
samples, and records the verifier’s response.

e Based on the status of each of the words in the newly ver-
ified word/pronunciation list, the system extracts a new
G2P ruleset.

e The process is repeated until a sufficient number of cor-
rect words are obtained.

3.3. Extracting and applying G2P rules

In order to extract G2P rules, words and pronunciations are first
aligned using iterative forced Viterbi alignment. Phonetic nulls
are inserted where required (that is, where a single phoneme is
produced from more than one grapheme). Graphemic nulls are
not used, but graphemic exceptions that can map to more that
one phoneme (such as x — k s) are replaced with two pseudo-
graphemes (as in [8]). The initial probabilities for Viterbi align-
ment are obtained from words and pronunciations that have
equal length.

DEC is used to extract rules of the form (left context,
grapheme, right context) — phoneme. Two variations on tra-
ditional DEC are implemented:

e Using a sliding window at each context-level, and
e Removing redundant rules.

DEC, as applied by Torkkola [7] expands the context one
letter at a time, either favouring the right- or left-hand side ex-
plicitly. We use a sliding window that first considers all possi-
ble contexts of size n, before continuing to consider contexts of
size n+1, which prevents rules with unnecessarily large contexts
from being extracted. In contrast to the DEC context expan-
sion of Table 2, a sliding window applied to grapheme ‘s’ in the
word ‘interesting’ would result in the context ordering indicated
in Table 3.

Since multiple rules of the same context size may apply to a
single grapheme-to-phoneme mapping (such as re,s,ti — s and
ere,s,t — s), contexts that are already served by existing rules
are removed to prevent over-specialisation. Because all con-
texts of each size are considered, the order in which contexts
are expanded (for a specific context-level) becomes less signif-
icant than in standard DEC. In all experiments, a symmetric
right-first expansion scheme is used (as also in Table 3).

Table 3: Context expansion order in shifted DEC

order | size | context || order | size | context
1 0 S 2 1 st
3 1 es 4 2 est
5 2 sti 6 2 res
7 3 esti 8 3 rest
9 3 stin 10 3 eres

Generating a new pronunciation is a simple procedure: each
grapheme in the word is considered in turn, and the rule describ-
ing the largest matching context is used to predict the phoneme
to be generated.

3.4. Choosing an optimal word list

An aim of our system is to minimise the number of words a
user needs to correct. To achieve this, the system grows its un-
derstanding of pronunciations-in-context systematically: ensur-
ing that it achieves certainty on as many contexts of size n as
possible, before continuing to a context of size n+1. For each
iteration, it chooses a minimal set of words that covers as many
of the contexts in question as possible. The context ordering is
chosen to be similar to the one utilised in the G2P extraction
mechanism.

4. Experimental results

The approach has been verified in an experimental environment
using an existing pronunciation dictionary. The dictionary acts

as the verifier, in order to obtain an accurate indication of the
process itself, uninfluenced by human error. The pronunciation
dictionary used is a hand-crafted dictionary of German words,
and consists of 22,000 words and their pronunciations, sepa-
rated into a 20,000 word training and 2,000 word test set. Re-
sults reported are all based on the full test set.

4.1. G2P accuracy

First, the accuracy of the G2P rule extraction mechanism is con-
sidered. In all experiments the size of the maxiumum context al-
lowed when extracting rules is not restricted, and the same word
training order is used. If DEC is not allowed to grow a con-
text beyond word boundaries and conflicting rules are ignored
(DEC-conflict) the performance of the algorithm decreases for
larger training corpora, especially if rules regarding the context
surrounding a grapheme early or late in a word are important. In
order to remove this effect, the version of DEC (DEC-grow) that
was implemented allows a context to grow towards the oposite
side if a word boundary is encountered. The shifted window
version of DEC (DEC-win) outperforms1 this version of DEC
(DEC-grow) consistently, as illustrated in Figures 3 and 4.

100 T T T T T T T T T
DEC-win —+—
9 DEC-grow ---x--- o
DEC-win-conflict ------
80 B
Q t
< 2+]
% ,,,,,,,,,,,,,,
g 60
=
8 50
<
40 i
30
o0 1 1 1 1 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of training words
Figure 3: Word-level accuracy: different DEC variations
100 T T T T T T T T
DEC-win —+—
EN
£
>
[$)
©
3
Q
Q
<
86 1 1 1 1 1 1 1 1 1 1]

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of training words

Figure 4: Grapheme-level accuracy: different DEC variations

When redundant rules are removed (DEC-win-opt) perfor-
mance is similiar to DEC-win, but fewer rules are required to
achieve the same accuracy. An analysis of the extracted rules
is shown in Table 4. The number of rules of each size (the

'Word-level accuracy measures the number of words that are com-
pletely correct, while grapheme-level accuracy is measured as the num-
ber of correct grapheme mappings minus deletions, divided by the total
number of graphemes tested.

size of the context that specifies the rule) is given, as extracted
from different sized training dictionaries, using DEC-win. For
the 10,000-word dictionary, the size of the ruleset obtained via
DEC-win and DEC-win-opt is compared.

