Speect: a multilingual text-to-speech system

J.A.Louw

Human Language Technologies Research Group
Meraka Institute, Pretoria, South Africa

jalouw@csir.co.za

Abstract

This paper introduces a new multilingual text-to-speech sys-
tem, which we call Speecr (Speech synthesis with extensible
architecture), aiming to address the shortcomings of using Fes-
tival as a research system and Flite as a deployment system in a
multilingual development environment. Specct is implemented
in C with a modular object oricnted approach and a plugin ar-
chitecture, aiming to separate the linguistic and acoustic depen-
dencies from the run-time environment. A scripting language
inferface is provided for rescarch and rapid development of new
Linguages and voices. This paper discusses the motivation for
a aew text-to-speech system as well as the design architecture
ard implementation of the system. We also discuss what is still
rejuired in the development to make the new system a viable
alernative to the Festival - Flite tool-chain.

1. Introduction

lext-to-speech (TTS) synthesis introduces a multitude of
communication possibilities, which are especially important
in developing countrics for cheap and effective conveyance
ot information. Multilingual text-to-speech is especially
nrportant in countries with more than one official language
as 15 the casc in South Africa. Multilingual text-to-speech,
as used in this paper, refers to simple multilingual speech
svathesis [1] where language switching is usually accom-
panied by voice switching. There arc many high-quality
commercial text-to-speech systems available for the major
spoken languages, but not so for languages with a small
geographical distribution or a small number of speakers relative
to the major languages. Development of these technologies is
a daunting task, and in multilingual environments cven more so.

Text-to-specch synthesis is the automated process of map-
png a textual representation of an utterance into a sequence
of numbers representing the samples of synthesized specch [2].
TTis conversion is achieved in two stages as depicted in figure
1

o Natiral Language Processing (NLP): Converting the
textual representation of an utterance into symbolic lin-
guistic units.

* Digital Signal Processing (DSP): Mapping the symbolic
linguistic units into samples of synthesized speech.

The Natural Language Processing stage consists of the fol-
lowing major modules:

o Text pre-processing involves the transformation of the

textual indut into a format suitable for the phonetization
module. The specifics of this task is dependent on the

165

Textual Natural Language Processing

utterance

representation -
p______,i Pre-proccssmgH Phonetization |_>

Prosody
generation

Symbolic
linguistic
units
iqital Sigmna .
Synthesized Digital Signal Processing
Speech

] Waveform generation [

Figure 1: Functional blocks of a text-to-speech synthesizer.

type of textual input given to the system and includes
utterance chunking and text normalization.

e The normalized text of the pre-processing module is con-
verted into a phonetic representation by the phonetiza-
tion block.

e Prosody generation involves the generation of intonation
and duration targets through some form of prosody mod-
els.

The data generated by the NLP stage represents the symbolic
linguistic units, which are then converted into synthetic speech
by the Digital Signal Processing stage. The DSP stage can be
realized by means of unit selection [3], statistical parametric
synthesis [4], formant synthesis [5], or some other type of syn-
thesizer technology. Each of the modules in the two stages adds
some type of information to the initial given utterance which
enables the final module, waveform generation, to generate syn-
thetic speech based on this information,

The NLP stage is language dependent, whereas the DSP
stage is dependent on the synthesizer technology of the im-
plemented synthetic voice. Therefore, a multilingual text-to-
speech system must be able to apply different NLP and DSP
modules for different synthetic voices based on the language
and synthesizer technology of the specific voice.

The next section discusses the motivation behind the need
for a new speech synthesizer, followed by the design and imple-
mentation. We then conclude with a discussion.

2. Motivation

Over the last decade, the Festival speech synthesis system [6]
has become the de facto standard free toolkit for speech syn-
thesis research [7]. Festival provides a modular architecture
whereby it is possible to modify each of the sub-tasks in-
volved in the NLP and DSP stages in a text-to-speech conver-

ston process. Festival is implemented in two languages, C++
and Scheme (a lisp dialect), providing an integrated interpreted
language for run-time manipulation. Festival, together with the
Festvox project [8], aims to make the building of text-to-speech
voices a structured and well defined task.

