
A framework for bootstrapping morphological decomposition

L. Joubert, V. Zimu, M. Davel and E. Barnard

Human Language Technologies Research Group
CSIR / University of Pretoria, Pretoria, 0001

ljjoubert@csir.co.za

Abstract
The need for a bootstrapping approach to the mor-

phological decomposition of words in agglutinative lan-
guages such as isiZulu is motivated, and the complexities
of such an approach are described. We then introduce a
generic framework which can be employed for this task,
and show a number of simple examples of its use for the
decomposition of words in isiZulu. Initial thoughts on
the process of rule induction are discussed.

1. Introduction

Human languages derive much of their power from the
unbounded richness offered by the systematic combina-
tion of linguistic entities such as words, phrases and sen-
tences [1] . At the root of this combinatorial tree lies
the formation of lexical entities (usually referred to as
“words”) from their meaning-bearing constituents (“mor-
phemes”). Morphological analysis is the task of extract-
ing and interpreting these morphemes from words. Much
as syntactic analysis attempts to decompose a sentence
into its constituents, and assign categories to those con-
stituents, morphological analysis (MA) aims at decom-
posing and labelling the components of words.

Languages differ widely with respect to the complex-
ity of word morphologies: languages such as Turkish of
Finnish, which, as a matter of course, construct words by
the copious addition of prefixes and suffixes are known
as agglutinative languages. Languages such as English or
Japanese are considered to be non-agglutinative, since the
composition of stems and morphemes is much less pro-
ductive in those languages. Consequently, MA is much
more important (and, generally, challenging) in aggluti-
native languages. Since languages in the Bantu family
are all agglutinative in nature, the automation of MA is an
important task in our goal to develop Human Language
Technologies for all the languages of South Africa.

Automated MA has received much attention in the
past two decades. A variety of approaches have been
studied (see [2] for an overview); currently, the dom-
inant approach is based on the so-called two-level ap-
proach proposed by Koskenniemi [3]. This approach
brings many of the powerful tools of finite-state trans-
ducers to bear on MA, and has been applied successfully

to numerous languages, including Finnish and kiSwahili
[2]. Significantly for our purposes, Bosch and Pretorius
have shown that the two-level formalism can be applied
to isiZulu, and results in a powerful and accurate system
for MA[4].

The biggest drawback of the two-level approach to
MA is that it is both labour and skills intensive: a reason-
ably complete system for an agglutinative language may
require several years’ effort by skilled linguists and com-
puter scientists. Since our goal is to develop open-source
systems for MA in all the languages of South Africa, we
would like to develop approaches that can produce ac-
ceptable MA with reduced requirements in terms of hu-
man resources - even if the resulting system is not quite
as accurate or complete as the best systems. This is anal-
ogous to our creation of pronunciation dictionaries with
reduced development costs; the key insight in that case
was to combine human linguistic expertise with machine-
learning algorithms in a bootstrapping approach. The
current paper describes a framework that enables us to
apply bootstrapping to MA.

In Section 2, we review the general principles of the
bootstrapping approach. Section 3 describes the MA for-
malism at the heart of our approach, and provides some
early results for isiZulu. Finally, Section 4 summarizes
our view of the road ahead in the development of the
bootstrapping approach to MA.

2. Bootstrapping for the creation of
linguistic resources

Bootstrapping approaches are a useful way to quickly and
cost-effectively create linguistic resources[5]. For ex-
ample, when acoustic models are developed for a new
target language, an automatic speech recognition system
can be initialised with models from an acoustically sim-
ilar source language, and these initial models improved
through an iterative process in which audio data in the
target language is automatically segmented and used to
retrain the models [6]. Bootstrapping approaches are ap-
plicable to various language resource development tasks,
specifically where an automated mechanism can be de-
fined to convert between various representations of the
data considered. In the above example, two represen-

tations are utilised: annotated audio data and acoustic
models, and the mechanisms to move from one represen-
tation to the other, are well defined through the phone-
alignment and acoustic-modelling tasks, respectively.
Similarly, pronunciation dictionaries can be created by
repeatedly converting between phonetic transcriptions of
words (as corrected by human transcribers), and pronun-
ciation rules (automatically induced from those transcrip-
tions) [5].

To apply these ideas to MA, we need a formalism
that is sufficiently powerful to represent the typical phe-
nomena that occur in agglutinative languages, yet sim-
ple enough so that machine-learning approaches can in-
duce sensible rules from limited samples. While the two-
level formalism certainly meets the first requirement, we
have not been able to develop learning algorithms that
successfully extract two-level rules from examples. We
have therefore designed an alternative formalism, as de-
scribed below. As in acoustic training and pronunciation
prediction, it is designed to be used in a closed-loop fash-
ion, where a human “trainer” corrects the analyses found
by the system. These corrections are used to update the
system’s rules, whereupon a further round of corrections
and rule updates is initiated. This cycle continues until
the MA system is deemed sufficiently accurate.

