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ABSTRACT 

Platform pose (localization and orientation) information is a key requirement for 

autonomous mobile systems. The severe natural conditions and complex terrain of 

underground mines diminish the capability of most pose estimation systems, especially GPS. 

Our research interest is focused on using low-cost off-the-shelf IMU to improve the Active 

Beacon Positioning System (ABPS) developed here at the CSIR. This paper proposes a novel 

pose estimator, for underground mines, that fuses together data from the ABPS and low-cost 

MEMS based IMU. This pose estimator uses a square-root unscented Kalman filter (SR-

UKF) to fuse the data together. The method is evaluated by building a complete system in a 

lab. 

Keywords: Sensor fusion, Navigation, Unscented Kalman Filter, Estimation. 

 

1 INTRODUCTION 

South Africa plays a major role in the international mining fraternity. Mining employs 

495 000 workers directly and a similar amount indirectly, providing a daily subsistence 

for approximately 5 million South Africans [1]. Robotics could aid the mining industry to 

achieve government safety standards. Some of the main challenges were discussed by 

Green and Vogt in [2]. 

 

Open-cast mines have long navigated vehicles using integrated GPS/INS systems. GPS is 

unavailable in underground mine environments, which means that another system has to 

be used. This paper gives a basic introduction to the positioning algorithm of an 

ultrasonic time-of-flight (TOF) based system. It further discusses the fusion of this system 

with an inertial measurement unit (IMU) using a square-root unscented kalman filter (SR-

UKF). 

2 PREVIOUS WORK 

Van der Merwe and Wang [3] presented a dynamic process model which includes time 

varying bias terms. They used first-order Euler integration for state update and an UKF 

for state estimation. They successfully implemented the method to automate a model 

helicopter. 
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Zhang et al [4] introduced a new set of general dynamic models of IMU to describe the 

state of a automobile. These dynamic equations are, closely resemble the above method, 

integrated using a fourth-order Runge-Kutta approach instead of a first order Euler 

integration as in [3]. 

 

The contribution of this paper includes the use of the ABPS and the fully embedded 

application of the UKF. Our proposed system also differs by the use of the beacon 

distance in the measurement model, rather than the system’s position. The UKF is used to 

fuse the data from the ABPS and the IMU. The UKF source code is optimized for the 

embedded application. 

 

The next section discusses the localization system’s different components and their 

functions. Section Error! Reference source not found. describes the localization 

algorithm using an unscented Kalman filter. Section Error! Reference source not 

found. describes the state vector, process model and measurement model. It further 

describes the UKF implementation. The final two chapters discuss the solution and 

provide the conclusion. 

3 THE NAVIGATION SYSTEM 

The system implementation diagram is given in Figure 1. The navigation system uses 

both relative sensors, in the form of an IMU, and absolute sensors, in the form of an 

active beacon positioning system. The main localization data fusion algorithm is an 

unscented Kalman filter [3], [5] that fuses the sensor data to estimate the pose. The 

process model describes the time evolution of the state and the measurement model 

provides the link between the measurements and the system state. The navigation system 

must provide localization within 10cm at a moving speed of 0.5m/s. 

 

 
Figure 1: Figure Heading. 

 

3.1 Inertial Measurement Unit (IMU) 

The Inertial Measurement Unit (IMU) used in the project is the ADIS16364 from Analog 

Devices. This is a strap-down IMU with six degrees of freedom. The factory calibration 

characterizes the sensor for sensitivity, bias, alignment, and linear acceleration (gyro bias). 

As a result, each sensor has its own dynamic compensation formulas that provide accurate 

sensor measurements over a temperature range of -20
o
C to +70

o
C [6]. 

 

The ADIS16364 was selected because it claimed to provide a simple, cost-effective 

method for integrating accurate, multiaxis inertial sensing into industrial systems, 

especially when compared with the complexity and investment associated with discrete 
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designs. All necessary motion testing and calibration are part of the production process at 

the factory, greatly reducing system integration time [6]. Tight orthogonal alignment 

simplifies inertial frame alignment in navigation systems. 

 

3.2 Absolute Sensors 

The dead reckoning Kalman filter can substantially reduce the localization error in 

measurement but, since the actual position and heading are unobservable [7], the filter will 

inevitably diverge. Absolute measurements are necessary to bind the dead reckoning 

localization error.  

 

The active beacon positioning system (ABPS) developed is intended for excavations of the 

order of 30m X 3m X 1m in tabular ore bodies, explained by Ferreira1 [8]. The 

environment is populated by a number of beacons with known positions. The Green 

Mamba only requires the distances between the receivers and the beacons and the position 

of the beacons to estimate the position. 