While being a fine example of a research system there are
drawbacks to using Festival as a component within a speech en-
abled technology sotution such as an infegrared voice response
(1VR). Festival has a large memory footprint and is relatively
slow as a result of having a self contained interpreted language.
A Festival compatible alternative is the Flite [9] synthesis en-
gine, and while having a similar modular architecture and ut-
terance structure representation, it provides improvements with
regards to [9].

e speced,

e portability,
& maintenance,
e code size.

e data size, and
s thread sarety.

Flite was writter: in ANSI C and has no interpreted language. In
Festival a synthetic voice is loaded into internal data structures
in.o memory, while in Flite all voice data is represented in
C code. Thercfore one still needs to use Festival and the
Festvox toolkit for rescarch and development of new voices,
and then convert these voices with appropriate scripts into a
Fi.te compatible version. The process of building a new voice
ina new languayce (a language where the NLP modules do not
exists in either Festival or Flite) will require one to first develop
the NLP modules in C++ and/or Scheme in Festival and then
rewrite these modules in C code for use in Flite. This is time
consuming and requires expert knowledge of the Festival and
Fl te code base.

As a result of our experience with multilingual text-to-
spech developnient we decided to design and implement a new
text-to-specch system that combines the best features of the ex-
isting Festival aad Flite synthesis engines while also address-
ing the shortcomings of these systems with regards to our re-
quirements. The most important requirements for the new sys-
tem, which we :all Speect (Speech synthesis with extensible
architecture), can be summarized as follows:

s A single synthesis engine: Having one synthesis engine
reduces the code base and will eliminate any discrepan-
cies between a development system and deployment sys-
tem. This also leads to less maintenance.

e Extensibje architecture: [t should be easy to extend and
modify the system with regards to the NLP as well as
DSP stages of the text-to-speech conversion process.

3. Design
A synthetic voice ina TTS system can be seen as a combination
of two parts
e linguistic component: providing language models and
data for the NLP stage of the synthesis process.

e acoustic component: the acoustic models and data re-
quired by the DSP stage for waveform generation.

166

fitth
Word Relation twenty 1

Syliable Retanon

down

Phone Relation

Figure 2: An example representation of an utterance structure
using a heterogeneous relation graph.

The linguistic component is language dependent and can be
shared by voices of the same language while the acoustic
component is unique to a specific voice. Speect aims to provide
control of the synthesis process and its design is intended to
be independent of the underlying linguistic or acoustic models
and data. Speect is not meant to replace speech processing
tool-kits, the linguistic and acoustic models and data still needs
to be generated by packages such as Edinburgh Speech Tools
[10], Festvox and the Speech Signal Processing Toolkit [11].

To allow existing linguistic and acoustic Festival models
and data to be reused, the internal representation of an utterance
follows the same formalism as used in Festival and Flite. The
utterance structure is represented internally as a Heterogeneous
Relation Graph [12] (HRG), which consists of a set of relations,
where each relation contains some items (the items need not be
unique to a relation). The relations represent structures such
as words, syllables, phonemes or even duration targets and the
items arc the content of these structures. Figure 2 shows an
example representation of an utterance structure using a HRG
with three relations and their items.

The individual NLP and DSP modules of figure 1 are called
utterance processors. Utterance processors create relations
in the utterance structure and add information (items with
features) to the relations based on the linguistic and acoustics
models and data. For example in figure 2 the sy/lable relation
of the utterance has three items, with syllable stress as a feature
of the items.

Specect has an object oriented design which allows the same
modular approach to text-to-speech as Festival and Flite. A plu-
gin architecture is used for the utterance processors, thereby
restricting the language dependencies within the data and re-
sources of the specific voice implementation and not in the syn-
thesis platform. This plugin architecture allows different imple-
mentations of the same voice and/or language to be used during
run-time, as the voice and language specifications load the re-
quired plugins.