Table 4: Number and size of rules: DEC-win
| Dictsize: | 10 | 100 [1000 | 10,000 | 10,000 (-opt) |

Rule size | rules | rules | rules rules rules
1 32 32 32 32 32
2 24 90 141 134 128
3 5 85 671 1877 1688
4 7 265 3099 2793
5 23 996 931
6 4 202 190
7 3 73 73
8 37 37
9 17 17
10 7 7
11 1 1
Total 61 214 | 1139 6475 5877

4.2. Cost-effectiveness

The amount of time required for the various tasks depends on
the skills and motivation of the transcriber and verifier. In Ta-
ble 5 we list rough estimates for relevant times, based on ob-
servations in our laboratory. These estimates can be used to
predict the effectiveness of the proposed approach compared to
that of manual development for pronunciation dictionaries of
various sizes. This is illustrated in Figure 5, which shows the
predicted amount of human effort required (in hours) as a func-
tion of dictionary size when applying DEC-win-opt. Additional
to the assumptions listed in Table 5, it is assumed that in both
approaches each word is verified by a second human verifier.

Table 5: Assumptions: approximate effort required per task

Agent Activity Approximate
effort
Manual Transcribe the pronuncia- | 90 s

transcriber | tion for a given word

Manual Verify and possibly correct | 60 s
verifier a transcribed word

Bootstrap Listen to and verify a cor- | 15s
verifier rectly predicted word

Bootstrap Listen to and correctly | 30s
verifier sound an incorrectly pre-

dicted word

The relative benefit of bootstrapping increases for larger
pronunciation dictionaries. For a 10,000 word dictionary, the
bootstrapping approach requires 23% of the effort of the man-
ual approach (98 hours, compared to 417).

5. Conclusion

A bootstrapping approach to the generation of language re-
sources holds much promise for the accelerated development
of Human Language Technologies, especially in the develop-
ing world. We have demonstrated that such an approach can

T T T
Manual ——
400 [Bootstrapped ---x->

Effort in hours

T
0 1 1 1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Dictionary size

Figure 5: Effort required: Manual vs Bootstrapped

significantly reduce the amount of effort required to develop a
pronunciation dictionary.

Our process is demonstrated using an existing pronuncia-
tion dictionary. We are currently evaluating this same process
on the development of a new pronunciation dictionary (for lan-
guages where such a resource is not available). This will allow
us to measure the performance of these techniques in a realis-
tic context; and to develop credible estimates for the amount of
effort required to produce pronunciation dictionaries for all the
languages of South Africa.

6. Acknowledgements

This work was supported by CSIR icomtek’s Information Soci-
ety Technologies Programme.

7. References

[1] T. Schultz and A. Waibel, “Language-independent and
language-adaptive acoustic modeling for speech recogni-
tion,” Speech Communication, vol. 35, pp. 31-51, Aug.
2001.

[2] H. Meng, S. Hunnicutt, S. Seneff, and V. Zue, “Reversible
lettter-to-sound generation based on parsing word morphol-
ogy,” Speech Communication, vol. 18, pp. 47-63, 1996.

[3] T.J. Sejnowski and C.R. Rosenberg, “Parallel networks that
learn to pronounce english text,” Complex systems, vol. 1,
pp. 145-168, 1987.

[4] O. Andersen, R. Kuhn, A. Lazarides, P. Dalsgaard, J. Haas,
and E. Noth, “Comparison of two tree-structured ap-
proaches for grapheme-to-phoneme conversion.,” in In-
ternational Conference on Spoken Language Processing,
Philadelphia, 1996, vol. 3, pp. 1700-1703.

[5] Walter Daelemans, Antal van den Bosch, and Jakub Za-
vrel, “Forgetting exceptions is harmful in language learn-
ing,” Machine Learning, vol. 34, no. 1-3, pp. 11-41, 1999.

[6] J. Hakkinen, J. Suontausta, S. Riis, and K Jensen, “Ac-
cessing text-to-phoneme mapping strategies in speaker in-
dependent isolated word recognition,” Speech Communica-
tion, vol. 41, pp. 455-467, 2003.

[7]1 K. Torkkola, “An efficient way to learn english grapheme-
to-phoneme rules automatically,” in International Con-
ference on Acoustics and Speech Signal Processing, Min-
neapolis, 1993, vol. 2, pp. 199-202.

[8] V. Pagel, K. Lenzo, and A. Black, “Letter to sound rules
for accented lexicon compressoin,” in International Con-

ference on Spoken Language Processing, Sidney, Australia,
1998, vol. 5, pp. 2015-2018.

