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Abstract

Tle performunce of trainable speech-processing systems de-
tenorates significantly when there is a mismatch between the
trsining and testing data. The data mismatch becomes a domi-
nant factor when collecting speech data for resource scarce lan-
guages. where o1e wishes to use any available training data for
a variety of purposes. Research into a new channel normaliza-
ten (CN) technigue for channel mismatched specch recognition
1s presented. A process of inverse linear filtering is used in or-
der to match training and testing short-term spectra as closely as
possible. Our technique is able to reduce the phoneme recogni-
ticn error rate between the baseline and mismatched systems, to
an extent compacable (o the results obtained by the widely-used
ceostral mean subtraction. Combining these techniques gives
so ni¢ additional improvement.

1. Introduction

In this paper, we investigate a channel normalization technique
that reduces the speech data channel mismatch between varied
soarces by estirating the average short-term spectral energy
and then filtering the speech data with an appropriate mapping
Al er.

Any misma.ch between training and testing speech data
significantly degrades the performance of trainable speech-
processing systems.  The mismatch is introduced by physi-
ca. processes such as background noise, non-stationary noise,
recording transcucers and transmission channels, as well as
population diffe-ences such as speaker dialects, age and gen-
der distributions. ete. Only the combined effect of these vary-
ing processes are generally observable in the data; therefore
all these effects are treated as one “channel” mismatch pro-
cess. Once a mismatch has been identified, channel normaliza-
tien techniques are employed to reduce the effect it has on the
sprech system. Such issues are often dealt with by recording
suhiciently varioble training data, but the penalty introduced by
the channel misimatch becomes critical when a resource scarce
language is used. One of the major problems in dealing with
resource scarce fanguages is that collecting speech data is ex-
pensive and the amount of data is not comparable to that tra-
ditionally used :or global Janguages. One method to reduce
the impact of data scarcity is to use different recording devices
such as cellular shones, land-line phones and computer micro-
phones. However, this method would inevitably introduce a
channel mismatch, Thus, an effective channel normalization
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technique is needed to satisfactorily reduce the channel mis-
match. Ideally, one would want the speech system to behave as
if the speech data originated from one source.

There are many strategies that are used to minimize the ef-
fect of channel mismatch. In the fortunate case that speech data
is available from all the channels, channel-dependent acous-
tic models can be trained or existing acoustic models could be
adapted to better handle incoming speech data. Even though
this strategy works the best, it is rare that enough speech data is
available to develop robust acoustic models for each channel. In
the speech signal domain, blind channel estimation and inversc
filtering have been used to reduce the channel influence on the
speech data [1]. However, it is difficult to make assumptions
about the channel response and spectral nature of speech data.
Experiments have shown that if a non-linear channel response
is encountered, the blind channel estimation technique did not
provide an increase in recognition accuracy [1].

Feature vector mapping tries to overcome the channel mis-
match by treating the channel effect as feature transforma-
tion in the model domain [2, 3, 4]. More traditional tech-
niques are Cepstral mean subtraction (CMS) and Relative spec-
tra (RASTA) filtering [5, 6, 1]. CMS subtracts a long-term av-
erage cepstral component from each extracted cepstral compo-
nent. This method has gained significant popularity in speech
and speaker recognition systems for removing slow-varying
channel changes [7], but a small amount of speech informa-
tion is also removed [1]. The CMS method can only be used
in speech-based systems that use cepstral feature vectors to rep-
resent the speech data. The RASTA filtering method applies a
filter that rejects spectral components that move too slowly or
quickly compared to the normal rate of change of speech spec-
tral components [7]. However, RASTA filtering violates the
standard hidden Markov model (HMM) assumption of piece-
wise stationary [6] and introduces phase distortion [5], which
negatively impacts on recognition accuracies. The simple CMS
technique has been proved equally as good as phase corrected
RASTA for telephony experiments {5].

Based on the previous work done, the three main criteria
that were used to develop a new channel normalization tech-
nique, were:

e a resource scarce language environment is assumed,
therefore generating channel-dependent acoustic models
becomes impractical,

e more complex channel normalization techniques afford
little benefit over simpler methods, and



e fcature vector independence is required in order to bene-
fit @ variely of systems.

The CMS technigue meets (wo of the three criteria; therefore it
wos used as a baseline channel normalization method. The new
channel normalization technique should provide a performance
gain over no normalization and the resulting crror rate of the
mismatch data system should be similar to the error rate given
by 1 CMS implementation.