 

3.2.1 Beacon Implementation 

Beacons exist in a common environment and periodically transmit information that is 

utilized by any number of ABPS receivers within coverage. This information includes the 

synchronized ultrasonic and electromagnetic signals used for ranging, a form of unique 

identification and the beacon’s own location. The location of a beacon is surveyed during 

installation and stored in memory on the beacon. 

 

The radio signal is used for a number of functions. In the design, location and 

identification information are transmitted by the radio. Apart from transmitting a beacon’s 

location and identification, the start of the transmission serves as the synchronization 

mechanism and during transmission the carrier is used to avoid transmission collisions. 

Figure 2 demonstrates the synchronization by the RF channel. The full beacon localization 

system was presented at CARSFOF 2010. 

 
Figure 2: RF signal used as synchronization. 

 

3.3 Data Logging and Processing Device 

The system architecture consists of three major components: the relative localization, the 

absolute localization system and a data-logging and processing system. The data logging 

and processing is done using a Green Mamba single board computer. The Green Mamba is 
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a high performance embedded control board based on a modular architecture for easy 

expandability, which is designed and developed by the Council for Scientific and 

Industrial Research (CSIR). The board is based on the AVR 32 32-bit microcontroller 512 

Kbytes flash memory. This gives the board high performance at low power consumption 

and runs on the FreeRTOS real-time embedded operating system. The board is equipped 

with a real-time clock with battery backup, micro-SD card interface, 10/100Mbps ethernet 

and 2.0 Full Speed and On-The-Go USB to name a few features. 

4 LOCALIZATION ALGORITHM 

A variety of sensors are available for the state estimation and each sensor has its own 

downfall, therefore a data fusion algorithm is required. The main localization data fusion 

algorithm is a discrete unscented Kalman filter (UKF) [3], [5] that fuses relative sensor 

observations and observations from the absolute sensors to estimate pose. The UKF will 

estimate the state recursively and iteratively in near real-time, constantly driving the 

uncertainty of the solution downwards. 

 

4.1 The Square-root Unscented Kalman Filter 

Since the classic Kalman filter requires the assumption that the process and measurement 

equations are linear in the state variables, a generalization of the Kalman filter must be 

used that can account for the non-linear quaternion measurement model. One approach is 

to approximate the non-linearities to first order using an Extended Kalman Filter (EKF), 

but this approach has been mostly replaced by sigma-point methods such as the 

Unscented Kalman Filter (UKF) [5]. Sigma-point filters pass a set of points representing 

the input distribution through the non-linear functions, and then approximate the output 

statistics. The UKF is accurate to third order for any nonlinearity, but only requires 

computational resources on par with the EKF [3]. 

 

Due to numerical round-off errors, it is possible for the state covariance matrix to cease to 

be positive definite, causing the UKF algorithm to fail when taking a square root of the 

covariance to calculate the sigma points. To prevent this possibility, the square root of the 

covariance matrix can calculated directly during every time step, without using the actual 

covariance matrix. The efficient implementation of van der Merwe and Wan makes use of 

Cholesky factor updating, allowing for better performance than even a normal UKF [3]. 

The equations from van der Merwe and Wan’s paper are described below. 

 

The filter is initialized with a mean vector and the square root of a covariance as follows 
,         (1) 

.      (2) 

 

The Cholesky factorization decomposes a symmetric, positive-definite matrix into the 

product of a lower-triangular matrix and its transpose. This triangular matrix is used 

directly to calculate the sigma points: 
.     (3) 

 

The scaling constant  is calculated from 

,         (4) 
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where  is a tunable parameter less than one. The sigma points are then passed through 

the nonlinear process model, which predicts the current state for each sigma point and the 

previous IMU data, . 
.       (5) 

 

The estimated mean and square root covariance are calculated from the transformed 

sigma points using 

,       (6) 

,      (7) 

     (8) 

where  

,       (9) 

,        (10) 

.        (11) 

 

The parameter α is the same as above, and β is another tunable parameter used to 

incorporate prior knowledge of the state distribution (β=2 is optimal for Gaussian 

distributions). The matrix  is the process noise covariance. The QR factorization 

decomposes a matrix into the product of an orthogonal matrix and a triangular matrix; 

only the triangular matrix is used here. Since the zero weight may be negative, the 

separate Cholesky update operation is needed; the Cholesky update operation efficiently 

transforms the Cholesky decomposition of the matrix A into the Cholesky decomposition 

of the matrix A + , where  is a row vector. 