3. A simple finite-state formalism for MA

In order to develop a bootstrapping approach to MA,
we need a formalism which makes it relatively easy for
native-language speakers to specify facts about the mor-
phology of a language, yet also supports the induction of
rules that generalize from a given set of examples (as well
as the set of rules already established). Note that these re-
quirements tend to conflict with one another: rule induc-
tion is generally easiest if the rules are highly explicit, so
that the relationship between rules and examples is easily
derived. However, such explicit rules tend to be too long-
winded for human consumption, and formalisms such as
two-level morphology therefore support a more compact,
implicit specification of the MA process. We therefore
need to strike an appropriate compromise between the
two requirements.

To this end, we have developed a morphological anal-
yser that is defined in terms of three classes of elements:

1. Lists, which define all the word elements or mor-
phemes (roots, prefixes, suffixes).

2. Rules, which capture the phonological alternations
in the language using regular expressions.

3. Tables, which capture the morphosyntactics, defin-
ing how different word elements are combined to
form words.

The syntax for the above elements are defined as a

formal grammar, which is given in Fig. 1 in Extended
Backus-Naur Form (EBNF) format.

For example, the specification in Fig. 2 describes
some of the class-1 nouns in isiZulu.

3.1. List entry

A list entry is a comma-separated list of word elements. It
is used to group together word elements that have similar
behaviour in terms of morphosyntactics.

3.2. Rule entry

A rule entry describes the changes or alternations that
result when two word elements are combined. It is as-
sumed that alternations occur at the junction of two word
elements, and that the alternation may influence both el-
ements. The rule therefore has a pre-modifier (that de-
termines the context and alternation of the first word el-
ement), and a post-modifier that determines the context
and alternation of the second word element.

These rule modifiers are expressed in terms of regular
expressions. A modifier consists of two parts, a match-
ing regular expression used to determine thecontextin
which the modifier is applicable, and a replacement regu-
lar expression that defines the alternation that takes place
when the modifier is applied. This replacement regular
expression may contain references to sub-expressions in
thecontext, allowing for alternations where certain letters
are dropped.

Thus the rule entry “(um)u, $1, [aeiou].*, $0” states
that “umu” becomes “um” when joined with a word el-
ement that starts with a vowel, while the second word
element remains unchanged. The “$” is used to refer
back to marked sub-expressions (defined by parentheses).
“$0” specifically refers to whatever was matched in the
matching regular expression of the post-modifier. (Note
that this simple example does not distinguish between
stems consisting of a single syllable and multi-syllabic
stems; such a distinction is easily captured in the regular-
expression formalism, but makes the example unwieldy
for explanatory purposes.)

A rule can optionally be composed of a sequence of
rule entries. When a rule is applied in a table entry, each
rule entry in the rule sequence is applied in succession.

3.3. Table entry

A table entry describes how different word elements (list
or table entries) can be combined to form more complex
word elements. Each table entry defines the two word el-
ements to be combined, as well as the applicable rule that
describes the alternations for the specific combination.

<list> ::= list <list_identifier> "=" <element> { "," <elem ent> }
<list_identifier> ::= letter { letter | digit }
<element> ::= letter { letter }

<rule> ::= rule <rule_identifier> "=" <modifier>
", " <modifier> { ", " <modifier> "," <modifier> }

<rule_identifier> ::= letter { letter | digit }
<modifier> ::= regex "," regex

<table> ::= table <table_identifier> "=" <list_identifie r>
| <table_identifier> "," <rule_identifier> "," <list_ide ntifier>
| <table_identifier> { "," <rule_identifier> "," <list_id entifier>
| <table_identifier> }

<table_identifier> ::= letter { letter | digit }

Figure 1:EBNF specification for components of MA framework

list umu = umu
list class1 = ntu, fana, ona

rule rule1 = (um)u, $1, [aeiou].*, $0,
(um)u, $1, .*[aeiou].*[ˆaeiou].*[aeiou].*, $0

table table1 = umu, rule1, class1

Figure 2:Sample elements used to define a simple morphology in isiZulu

3.4. Analyser operation

The analyser parses the file containing the list, rule and
table definitions, and compiles the data into a tree. The
edges of the tree map to the surface form of words, and
the nodes or vertices map to the underlying form. Accept-
ing nodes are formed when a list or table entry occurs as
the last element in a table entry. Figure 3 shows an exam-
ple of such a tree, built out of a subset of rules for isiZulu
nouns.