2. Method

Asmospeech parametrization techniques, which encode short-
term speech information, an initial step was to calculate the
avzrage short-term spectral energy over the frames of speech.
The frame length was chosen to roughly ensure stationarity of
the signal, shifted to creale overlap between adjacent frames
and cach frame windowed. Given frames of speech, XN =
{00 Na. ., Xy}, the average short-term spectral cnergy is
caleulated as

N
Yo(f) = % Z | Ho( ()X (W ian(f) |2 0]

i=1

where J.( f) is the channel frequency response, X;(f) repre-
sents the frame I2vel spectrum and Wiy a7 (f) is the Hamming
window frequency response.

It is assumcd that the filter response is linear and time-
invariant, therefore remaining constant across the frames of
spech and speckers in the database. It would be a difficult
task to calculate the channel response using just this informa-
tion. but the goal here is not to determine the most probable
frequency response. The desire is to transform the data from
a channel. to better match a channel with a different response,
thtough the use of inverse filtering. An approximation of the
mapping filter can be found. if the ratio between two average
short-term spectral energices is calculated:
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I the assumiption is made that the speech characteristics
are similar across the data collected from varying channels, the
difference that is present in the energy distribution is directly as
a result of the channel responses. Figure 1, shows the average
short-lerm spectral energy for a subset of data collected from
TIMIT and Wall Street journal corpora, which demonstrates a
clear difference in the spectral energy distributions.

The assump:ion that the speech characteristics are similar
across corpora could easily be in error. For instance, the pho-
ne ic distributior. could be skewed, which would result in more
enzrgy being present in certain frequency bands. Therefore, as
an average short-term spectral energy estimation improvement,
coatining the esimator and inverse filter calculation to broad
phonetic classes should improve the assumption that the speech
churacteristics of” the two sources arc similar; we report on ex-
peiments involving both the basic idea and the refined approach
be ow,

3. Experiments

A triphone-based HMM phoneme recognizer, developed using
the Cambridge University HMM Toolkit (HTK) [10], was used
to perform a variety of channel normalization experiments. The
task we used for our benchmarking experiments was phone
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Figure 1: Average short-term spectral energy calculated from
a subset of data using the TIMIT{8] and Wall Street Journal[9]
corpora.

| Task | # Speaker | #File | # Minutes

Recognizer Training 462 2772 143
Recognizer Testing 168 1344 69
Channel Estimator 462 924 46

Broad Classifier Training 462 924 46

Table |: TIMIT corpus statistics.

recognition; this allows us to focus on acoustic modelling ex-
clusively. The two corpora chosen for experimentation were
TIMIT and Wall Street Journal (WSJ). A difference in channel
characteristics can be expected due to the varied recording envi-
ronments (room acoustics) and setup (type of microphone used
to record the utterances). The sample average short-term spec-
tral energy distribution for the two corpora are shown in Figure
l.

The data from both corpora was partitioned into separate
scts for phoneme recognizer training and testing, where no
speakers were in common between the sets (though for TIMIT,
certain sentences did occur in both). The same data was used for
channel estimation and training the broad phonetic class classi-
ficr; this data was obtained and removed from the phone rec-
ognizer training data. The phone recognizer testing data was
used to verify the accuracy of the broad phonetic class classifier.
The broad phonetic class classifier used six classes: consonants,
fricatives, glides, nasals, stops and vowels. Silence was an addi-
tional class, but was ignored in the mapping filter calculations.

The TIMIT corpus partitioning statistics are shown in Table
1, while those for the WSJ corpus are given in Table 2.

A number of experiments were run using different chan-
nel normalization techniques. The accuracy results are shown
in Table 3, which used TIMIT trained acoustic models, and in

[ Task | # Speaker | #File | # Minutes |
Recognizer Training 77 2404 275
Recognizer Testing 24 914 103
Channel Estimator Tl 707 88
Broad Classifier Training 77 707 88

Table 2: WSJ corpus breakup statistics.



[System Type I Testing Data ]

TIMIT | WSJ

PR 56.80

BPCC 74.92
NO NORM 45.30
CMS 51.42
AVG 49.89
CMS + AVG 52.90
SEGRAT 50.51
SEGLS 49.37
COMB 60.48

Table 3: Recognition accuracy results using models trained with
TIMIT data.