 

The transformed sigma points are then used to predict what measurements the sensors 

will make, using the nonlinear measurement model: 

.        (12) 

 

The expected measurement  and square root covariance of  (the 

difference between the actual and expected measurements, also called the innovations) 

are given by the unscented transform equations just as for the process model: 

,       (13) 

,      (14) 

.     (15) 

 

In order to determine how much to adjust the predicted mean and covariance based on the 

actual sensor input, the Kalman gain matrix  is calculated: 

,    (16) 

.       (17) 

 

Note that  is square and triangular, so efficient back-substitutions can be used rather 

than a costly matrix inversion. Finally, the state mean and covariance are updated using 

the actual sensor input and the Kalman gain matrix: 
       (18) 
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,         (19) 

       (20) 

 

4.2 The Process Model 

The system is implemented on an embedded platform and it is for this reason that we used 

the standard IMU driven kinematic process model formulation that comprises of an INS 

mechanization component [9], [10] and an IMU sensor error model component, similar to 

Zhang et al [4]. The IMU sensor error model components are added to our state vector 

because the low cost MEMS based IMU used in the system has a large bias and scale 

factor errors. The estimated values of these error components are then used to correct the 

raw IMU acceleration and gyro-rate measurements before they are used inside the INS 

mechanization equations of the process model [5]. The 16 dimensional state vector, x, of 

our system is defined as follows: 

,     (21) 

where 

       (22) 

and 

       (23) 

represent the position and velocity respectively and  

      (24) 

represents the system attitude in quaternion in the navigation frame (n-frame).  is the 

IMU acceleration biases, and  is the IMU gyro rate biases. van der Merwe [5] states 

that a time varying bias term is sufficient to model the combined effect of the bias and 

scale error terms and therefore eliminates the need to include the scale factor in the state 

vector. 

 

The continuous time kinematic navigation equations, INS mechanization equations and 

error model discussed above, operating on this state vector and driven by the error 

corrected IMU measurements and can be established as: 

.   (25) 

In Equation 2,  is the direction cosine matrix (DCM) transforming vectors from the 

body frame (b-frame) to the n-frame. The DCM is a nonlinear function of the current 

attitude quaternion and is given by 

       (26) 

=2 .   (27) 

The  is the gravity vector in the n-frame, which is expressed by 
,        (28) 

where  is the local gravity, which is decided by the coordinates in the geodetic 

coordinate system [11]. The raw measurements are defined as 
,       (29) 

     (30) 
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In the above equations,  and  are the raw measurements of acceleration and gyro-rates 

coming from the IMU, and  and  are the IMU acceleration and gyro-rate 

measurement noise, and  is the rotation rate of the earth as measured in the navigation 

frame (n-frame) relative to the earth frame (e-frame) and hence is time-varying [5] as the 

n-frame moves relative to the e-frame. For terrestrial navigation, we assume the n-frame 

is stationary relative to the e-frame resulting in a constant  for a given origin location, 

latitude and longitude, of the n-frame. 

 

In Equation 2,  is the IMU-lever-arm coupling component due to the IMU not being 

located at the center of gravity of the system. This component can be ignored if the 

navigation filter computes the state estimate at the IMU location [5]. This IMU centric 

navigation solution can then simply be transformed to the center of gravity location after 

the fact as needed by the control system. 

 

One of the most common properties of IMU, despite their quality, is that the acceleration 

and gyro rate output are known to be in error by an unknown slowly time-varying bias 

[4]. Usually the turn-on bias is accurately known and accounted for in the IMU 

calibration. Since the bias and scale factor of low cost MEMS based IMU sensors exhibit 

non-zero mean and non-stationary behavior, the residual time-varying bias error is 

modeled as a random-walk process [11] in order to improve the tracking of these time-

varying errors by the navigation filter. This does, however, require that the effect of these 

errors be observable through the specific choice of measurement model. Therefore, , 

and  in Equation 2 are white noise of acceleration and gyro rate respectively in the 

IMU. 

