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Abstract

We propose a hyper-ellipsoid clustering algorithm that grows
clusters from local structures in a dataset and estimates the
underlying geometrical structure of data with a set of hyper-
ellipsoids. The clusters are used to estimate a Gaussian
Mixture Model (GMM) density function of the data and the
log-likelihood scores are compared to the scores of a GMM
trained with the expectation maximization (EM) algorithm on
5 real-world classification datasets (from the UCI collection).
We show that our approach gives better generalization
performance on unseen test sets for 4 of the 5 datasets
considered.

1. Introduction

Statistical pattern recognition and data analysis are
powerful tools that have gained significant importance in the
digital information era. With the dawn of the internet and
increase in computing power numerous databases are
constructed with increasing size and dimensionality. In order
to analyse and extract information from these large high-
dimensional databases a better understanding of the intrinsic
properties of data is required. The task of data analysis is
further complicated by the increasingly wide range of
applications to which data analysis is applied; these
applications range from technical applications such as
automatic speech recognition, computer vision and
bioinformatics to general applications such as marketing,
politics and even sport.

Intensive research in supervised and unsupervised
learning have led to the development of a wide range of
techniques for analysing and modelling data; these techniques
include methods for fasks such as density estimation,
dimensionality ~ reduction,  clustering.  bi-clustering,
topological modelling, Bayesian networks and various others.
The wide range of applications to which these techniques are
applied requires the analysis of datasets with highly variable
data properties which requires a significant amount of expert
knowledge in both the problem domain and in data analysis
and modelling. More general data analysis and modelling
techniques are thus required that are not dependant on the
problem domain and that do not require a significant amount
of expertise of all available methods in data analysis.

In this paper we propose a general purpose density
estimation technique based on hyper-ellipsoid clustering that
can be used to model arbitrary datasets. Qur density
estimation technique is based on general properties of data in
high-dimensional spaces; we discuss some of these properties
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in Section 2 and show how we derived a hyper-ellipsoid
clustering algorithm based on these insights in Section 3.

We design and perform a set of experiments in Section 4
to compare the density estimation performance of our
clustering approach to the expectation-maximization (EM)
algorithm and we conclude on our findings in Section 5.

2. Background

Some insight into the properties of data as dimensionality
increases is given in [1], Landgrebe demonstrates that (1) as
the dimensionality of a feature space increases, the majority of
the volume of the hyper-cube containing the feature space
moves to the edges and corners and (2) the majority of the
volume of a hyper-sphere moves to the outer shell with
increasing dimensionality. The most of the volume of high-
dimensional spaces thus tends to move to regions of the
feature space far removed from the centroid; nevertheless,
data tends to lie in manifolds (which make up small parts of
the feature space) with high densities while the remaining part
of the feature space is relatively empty. This phenomenon
thus suggests that data, specifically in higher dimensional
feature spaces, are generated from underlying manifolds with
high density.

Another argument along the same lines is given in [2]. If
we consider an example of a body suit with N sensors
capturing motion in 3 dimensions, we have a feature space of
dimensionality 3N. The exact position of a body can actually
be specified by k angles between the joints of the body. The
intrinsic dimensionality of the problem (k) is significantly
smaller than the dimensionality of the feature space (3N).
Similarly, Mumford [3] illustrated that high-dimensional
natural images can, to a good approximation, be reduced to
points on a 7-sphere. These examples suggest that high-
dimensional data can be described by underlying manifolds
with intrinsic dimensionalities (k) much lower than the
dimensionality of the feature space (d).

These properties of data imply that data points are not
uniformly distributed throughout the feature space and that
data points are concentrated in small parts of the feature space
that contribute to most of the density of the data. These sub-
feature spaces with concentrated density can be described as
underlying manifolds from which data points originate and in
order to characterise data, we need 10 learn and describe the
geometrical structures and intrinsic dimensionality of these
underlying manifolds [3].

In the next section we propose a density estimation
technique based on a hyper-ellipsoidal clustering that
approximates the geometrical structure of data points in
feature space by starting from local structures (dense regions)
in the data and then expanding from these structures to more



general structures (hyper-ellipsoids). This method groups data
points into hyper-ellipsoidal sub-feature spaces, such that the
properties of the data points in each hyper-ellipsoid are
similar.

