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Abstract

A number of issues related to the development of speech-
recognition systems with Hidden Markov Models (HMMs) are
discussed. A set of systematic experiments using the HTK
toolkit and the TIMIT database are used to elucidate matters
such as the number of mixtures to use for a particular training-
set size, the utility of various feature sets, the value of triphone
modelling, etc. These results suggest guidelines, which will
be useful for those who wish to develop speech-recognition
systems in new languages.
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1. Introduction
There is a growing awareness that Human Language Technolo-
gies can play a significant role in bridging the digital divide
[1]. Thus, speech synthesis can be used to provide spoken
output of stored information to illiterate users, speech recog-
nition can efficiently obtain input from such users, and auto-
matic translation can be used to provide information in a va-
riety of languages. In each case, a key to successful applica-
tion of the relevant technology is its adaptation to the home
languages of the target users. Hence, it is likely that language-
technology systems will be developed in a wide range of lan-
guages in the near future, and a variety of open software has
been developed to support this expected trend (HTK, Sphinx,
LLSTI, Festival, PublicVoiceXML). However, the availability
of high-quality software is not sufficient for successful devel-
opment of local-language technologies - there are also signif-
icant challenges in choosing (or developing) appropriate cor-
pora, selecting appropriate system parameters, and so forth. It
is therefore necessary to create guidelines that will assist new
developers of language-technology systems in addressing these
challenges.

In the current paper, we focus on speech recognition.
We have undertaken a study to determine an approriate set
of parameter settings for first-generation phone-based systems
that use Hidden Markov Models (HMMS) [4], the dominant
paradigm for current speech recognizers. Our experiments are
based on the open-source toolkit HTK [5], but similar results
are expected for any phone-based continuous HMM. Also, our
experiments were restricted to the English-language TIMIT cor-
pus [7]; we believe that similar results will hold for other lan-
guages, but plan to gain a better understanding of the influ-
ence of language-specific factors on the performance of speech-
recognition systems in future work.

2. Experimental method
The HTK tookit (executing under the Linux operating system)
was employed for all experiments. The basic steps for the
development of a phone-based recognizer with HTK are as
follows[5]:

1. A selected set of sound files from the TIMIT corpus are
converted to a frame-synchronous feature representation
(details of the training and test data used and the features
studied are provided below).

2. Word-level and phone-level transcription files are con-
structed from the transcriptions provided with the TIMIT
corpus, along with a pronunciation dictionary. (We ex-
perimented with the CMU and BEEP dictionaries - see
below.)

3. Initial monophone models are created for all phones in
the selected dictionaries, by using a flat start HMM pro-
totype model (containing global means and variances of
the speech data) and duplicating this prototype for each
monophone to be used in training.

4. These models are then refined using the Baum-Welch
algorithm to perform embedded re-estimation of all pa-
rameters [4].

5. The monophones are subsequently copied into a set of
tied triphone models (we used the script driven editor
”HHEd” from the HTK toolkit for tying), and triphone
models are computed using embedded re-estimation.

6. For testing purposes, a grammar is constructed as a se-
quence of the words that occur in the test data. Any word
can follow any other word, and the sequence is of un-
restricted length. This grammar is converted to a word
lattice, which is used in conjunction with the same dic-
tionary used for training and either the monophone or
triphone models to assess recognition accuracy.
HTK reports various result statistics for all recognized
data. These include the percentage of test sentences that
are recognized correctly, the percentage of test words
recognized correctly, and the accuracy of the recognized
words. (Accuracy is defined as the percentage of words
correctly recognized minus the percentage of inserted
words.) The results below are all expressed in terms of
word accuracy.

2.1. Training and test data

All tests used the TIMIT speech corpus. TIMIT consists of
6300 utterances from 630 different speakers of American En-
glish, recorded with a high-fidelity microphone in a noise-free



environment. The TIMIT data is divided into 8 sub-corpora,
corresponding to speech from different dialect regions; each di-
alect region in turn contains a set of training speakers and a set
of test speakers. We maintained this distinction between test
and training speakers, and obtained our test and training data by
uniform sampling across all dialect regions.

2.2. Pronunciation dictionaries

Speech recognition models are trained using the pronunciation
dictionaries. These dictionaries are used to identify the phones
used when words are pronounced and thus train the corospond-
ing phone models using the corectly identified data. These dic-
tionaries are also used during the recognition task to identify
possible phone orders and the words they may result in.

The experiments concerning the ’monophone vs. triphone
models’ and the ’number of mixture components’ were con-
ducted twice. First using the BEEP dictionary (containing
British standard English pronunciations) and secondly using the
CMU dictionary (containing American standard English pro-
nunciations customized for the data).