When parsing a word for morphological decomposi-
tion, a depth-first search of the tree is attempted. Each
character of the input is matched against edge values.
When the input is consumed and the search ends in an
accepting node, the stack of nodes visited in the search
forms the underlying form of the input word.

These examples show that this approach is suit-
able to capture simple “local” morphological phenomena.
They also suggest a straightforward approach to learning:
whenever the “trainer” corrects an analysis (see Section
2), the smallest change to either make a rule fit the con-
text, or to modify a rule which does fit, so that it produces
the right output, is attempted. This proposed change is
then tested against all the other examples already anal-
ysed by the system; if it conflicts with any of those, it is
rejected and the next larger rule change is attempted.

An important factor in the success of this approach is
the use of an appropriate metric to compare the magni-
tudes of different possible changes to the system of rules.
For these local rules, it seems as if a simple symbol-
counting metric is appropriate – that is, the magnitude
of a change is defined to be the number of simple ele-
ments in the lists, rules, or tables that need to be added,
modified, or deleted.

The ability to use back-references provides some abil-
ity to perform non-local processing as well, but we have
encountered phenomena in isiZulu that are not easily han-
dled in this manner. Also, learning becomes more com-
plex when non-locality is allowed, since numerous rule
changes can then produce comparable outputs from the
analyser. It may be best to not allow automatic learning
of such non-local rules – this matter is currently being
studied.

4. Conclusion

Morphological analysis of lexical data is a fundamental
task in Human Language Technologies. We have devel-
oped a relatively simple formalism that makes it possi-
ble to specify the phenomena that occur in the morphol-
ogy of languages such as isiZulu. Although this for-
malism is significantly more involved than, for instance,

u

m

umu

m

umu

u

n

t

ntu

u

f o

a

n

fana

a

n

ona

a

Figure 3: A simple MA tree, constructed from the lists,
rule and table in Fig. 2.

the simple rewrite rules that form the basis of our sys-
tem for bootstrapping pronunciations, it does seem suit-
able for the development of a method for rule induc-
tion. The added complexity of the proposed formal-
ism makes it relatively easy to define a starting point
for rule induction (whereas a less powerful formalism -
e.g. the approach suggested by [7]) would probably not
make much progress for an agglutinative language. This
also implies that the “trainer” may possibly be require
to develop a fairly sophisticated initial system for boot-
strapping to succeed (in contrast to our pronunciation-
prediction system, where even relatively unsophisticated
“trainers” were able to produce highly accurate systems
[8]). This may be an unavoidable consequence of the
complexity of morphological analysis.

In order to test this hypothesis, and our overall ap-
proach, we intend to develop an explicit set of learning
rules within our formalism, and then to write a user in-
terface which makes it possible to refine the analyser in a

standard bootstrapping approach. Applying this interface
and learning formalism to isiZulu will allow us to assess
the potential of the proposed framework.

5. Acknowledgements

This material is based upon work supported by the
National Research Foundation under Grant number
2053242, and by the CSIRInformation Society Technolo-
gies Centre. Any opinion, findings and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Research Foundation.

6. References

[1] D. Jurafsky and J. H. Martin,Speech and Language
Processing, Prentice Hall, 2000.

[2] K.R Beesley and L. Karttunen,Finite State Morphol-
ogy, CSLI Publications, 2003.

[3] K. Koskenniemi, “Two-level morphology: A gen-
eral computational model for word-form recognition
and production,” Tech. Rep., University of Helsinki,
Department of General Linguistics, 1983.

[4] L. Pretorius and S. Bosch, “Finite-state compu-
tational morphology-treatment of the zulu noun,”
South African Computer Journal, vol. 28, pp. 30–38,
2002.

[5] M. Davel and E. Barnard, “Bootstrapping for lan-
guage resource generation,” inProceedings of the
14th Symposium of the Pattern Recognition Associa-
tion of South Africa, South Africa, 2003, pp. 97–100.

[6] T. Schultz and A. Waibel, “Polyphone decision tree
specialization for language adaptation,” 2000.

[7] A. Van den Bosch and W. Daelemans, “Memory-
based morphological analysis,” inProceedings of
the 37th Annual Meeting of the Association for Com-
putational Linguistics, ACL’99, University of Mary-
land, USA, 1999, pp. 285–292.

[8] M. Davel and E. Barnard, “The efficient creation of
pronunication dictionaries: Human factors in boot-
strapping,” inProceedings of the ICSLP, Jeju, Korea,
2004.