4. Implementation

Speect is implemented in ANSI C to provide maximum porta-
bility and speed. The implementation of an object oriented
paradigm in C requires more discipline from the programmer,
but allows for code reuse and a modular design. Figure 3 shows
the implementation architecture of Speect.

NSenpting anguage Intertace

Wrapper Functions

Senthears Connol

Voice Marager Plugin Manager

Speech and Data Objects

SERTHINEN Fonguist HRG 12ara Sources Data Contamers Data Calites

Base System

Object Sastem Math Strings Utibities Continers

Figure 3: The Speect architecture.

I'he Speect architecture is divided into 4 major sections

e The base system provides a library of basic functions
that arc used by the upper levels of the system.

- object svstem: the objects system implements a
object oriented paradigm in C, whereby an object
15 described by two structures, one for it’s data
members and one for it’s methods. The object sys-
tem provides basic encapsulation, polymorphism,
anc. inheritance.

- ma'l routines: basic mathematical routines.

- wdility functions: memory allocation and logging
utilities.

- string functions: basic string functions and UTF 8
support.

~ hasic containers: doubly-linked lists and a hash
tab ¢ as basic data containers.

e Speech and Data Objects offer higher level objects spe-
cilic to speech synthesis and data handling.

— aceustic objects: provides interfuces to wave-
torms, data tracks, etc. Interfaces are implemented
by plugins, therefore removing data dependencies
from the synthesis system,

167

— linguistic objects: provides interfaces to phoneset,
lexicon, etc. Plugins implement the linguistic in-
terfaces.

— HRG objects: the utterance structure implementa-
tion. Follows the implementation of Festival and
Flite for representing utterances.

— data sources: objects and interfaces for reading
and writing data from/to files and memory. An
Extensible Binary Meta Language [13] protocol
is implemented as the standard format for read-
ing/writing to files.

— data containers: Abstract objects that encapsulate
the use of the base system containers.

— data utilities: the basic data object used in the
HRG system. All objects that inherit from this ob-
ject can be used as a feature in the utterance struc-
ture.

e Synthesis Control is provides the top level control of
voices.

— plugin manager: handles requests for specific plu-
gin implementations. Dynamically loads and un-
loads plugins as required by the system.

— voice manager: loads and unloads voices and han-
dles synthesis requests.

e Scripting language interface connects interpreted
scripting languages to the Speect library.

— wrapper functions: the connection between the
Speect library and scripting languages through
SWIG (Simplified Wrapper and Interface Gener-
ator) [14].

The scripting language interface enables one to use Speect in
an interpreted language setting, therefore speeding up research
and development of new voices and languages. The speed of
the Speect library is not influenced by the scripting language as
it is external to the library implementation.

The work-flow of Speect is as follows: a synthesis request
must be accompanied by the desired voice. The voice specifica-
tion, which consists of a list of linguistic and acoustic utterance
processors and associated data, is loaded by the voice manager.
The desired utterance processor plugins are loaded dynamically
by the plugin manager on request from the voice manager. The
voice manager then proceeds to execute each of the utterance
processors on the textual utterance representation, building an
utterance structure. The utterance structure is synthesized and
the synthetic speech returned.

5. Discussion

The Festival speech synthesis system provides a research and
development platform for building synthetic voices in different
languages. However, it is challenging to use in a real world
deployment environment because of it’s size and speed. Flite
aims to correct these deficiencies with a much smaller and
more cfficient implementation, but lacks the development
environment and suffers from language dependencies in the
data and resources. Therefore, to develop synthetic voices
for deployment one needs to create the voice in Festival and

cenvert i to a Fiote suitable format. This is a complicated task,
especially for new languages and requires extensive knowledge
of the Festival anad Flite code base.