2.3. Comparing different feature sets

Virtually all approaches to speech recognition function by first
converting the time-domain speech signal to a “feature” repre-
sentation. Such a feature representation takes into account spe-
cific properties of the speech signal to represent it in a manner
that is both compact and relatively invariant within a phonetic
category [3]. It is clear that the details of the representation is
a significant factor in the accuracy that can be achieved, and
numerous representations have been proposed in the literature
(e.g. Linear Predictive Coefficients (LPCs), Linear Predictive
Cepstra (LPCepstra), log-scaled filterbank energies (FBANK)
and Mel-Frequency Cepstral Coefficients (MFCCs), and Per-
ceptual Linear-Predictive coefficients (PLPs) [2].

Additionally, for each representation, the change in the
speech signal can be represented using temporal derivative and
second-derivative information. The so-called delta and accel-
eration coefficients (which represent the first and second order
regression coefficients respectively) are generally used for this
purpose.

In order to develop guidelines on feature representations,
we have experimented with LPCs, LPCepstra, filterbank ener-
gies and MFCCs; in each case the role of delta and acceleration
coefficients was also studied. The number of basic coefficients
(excluding delta and acceleration) was varied between 4 and 12
(by adjusting the order of the linear predictors, the number of
filterbank elements, or the order of the cepstra, as appropriate).
In all cases, the energy was used as an additional basic parame-
ter – the number of basic parameters therefore varied between 5
and 13, and the total number of coefficients between 5 and 39.

2.4. The number of mixture components

Non-parametric density estimators are typically used to model
the class-conditional probabilty density functions of HMMs
[4]. Such estimators generally suffer from the bias-variance
trade-off [5]: as increasing numbers of parameters are used to
improve training-set accuracy, test-set accuracy eventually de-
grades (because the models overfit the training data). We use
diagonal Gaussian mixture models as density estimators, and in
that case the bias-variance trade-off is controlled by the number
of mixture components in each density function.

Clearly, the optimal number of mixture components will

depend on a variety of factors, such as the amount of training
data available and the size of the input feature vector. In order
to quantify this dependency for the TIMIT data, we have varied
the number of mixture components between 2 and 16 for vari-
ous experimental conditions. However, we use the same num-
ber of mixture components across all phonetic models in each
particular run – optimizing the number of mixture components
for each phone individually would probably improve accuracy
a little, but would not alter the general trend that we wanted to
explore.

2.5. Comparing monophones and triphones

The simplest approach to HMM-based speech recognition uses
one Markov model to represent each phonetic category. How-
ever, it has long been understood ([4]) that – under appropri-
ate circumstances – significant improvements in accuracy can
be obtained by using separate models for phones in different
phonetic contexts. For example, a word-initial s which is part
of an str cluster has quite different acoustic properties from a
word-final s which is preceded by a vowel; it therefore makes
sense to devote separate models to the two cases. However,
computing separate models for each context of each phone may
require excessive amounts of data – especially since both the
left and the right context may play a substantial role, necessi-
tating the development of so-called triphone models, which
employ different models for each phone based on both its left
and right context. (Thus, on the order of N 3 triphone models
would be needed for a recognizer using N phones.) Techniques
have therefore been developed to tie different triphone models
together, based on the acoustic similarities of different contexts
[5]; such tied triphone models are widely used in HMM-based
speech recognition.

However, the development of triphone models has a num-
ber of drawbacks, such as the additional data required, and the
knowledge and effort needed to perform successful tying. We
therefore performed a number of experiments to determine how
useful triphone models are (in comparison with monophone
models) on various quantities of training data.

The number of TIMIT training sentences was varied be-
tween 400 and 3600 utterances (in intervals of 400), and the ac-
curacy of both monophone and triphone models was measured
for different numbers of mixture components.

3. Results
3.1. Pronunciation dictionaries

To compare the BEEP pronunciation ditionary to the CMU pro-
nunciation dictionary (as discussed in 2.2) the results for tri-
phone models using different mixture components was chosen.
The results using both the BEEP and CMU dictionaries are plot-
ted on one graph in Figure 1 (the red data represents the CMU
dictionary and the blue data the BEEP dictionary). It can be
seen that the CMU dictionary experiments outpreformed the
BEEP dictionary experiments. This was expected as the TIMIT
corpus contain American English speakers, thus an American
pronunciation dictionary will more accuratly represent what a
speaker is saying and how it is being said.