Table 4, which contains results for WSJ acoustic models. The
svstem type codes given in Tables 3 and 4 are as follows;

e PR - Pheneme Recognizer acoustic models trained and
tested using channel-specific data - i.e TIMIT only or
WSJ data only.

e BPCC - Broad Phonetic Class Classifier. which was
trained using unique channel-specific data. PR testing
data was ased to obtain the accuracy results.

e NO NORM - The channel-specific phoneme recognizer
was used to decode the unseen channel testing data, e.g.
TIMIT trained models decoding WSJ testing data.

o CMS - Cepstral Mean Subtraction used by HTK to re-
move a mean cepstral vector from a set of cepstral vec-
tors extracted from one speech file. The process was ap-
plied to both the training and testing data.

o AV( - The average short-term spectral energy from each
channcl was used to derive the mapping filter. The esti-
mation was calculated using unique channel estimation
data.

e SEGRAT - The channel estimation data was scgmented
using the BPCC system, which was then used to generate
six class-specific average short-term spectral energy esti-
mates. The mapping filter was derived from the average
cstimates

e SEGLS - Same as SEGRAT, except that the mapping
{ilter was derived using a least squares fit between the
SIX average estimates.

e COMB - PR acoustic models were trained using data
from botli channels. No channel normalization methods
were used.

4. Discussion

A 5% difference i the corpus-specific phoneme recognizer
(PR) results can be explained by the greater number of speakers
tound in the TIMIT corpus and a larger amount of specch data
per speaker in the WSJ corpus. However, the TIMIT phoneme
recognition accuracy did improve when the WSJ training data
wis added to the acoustic model training phase. This improve-
ment was not observed when these acoustic models were tested
with the WSJ data. This may indicate that the PR TIMIT
acoustic models require much more data to approach the sta-
bility of the PR WSJ acoustic models. Considering the chan-
nel normalizaticn experiments, the channel-specific acoustic
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[ System Type | Testing Data |

TIMIT | WSJ

PR 62.03

BPCC 71.69
NONORM | 52.29
CMS 55.23
AVG 56.65
CMS + AVG | 56.50
SEGRAT 56.88
SEGLS 51.71
COMB 61.92

Table 4: Recognition accuracy results using models trained with
WSI data.

model (PR) results gave an upper bound with which to com-
pare the results obtained from the varying channel normaliza-
tion tests. The COMB experiment accuracies gave an upper
bound for the complete system, and could be considered as an
upper bound that can be achieved when both channel normal-
ization and normalization for other factors discussed in Section
1 are employed.

When no channel normalization techniques were used, the
phoneme recognizers drop in performance by 10%, which was
to be expected. With TIMIT training, the HTK CMS method
reduced the drop in accuracies by 5%; that is, about half of
the loss is recovered. For WSJ training, only about 30% of the
cross-channel loss is recovered with CMS. The average short-
term spectral energy filtering method (AVG) gave similar im-
provements to CMS, being somewhat better for WSJ and some-
what worse for TIMIT. When the CMS and AVG methods were
combined (CMS+AVG) and applied to the testing dataset, an
improvement in performance was observed compared to the
CMS results; now, about 60% of the cross-channel loss is re-
covered for TIMIT training, and 45% for WSJ training. The
AVG and CMS methods can be seen to perform approximately
the same task, where AVG modifies the speech waveform and
CMS transforms the cepstral cocfficients.

The more elaborate BPCC segmentation system gave only
small improvements compared to the basic AVG method. Our
least-squares approach was clearly not successful, but the SEG-
RAT was slightly better on both corpora. The statistical signif-
icance of the SEGRAT results, compared to the AVG results,
were measured using McNemar'’s test with a chi-squared statis-
tic and the McNemar table of values setup found in Gillick and
Cox [11]. A large statistical significance (P < 0.000001) was
found for the TIMIT trained acoustic models, while the gain
obtained for the WSJ trained acoustic models was insignificant
(P < 0.61). However, many other sensible ways to combine
the filters obtained for the different broad phonetic classes re-
main (o be explored. We are therefore confident that the small
obscrved improvement points the way towards even more suc-
cesstul methods.

5. Conclusion

The adverse effect of recording speech data on different chan-
nels was demonstrated using the TIMIT and WSJ corpora. A
channel normalization technique, which derives a mapping fil-
ter from the average short-term spectral energy estimates was
shown to give results comparable to the cepstral mean subtrac-
tion mcthod. The benefit provided by the new technique is that
it is applied to the speech waveform and is therefore indepen-



dent ol the chosen speech parametrization calculations.  The
broad phonetic class classificr approach provided a small boost
to the performarce, but the additional work required to imple-
ment this method is not justified. However, the marginal im-
provement was surprising, which indicates that further experi-
mentation must be done to determine how the channel estima-
tien and filtering should be combined to increase the system’s
pe-formance. The best experimental results that were obtained,
came from the cese where the acoustic models were trained with
speech data from both channel datasets. During the training pro-
cess, the means énd variances of phonetic models are updated to
be ter represent “he observed data, therefore a channel normal-
izetion process that can translate a model space transform to the
sprech signal domain should theoretically provide performance
cniancements comparable to updated phonetic models. This
aporoach will be further investigated.
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