3. Hyper-ellipsoid clustering

3.1. Preliminary experiments

We first report on a set of investigative experiments on an
artificial dataset with known properties, used in the
development of our hyper-ellipsoid clustering algorithm . We
generate an artificial dataset by sampling data points from 5
bi-variate Gaussian densities; this dataset is illustrated in
Figure 1; 50 points are sampled from each Gaussian density.
We effectively simulate a dataset sampled from two
underlying manifolds, groups 1-3 are part of a manifold and
groups 4 -5 are part of another manifold. Note that groups 4
and 5 have identical covariance matrices, and have means
relatively close to each other which will make them difficult
to distinguish for most clustering algorithms,
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Figure I: Data sampled from 2-dimensional Gaussian
distributions.

We initialise our clustering algorithm by finding the
densest region in features space; the motivation for this is that
(as explained earlier) the most of the density of datasets tend
to lie in small regions of the feature space. We thus try to
predict where the clusters in the feature space are by starting
clusters from these densest regions (this is a significant
difference from the EM algorithm which is usually initialised
with a k-means algorithm that is dependant on random
initialisation). We calculate the density of each point in the
feature space by calculating bivariate histograms between all
feature pairs. The density of any point in the dataset is
calculated as the sum of the counts of all the bins to which the
feature vector belongs.

A hyper-spherical cluster is then grown from the densest
region by calculating the Euclidean distances between the
densest point and all other points in the dataset. Data points
are then added to the cluster by ordering the data point
according to Euclidean distance and adding the nearest points.
We make use of a geometrical motivation to decide when to
stop adding nearest neighbours to the initial group. In Figure
2 we show an elliptical region E!, with three circles centred
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on the middle point of £/. If we select any radius smaller than
R, for example 7/, the area of the circle created by this radius
will always be equal to the intersecting area between the EJ
and the circle (the circle lies completely within EJ). If any
radius larger than R is selecled, for example 2, then the area
of the circle created by this radius will always be more than
the interesting area between E/ and this new circle.
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Figure 2: Geometrical motivation for determining
Euclidean cut-off point

If data points are uniformly distributed on the ellipse £/
and if the nearest points to the middle point of EJ are added
in terms of Euclidean distance, then the atea of the minimum
enclosing ellipse of all the points added up to the k™ nearest
neighbour will be approximately equal to the area of the circle
with radius from the middle point to the k™ nearest neighbour
when the k'™ nearest neighbour is closer than R. The area of
the circle will become larger than the minimum-enclosing
ellipse of the k™ nearest points once the k™ nearest neighbour
lies further than R from the middle point. The ratio (7))
between the area of the minimum-enclosing ellipse of the k-
nearest-neighbours and the enclosing circle of the k'™ nearest
neighbour will thus drastically decrease if the k™ nearest
neighbour is further than R. We can measure this ratio for
every nearest neighbour added to the group and plot a graph
that will show a significant decline once the data points in the
group are no longer distributed spherically.. The point where
the V, drastically deceases indicates when we should start
considering correlation between features, by employing
elliptical data structures.

We calculate the volume of a hyper-sphere by first
calculating the volume of a unit hyper-sphere as follows;

g

Cyp=—r—,
‘T Tr(d/2+1)

where I is the gamma function and d is the dimensionality
of the unit hyper-sphere. The volume of a hyper-sphere with
radius r is then calculated with

M

V,=C,r?. @)



The minimum volume enclosing ellipse (MVEE) of a d x
N dimensional set of points X can be obtained by solving the
tollowing optimization problem:

det(E™)

(xi- ) E(x-c) <1,

minimize

subject to 3)

where X, is the i data point in set X.

The Khachinayan algorithm can be used to solve E
iteratively (a Matlab implementation is available from [5]),

given a set of data points X. The volume of the MVEE (&)
can be obtained by using the following equation:

V. =v, det(E™")"

£ )

To illustrate how the volume ratio (V}) changes as points
are added to a group, we generated two types of data. First,
we sampled data points from a Gaussian distribution with a
spherical covariance matrix. We calculated the densest point
in the dataset by making use of a combination of bivariate
histograms and then calculated the Euclidean distances
between all other points in the group and the densest point.
We grew a cluster by adding the nearest point to the densest
point, one point at a time, and calculated the volume of the
sphere and volume of the minimum-enclosing ellipse for
every point added. The change in volume ratio as points are
added to the spherical group is shown in Figure 3. We also
generated a group of samples from a Gaussian distribution
with correlated features and followed the same procedure as
in the case of the spherical Gaussian and the volume ratios for
the points in this group are shown in Figure 4. (Note that we
used a moving average method to smooth the ¥, values in
Figures 3 and 4.)
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Figure 3. V, for uncorrelated spherical Gaussian data