3.2. Comparing different feature sets

The training and testing data used was obtained from the first
four districts of the TIMIT corpus. Fourteen male and fourteen
female speakers were chosen from each district, which created



Figure 1: The accuracy of different mixture components for
both the BEEP and CMU dictionaries.

the training set. The training set finally contained 713 sentences
overall. For the test set, two male and two female speakers from
the first four districts was chosen, which resulted in 128 test
utterances in total. Our feature-set comparisons used triphone
models with 8 mixture components. Results for the four feature
sets discussed in Section 2.3 are shown in Figure 2. The MFCC
analysis performed the best and most consistently, with no real
gain in performance when the number of parameters were in-
creased. The LPCEPSTRA analysis was the second best per-
forming method. A gradual increased in performance was ob-
served, which effectively stopped at total of nine parameters.
The FBANK analysis accuracy measure merely decreased as
the number of parameters increased but still outperformed the
LPC method.
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Figure 2: A graph showing the percent accuracy achieved by
some of the different input speech parameterising methods used
in HTK.

Knowing that the MFCC analysis gave the best results a
second experiment could be performed. In figure 3 the inclusion
of the delta coefficients gave a considerable increase in perfor-
mance, but increases the number of parameters two fold. The
acceleration coefficients also increased the performance mea-

sure but not as dramatically compared to the delta coefficients.
With the inclusion of acceleration coefficients the amount of
parameters increases three fold.
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Figure 3: A graph showing the effect of including regression
coefficients when parameterising the input speech signal. E =
energy component, D = delta coefficient, A = accerleration co-
efficient.

3.3. The number of mixture components

As we discussed in Section 2.4 we varied the mixture compo-
nents from 2 to 16. The results for tied triphone models are
shown in figure 4. From the graph it can be seen that the opti-
mal amount of mixture components resulting in the best recog-
nition accuracy depends on the amount of training data. The
best recognition preformance was obtained between 6 and 14
mixture components (dependant on amount of training data).

Figure 4: The accuracy of different amounts of training data as a
function of increasing amounts of mixture components for tied
triphone models (using the CMU pronunciation dictionary).

3.4. Comparing monophones and triphones

Figure 5 shows the word-recognition accuracy obtained with
different amounts of training data, for both monophone and tri-



phone data. (MFCC features and 1 mixture component were
used.) The graph shows that triphones models outperform
monophone models. Figure 6 is a repeat of figure 5 where 10
mixture models are used. The improvements gained from us-
ing 10 mixture triphones compared to 10 mixture monophones
increases as the training data increases.

Figure 5: The accuracy of monophones and triphones (1 mix-
ture) versus amount of data.

Figure 6: The accuracy of monophones and triphones (10 mix-
tures) versus amount of data.

4. Conclusion
In this paper, we evaluated parameter settings for first-
generation phone-based systems that use Hidden Markov Mod-
els (HMMS). The parameters we evaluated includes: pronunci-
ation dictionaries, data feature sets, mixture componenets and
monophones vs. triphones. We used the HTK toolkit and the
TIMIT speech corpus in our evaluations.

We compared the BEEP dictionary (British English) and
CMU dictionary (American English). For the TIMIT corpus
the CMU dictionary showed a 10% improvement (compared to
BEEP) in recognition accuracy.

To obtain the best results from the HTK toolkit in the pa-
rameterising of the input speech signal phase the mel-frequency

cepstral coefficients (MFCC) analysis should be used. It ap-
pears from the experimental results that this method extracts
essential information to recognize a given set of words the best.
Additional with this method’s consistent performance a small
amount of parameters can be used, which will give a good level
of accuracy and a short amount of time needed to extract and
process the parameters.

The results showed that the use of mixtures in speech recog-
nition can considirably improve a recogniser’s preformance. In
single mixture recognisers, monophones reaches its maximum
performance boundry with little training data and doesn’t show
any improvement if more training data is used. When adding
mixture components, however, the performance of monophone
models does increase in relation to the amount of training data.
Triphones showed a simular improvement when mixture com-
ponents are used, provided that the proportion between the
amount of mixtures and training data is optimal.

Triphones outperform monophones when used for speech
recognition. When using triphones, however, more training data
is required to optimally train the recogniser than would be the
case for monophones. Even when using mixture components
triphones still outperform monophones by about 10%.

Even though the results discussed in this paper are restricted
to the English-language TIMIT corpus, we believe that similar
results will hold for other languages. Currently experiments are
being conducted for other languages in order to gain a better
understanding of the influence of language-specific factors on
the performance of speech-recognition systems. The languages
currently being investigated are IsiZulu and SePedi. The guide-
lines discussed in this paper are contributing to the develope-
ment of these speech-recognisers.
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