Speect aims to be an alternative to the Festival - Flite tool-
chain by providing a single speech synthesis engine for re-
scarch, development and deployment in multilingual environ-
ments. This is achieved by a modular object oriented design
wth a plugin architecture, thereby separating the synthesis en-
gine from the linguistic and acoustic dependencies. The im-
provements of the proposed Speect synthesis system with re-
gards 1o the Festival - Flite tool-chain can be summarized as
follows:

¢ Theresearch, development and deployment cycle is done
with one synthesis engine, reducing the size of the code
basc as well as the required maintenance. Therefore, im-
plementation of new NLP or DSP plugins requires expert
knowledge of just one synthesis engine.

e Run-time performance comparable with that of Flite,
while retaining the research and development advantages
of the Festival design, without the speed and size penal-
ties associated with the integrated interpreted language
because of the separation of the core library and the in-
terpreted language.

¢ Footprint size comparable to Flite due to plugin architec-
ture, therefore only the required modules for a particular
voice are loaded.

'he modular object oriented design combined with the SWIG
incrface enables the use of the Specct library through native
calls from multiple scripting languages, and other languages
such as Java, C#, Scheme and Ocaml, while encapsulating
th: underlying implementation through the use of the plugin
ar:hitecture.

The Speect system has been completed up to a stage where
ut crance processor plugins can be loaded and run on basic in-
put text and a concatenative unit selection method as described
in {7], but to be a viable alternative to the current system the
following still needs to be addressed:

* SWIG inierface files for Python,

» Python scripts for the creation of unit selection voices,

o NLP modules for different languages,

* complete documentation on the implementation,

o manual for writing and extending plugins,

» documen:ation for building voices, and

s scripts for converting existing Festival voices into a

Speect format.
6. References

{11 Traber, C., Huber, K., etal. “From multilingual to polyglot
speech synthesis”, In Proceedings of Eurospeech, pp. 835-
538, Budapest, Hungary, September, 1999.

—
1)

Stylianou, Y., “Harmonic plus noisec models for speech,
combined with statistical methods, for speech and speaker
modification”™. Ph.D. Thesis, Ecole Nationale Superieure
des Telecommunications, Paris, France, 1996.

168

[3] Hunt, A. and Black, A. “Unit selection in a concatenative
speech synthesis system using a large speech database”,
In Proceedings of ICASSP, vol 1, pp. 373-376, Atlanta,
Georgia, 1996.

{4] Black, A., Zen, H., and Tokuda, K. “Statistical Paramet-
ric Synthesis”, Proceedings of I[CASSP, pp. 1229-1232,
Hawaii, 2007.

[5] Hogberg, J. “Data driven formant synthesis”, In Proceed-
ings of Eurospeech, pp. 565-568, Greece, 1997.

[6] Taylor, P., Black, A.W., and Caley, R. “The architecture of
the Festival Speech Synthesis System”, 3rd ESCA Work-
shop on Speech Synthesis, pp. 147-151, Jenolan Caves,
Australia, 1998.

{7] Clark, R.A.J., Richmond, K., and King, S. “Multi-
syn: Open-domain unit selection for the Festival speech
synthesis system.”, Spcech Communication 49:317-330,

2007.
[8] Black, A. and Lenzo, K. “Building Voices
in the Festival Speech Synthesis System”,

http://www.festvox.org/festvox/bsv.ps.gz, 2003.

[9] Black, A. and Lenzo, K. “Flite: a small fast run-time syn-
thesis engine”, 4th [SCA Speech Synthesis Workshop, pp.
157-162, Scotland, 2001.

The Centre for Speech Technology Research, The Univer-
sity of Edinburgh, The Edinburgh Speech Tools Library,
http://www.cstr.ed.ac.uk/projects/speech_tools/.

[10]

[11] Department of Computer Science, Nagoya Institute of
Technology, Speech Signal Processing Toolkit, SPTK 3.1.
Reference manual, http://downloads.sourceforge.net/sp-

tk/SPTKref-3.1.pdf.

Taylor, P., Black, A.W., and Caley, R. “Heterogeneous re-
lation graphs as a mechanism for representing linguistic
information”, Speech Communication 33:153-174, 2001.

Meta

f12]

{13] Extensible Binary

http://ebml.sourceforge.net/.

Language,

[14] Beazley, D., “Swig: An easy to use tool for integrating
scripting languages with ¢ and ¢++”, Presented at the 4th

Tel/Tk Workshop, Monterey, California, 1996.