 

Equation 2 has to be discretized for implementation in the embedded system. The position 

and velocity discrete-time updates are calculated by the following simple first-order Euler 

updates [5] 
      (31) 

      (32) 

where  and  are calculated using Equation 2 and dt is the integration time-step of the 

system, usually dictated by the IMU data rate. The quaternion propagation equation can 

be discretized with an analytical calculation of the exponent of the skew-symmetric 

matrix. The discrete-time update can be written as 

.    (33) 

If we further denote 
       (34) 

       (35) 

       (36) 

as the effective rotations around the body frame (b-frame) or roll, pitch and yaw axes 

undergone by the system during the time period , assuming that the gyro-rates ,  

and  remained constant during that interval, we can re-introduce the 4 4 skew-

symmetric matrix 

       (37) 

     (38) 
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Using the definition of the matrix exponent and the skew symmetric property of , we 

can write down the following closed-form solution [5]: 

,   (39) 

where 

     (40) 

     (41) 

Proof of this closed-form can be found in [5].Theoretically, Equations 3 and 4 ensure that 

the updated quaternion  has a unit norm. It is common to add a small Lagrange 

multiplier term to the first component of Equation 4 to further maintain numerical 

stability and the unity norm of the resulting quaternion [5]. The resulting final solution for 

the time-update of the quaternion vector is given by 

   (42) 

where  is the deviation of the square of the quaternion norm from unity 

due to numerical integration errors, and  is the factor that determines the convergence 

speed of the numerical error. These factors serve the role of the above mentioned 

Lagrange multiplier that ensures that the norm of the quaternion remains close to unity. 

The constraint on the speed of convergence for the stability of the numerical solution is 

 < 1 [12]. 

 

Finally, the discrete time random-walk process for the IMU sensor error terms are given 

by 
      (43) 

     (44) 

where  and  are zero-mean Gaussian random variables. 

 

4.3 The Measurement Model 

If we assume that the robot moves slowly, the time-of-flight (TOF) measurements of the 

ultrasonic localization system are expressed using the following matrix equation 

=     (45) 

where  

 

 

 

 

In Equation 5,  and  denote the TOF and the time delay of the  beacon, 

respectively. Measurement noises, in the same equation, are regarded as mutually 

independent, zero-mean white Gaussian processes with covariance 

.      (46) 

Equation 5 can be more compactly rewritten in the vector-matrix form 
      (47) 

where 

,   (48) 
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     (49) 

    (50) 

5 RESULTS AND DISCUSSIONS 

The Green Mamba performs all the calculations in the experiment. In Figure 3 the Green 

Mamba single board computer is on the left. The Green Mamba communicates with the 

IMU via SPI with the Green Mamba being the master and the IMU being the slave. The 

Green Mamba and the ABPS, bottom right component in Figure 3, communicate via 

UART based on a RS232 protocol. 

 

 
Figure 3: Experimental Setup with IMU, ABPS and Green Mamba 

 

The required processing is too heavy for an embedded system. FreeRTOS allows tasks to 

run, virtually, concurrently. This feature is useful as it allows us to run the UKF in a 

pseudo-off-line state. This means we let the Green Mamba perform its normal tasks 

including capturing data from the navigation sensors, among other tasks. FreeRTOS also 

allows the user to set the task priority. By decreasing the priority of the UKF task, the 

Green Mamba can continue to perform the data collection and control tasks while the 

UKF task runs in the background. 

 

The Green Mamba streams data to a PC over RS-232. The practical experiment is a 

typical low-speed test. The Green Mamba was powered on with the y axis pointing 

straight up. A series of rotations were performed on the x-axis, then rotations were 

performed on the z-axis, and finally (after one-half x-axis rotation to reset to the initial 

position) rotations were performed on the y-axis. 

 

We compared the actual data and the results of the measurement prediction step in the 

SR-UKF for verification of the filter. Figure 4 shows the estimated state can generate 

measurement predictions that closely match the IMU data. This is strong evidence of the 

fidelity of the measurement model.  
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Figure 4: Actual vs. Predicted Measurements. 

6 CONCLUSION 

We present an underground navigation method by integrating the measurements of IMU 

and ABPS. The measurement of an IMU is based on the inertial frame (i-frame) while the 

measurements of the ABPS are based on the n-frame. So the standard IMU driven 

kinematic model used for the system include the associated transformations from the i-

frame to the n-frame. The system state estimation is implemented using the SRUKF for 

its computational advantage against the UKF. This system was evaluated in a lab at the 

CSIR. The measurement predictions closely resemble the actual measurement 

7 RECOMMENDATIONS 

The immediate progression in the research is to characterize the system efficiency and 

accuracy. The data will be post processed on the Green Mamba. This will allow us to 

capture all the data from the sensors and the results of the filter. The accuracy will be 

compared to the Matlab implementation of the filter developed for technique verification. 

Saving the data will also verify the reliability of the system by checking the repeatability 

of the experiments. Finally the efficiency of the technique will be characterized. The 

Green Mamba has a built-in real-time clock which can be used to measure the processing 

time and track improvements made in the code. 
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