We note that the spherical Gaussian group obtains a
maximum F, value at around 25 points and maintains a
relatively high ¥, value as the remaining data points are
added. From 40 points onwards, this value decreases since
these points will typically be outliers and will not suit the
spherical shape of the data very well. We see in Figure 4 that
the decline in ¥, values happens significantly earlier (around
25 points) for the correlaled Gaussian groups. This point
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indicates where the data points start deviating from the
spherical structure and where correlation should stari to be

considered,
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Figure 4: V, for correlated Gaussian data

To test the effect that other groups would have on the ¥,
values of a group, we calculated the ¥, values for group 5 of
the artificial data set in Figure 1 and obtained the results
shown in Figure 5.
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Figure 5: V. for group 5 in Figure |

We see that ¥, increases up to 40 points and then starts to
decrease slightly from 40 to 50 points as outliers of the
original group are added, a significant decrease in F, ratio
then takes place from 50-100 points as samples from group 4
are added (note that the decline is gradual since groups 4 and
5 have identical covariance matrices). A drastic increase in F,
takes place between 100 and 110 points. This is when points
from group 3 are added — the drastic change in ¥, can be
attributed to the fact that the covariance matrix and mean of
group 3 are very different from those of groups 4 and 5. The
increase in ¥, is due to the fact that the size of the MVEE
increases significantly as data points from the top manifold
(groups 1-3) are added to data points from the bottom
manifold (groups 4-5). The new structure of the point cloud
stabilizes at 110 points and ¥, decreases gradually until all
points are added to the group. Note that the ¥, generally
becomes less sensitive as the size of the group increases and
that there are no more drastic changes since all the remaining



points (from 110-250) are from the top manifold and do thus
not cause any major changes in V,,

When trying to estimate the cut-off point where
Mahalanobis distance will be used instead of Euclidean
distance one should be cautious not to use the Mahalanobis
distance prematurely. Theoretically the Mahalanobis distance
can be used afier 4 (where d is the dimensionality of the
feature space) points have been selected with the Euclidean
distance. If the Mahalanobis distance is, however, used too
early the distance measure will force the group to grow in the
direction of the initial covariance estimate. If the covariance
estimate of the o points is not representative of the covariance
of the entire group, the Mahalanobis distance will continue to
grow in the direction of the original d points (thus imposing
an artificial structure on the group covariance matrix). We
must thus ensure that we have obtained enough data points
that represent the covariance of the entire group sufficiently
before using the Mahalanobis distance measure.

In order to obtain this cut-off point where enough samples
have been selected 1o represent the covariance matrix of the
group sufficiently we take the maximum V, value (¥,,,) — in
the case of Figure 5, the cut-off point will be at around 35
samples. At this point the covariance matrix (obtained from
the nearest 35 data points) will be representative of the
covariance matrix of the entire group (50 data points).

After the V,, cut-off point has been reached, the
Mahalanobis distances between the initial group of points and
all the remaining points are calculated. Points are then
ordered according to Mahalanobis distance and the nearest
poinis are added. We measure the change in covariance of the
growing group of data points as samples are added one at a
time in order to detect when to stop growing the cluster. If a
cluster contains all the points of a certain group and starts
adding points of another group, the covariance matrix will
change significantly. We make use of the Bhattacharyya
distance measure to measures the change in covariance and
mean every time a new peint is added to the group. The
Bhattacharyya distance between two multivariate normal
distributions can be expressed as:

del(Z)

Jdet(Z ) det(Z,)
&)

where W, are the means and X, the covariances of the

1 E 1
Dy =§(J'| —Pz)TE ,0‘1 -llz)”"aln

Gaussian distributions and

E=¥. (6)

The Bhattacharyya distance thus takes the distances between
the means and covariance matrices of the two density
functions into account,

Figure 6 shows the change in covariance matrix
(measured as the difference in Bhattacharyya distance) as the
nearest samples are added to the existing group with the
Mahalanobis distance.

We see that the Bhattacharyya distance is relatively stable
up to 50 points, as points of another group are added the
change increases and at around 65 points groups 5 and 4 have
merged and the structure converges, at 75 points outliers of
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these groups are added which gives an increase in change up
to 100 points where a drastic increase in Bhattacharyya
distance occurs due to data points of group 3 that are being
added. Afier the data points of group 3 have been added, the
distance stabilises as the cluster includes all the remaining
points in groups 1-3.
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Figure 6: Change in group covariance

In order to find the cut-off point where a drastic change in
Bhattacharyya distance takes place, we take the derivative of
the change in Bhattacharyya graph, This graph is illustrated in
Figure 7.
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Figure 7: Derivative of change in group covariance

We see that significant changes occur around 70 points
(as was seen in Figure 6), with even more significant changes
at 100 points. This is where groups 4 and 5 have merged and
started to include points from group 3. We also calculate the
second derivative of the change in Bhattacharyya distance to
amplify the drastic changes even more; the second derivative
graph is shown in Figure 8.

We obtain the cut-off point where a cluster should stop
growing by calculating the relative change in standard
deviation of every point in the second derivative. Thus, for
every new point the mean and standard deviation of the
previous second derivative values are calculated and the
deviation of the new point in standard deviations is
calculated. After the entire graph is completed, the point with
the highest deviation relative to the previous points is taken as



the cut-off point. The cut-off point in this case is indicated by
the red circle in Figure 8. Note that the cut-off point should
have been at around 50 points, but since groups 4 and 5 are so
similar and close to each other the clusters were merged and
the cut-off was found at around 100 points.
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Figure 8 Second derivative of change in group
covariance

3.2. Hyper-ellipsoid clustering algorithm

From the insights obtained in Section 3.1, we propose the
following hyper-ellipsoid clustering algorithm that finds hard
and soft clusters as explained in the previous section:

1. Find the densest point in the dataset by using a sum
of bivariate histogram bin counts.

2. Use Euclidean distance measure to add nearest
samples until Euclidean cut-off point is reached.

3. Use Mahalanobis distance measure to add the nearest
points to existing group until the Mahalanobis cut-
off point is reached.

4.  Recalculate the densities of the remaining points (not
assigned to a group), and start growing a new cluster
from the densest point; any point may be assigned to
a new group even though that point might have been
assigned to a previous group.

5. Continue finding new groups (repeat steps 1-3) until
the number of points not assigned to a group yet are
less than 4.

6. Assign the remaining points (<d points) to their
nearest group in terms of Mahalanobis distance.

7. Find the overlapping points (points belonging to
more than one group) between all the groups and
assign each overlapping point to its nearest group in
terms of Mahalanobis distance.

8. Perform an iteralive k-means procedure with
Mahalanobis distance for 10 iterations.

This algorithm contains one free parameter («) that is used
to control the Mahalanobis cut-off point in step 3. The final
cut-off point for a group is calculated as follows:

N;=N;+a(N, -N,). @
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where N, is the number of points in the final group, Ny, is the
number of points selected with the Euclidean distance
measure and Ny, is the number of points (including Ng)
included until the Mahalanobis cut-off point was reached. If
o=0, all the groups will have N samples (thus no points
added with the Mahalanobis distance).

The algorithm described above can be used both for hard
and soft clustering - the final two steps are additional steps
that are required 10 convert soft clusters to hard clusters.

In order 1o obtain a density function of the training set,
the maximum likelihood (ML) mean and covariance of each
group can be calculated and the resulting Gaussian density
functions can be summed to give a GMM density estimate of
the data.

In the next section we perform a range of experiments to
benchmark the accuracy of our GMM density estimation
against the EM algorithm.

4. Experiments

4.1. Experimental design

We compare the log-likelihoods of the density estimates
obtained with the clustering approach 1o the log-likelihood
scores obtained with the EM approach on 5 real-world UCI
classification datasets [6]. These datasets are: Iris, Diabetes,
German, Heart, Australian and Balance-Scale.

Each data set is divided into 10 equal folds; the training
set is constructed from 8 folds whereas the test and validation
sets each consist of a single fold. In order to obtain the
optimal number of mixtures for density estimation with the
EM algorithm, we train GMM models with mixtures ranging
from 1-20 on the training set and calculate their log-
likelihood scores on the validation set. The optimal GMM
model is then selected (according to the highest log-likelihood
of the 20 different models) and the log-likelihood of the
unseen test set is then calculated. Each class is treated
independently — a separate GMM density function is thus
estimated for each class and the final log-likelihoods of the
classes are combined (proportional to the number of samples
in each class).

In order to find the optimal model for our clustering
approach we perform clustering and determine the density
estimate of the clusters on the training set for a values ranging
from 0 to 1 with increments of 0.1, the log-likelihood scores
of the validation set is then calculated for each of these
models and the model is selected with the highest log-
likelihood. Finally, the log-likelihood of the unseen test set is
calculated on the optimal model selected with the validation
set.

4.2, Experimental results

Table 1 shows the log-likelihoods obtained with EM
density estimation, hyper-ellipsoid hard-clustering (hard) and
hyper-ellipsoid soft-clustering (soft) on the unseen test set for
each UCI dataset (the total number of groups created per
dataset are indicated in brackets).

The results in Table 1 show that both clustering
approaches give better GMM density estimates on all the test
sets except for balance-scale, where the test-set log-likelihood
is approximately equal to the EM algorithm.



The average difference in log-likelihood scores between
the validation sel (on which parameters were optimised) and
unscen test sets of the EM algorithm is 1.6647, whereas the
average difference for the hard clustering method is 0.2459
and (.3342 for soft clustering.

Dataset EM Hard Soft

Iris -2.205(27) | -1.868 (7) -1.855(7)
Diabetes -2.974 (34) | -2.965 (10) | -2.902 (8)
Heart -4.038 (27) | -2.678 (6) -2.615 (6)
Australian -4.368 (16) | -3.041(7) -2.978 (8)
Balance-s -2.071 (8) -2.122 (15) | -2.073 (19)

Table I: Comparison of log-likelihood scores (test set)

This implies that the clustering approaches have better
generalization performance, since the EM algorithm has the
lowest log-likelihood scores on all the validation sets, but is
outperformed on the fest sets by the clustering methods.
Overall the soft clustering approach gives the best density
estimates on the test sets; the hard clustering approach has a
slightly better generalization performance than the soft
clustering and the EM seems to overtrain models on the
validation sets and has the poorest generalization performance
on the unseen test sets.

We also note that in general, the number of groups found
by the clustering methods is much smaller than the number of
mixtures selected with the EM algorithm. This explains why
the EM algorithm has poor generalization performance on the
test sets, since the EM algorithm tends to overfit the GMM
density on the validation data by selecting too many mixtures.
The only case where the EM algorithm has fewer mixtures per
class than the number of groups per class obtained with the
clustering algorithms is for the Balance-scale dataset. We see
in Table 1 that Balance-scale is the only dataset where the EM
algorithm outperforms the clustering methods; this good
performance on the test set might be atiributed to the small
numbers of mixtures selected which led to Dbetter
generalization performance.

5. Conclusions

We have shown that our clustering approach outperforms
the EM algorithm with GMM density estimation on 4 of the 3
UCI datasets considered. Qur clustering approach generally
finds fewer clusters in the data than the number of mixtures
found by the EM algorithm, which leads to better
generalization performance on unseen test data.

The fact that our algorithm generalizes better than the EM
algorithm on unseen test sets suggests that our approach is
capturing underlying structure of the data in the estimated
density, whereas the EM algorithm obtfains an artificial
structure with a density function that optimizes the log-
likelihood of the data. The clusters obtained with our
approach thus give us insight into the structure of the data,
whereas the GMM obtained with the EM algorithm may
optimize the log-likelihood of the validation set without
mapping to a frue structure in the data.

An advantage of our clustering approach is that it is not
dependant on a random initialization as in the case of the EM
algorithm. Our approach is thus not susceptible to local
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minima — the density function obtained with the EM
algorithm, in contrast, depends on the initialization of data.

Another advantage of our approach is that the V, values
and change in covariance values can be plotted for each group
in the training stage. These graphs can give an analyst insight
into how the groups are constructed which is not possible
with the EM algorithm.

Our approach can also be extended to extract the topology
of the data by calculating the pair-wise Bhattacharyya
distances between all groups obtained, and using multi-
dimensional scaling (MDS) to visualize the relative distances
between the hyper-elliptical groups in the data. Doing MDS
for a GMM obtained with the EM algorithm will not be
representative of the true tlopology of the data, since the
mixtures obtained with the EM algorithm are less
representative of the structures in the data, as argued above.

One drawback of our approach is that the Mahalanobis
distance measure requires at least d points in a group to
calculate the ML covariance matrix. In order to obtain stable
groups with our approach, there must therefore be
significantly more data points than features in a dataset. since
the smallest possible group with our approach has at least d
points. This shortcoming can, however, be addressed by
making use of a Mahalanobis distance measure with diagonal
covariance matrix. This ignores the pair-wise correlations
between features; however, when the data is that sparse,
correlations are in any case not reliably estimated [7].
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