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Abstract—Multilinguality represents an area of significant
opportunities for automatic speech-processing systems: whereas
multilingual societies are commonplace, the majority of speech-
processing systems are developed with a single language in
mind. As a step towards improved understanding of multilingual
speech processing, the current contribution investigates how
an important para-linguistic aspect of speech, namely speaker
age, depends on the language spoken. In particular, we study
how certain speech features affect the performance of an age
recognition system for different South African languages in the
Lwazi corpus. By optimizing our feature set and performing
language-specific tuning, we are working towards true multi-
lingual classifiers. As they are closely related, ASR and dialog
systems are likely to benefit from an improved classification of
the speaker.

In a comprehensive corpus analysis on long-term features, we
have identified features that exhibit characteristic behaviors for
particular languages. In a follow-up regression experiment, we
confirm the suitability of our feature selection for age recognition
and present cross-language error rates. The mean absolute error
ranges between 7.7 and 12.8 years for same-language predictors
and rises to 14.5 years for cross-language predictors.

I. INTRODUCTION

Speech has both universal aspects, on the one hand, and
language- or culture-specific aspects, on the other. Despite
centuries of theoretical debate [1], the balance between these
two classes of properties is still highly controversial. As a
practical matter, it is important to improve our understanding
of this balance both in order to develop multi-lingual speech-
processing systems and to utilize cross-language sharing so
that the number of languages for which speech technologies
are available can be expanded.

At a superficial level, it is clear that spoken language
differs across cultures and languages along a multiplicity of
dimensions, ranging from acoustic phonetics through gram-
mar, vocabulary and metaphor to pragmatics and discourse
strategies. (Some of these differences, such as those involving
metaphor or acoustic phonetics, may be pronounced even
for cultural groups that share the same language, whereas
other factors such as grammar tend to be more widely shared
by speakers of the same language.) However, the effects of
culture on the various facets of speaker classification have to
date received comparatively little attention. Various authors
have reported that modern approaches to speaker identification

are reasonably insensitive to the language being spoken (see,
e.g., [2]); although statistically significant differences in the
performance of speaker-verification algorithms on different
languages from the same corpus have been reported [3],
these differences are relatively small in magnitude. Emotion
recognition, on the other hand, has been shown to depend
strongly on the language being spoken [4].

For the case of age classification, which we consider in
the current paper, we are not aware of any cross-cultural or
multi-lingual studies, although there are a lot of useful ASR
related applications associated with this task. Age (combined
with gender) can for example be used to adapt the ASR
system to an individual speaker. Furthermore, for interactive
voice response systems, waiting music can be adapted, age
dependent advertisements can be presented to callers in the
waiting queue, or speaking habits of the text-to-speech module
can be changed. Statistical information on the age distribution
of a caller group is also of interest for the provider [5].

In order to extend this technology from a mono- to a multi-
lingual setting, we have set out to investigate the influence
of language on an initial feature set that has been employed
for age classification. In a next step, we hope to be able to
find out in how far our current speaker classification approach
– the combination of features, classification architecture and
pre-trained models – is dependent on language. In Section II
we summarize the multilingual corpus that was used for our
experiments – the Lwazi automatic speech-recognition (ASR)
corpus – as well as some pertinent facts about the languages
contained in that corpus. Section III contains a description
of the feature sets used during the analysis, together with a
statistical analysis of some of the features across languages.
A comparative evaluation in terms of classification errors is
provided in Section IV, and Section VI summarizes our overall
conclusions.

II. THE LWAZI ASR CORPUS

The Lwazi ASR corpus was developed as part of a project
that aims to demonstrate the use of speech technology in
information service delivery in South Africa [6], [7]. In
particular, the three-year Lwazi project (2006-2009) produced
the core tools and technologies required for the development
of multilingual voice-response systems in all eleven of South
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Africa’s official languages, and piloted the use of these tech-
nologies in government information service delivery.

The Lwazi ASR corpus consists of annotated speech data
in the languages listed in Table I, which also summarises
the amount of speech available in each language. This data
was collected in South Africa over the telephone, by so-
liciting callers in each of the languages from a variety of
backgrounds. Approximately 100 male and 100 female first-
language speakers contributed speech in each of the languages,
and an approximate balance between mobile and fixed-line
telephones was maintained across languages. This corpus was
restricted to adult speech; details of the distribution of speaker
ages are provided in Section III. For some languages, extensive
dialectal variation exists within South Africa. However, this
variation is not well documented; for the purposes of the
corpus, the intent was to concentrate on the dominant dialects
of each languages, but dialects were not rigorously controlled.

TABLE I
THE OFFICIAL LANGUAGES OF SOUTH AFRICA, THEIR ISO 639-3:2007
LANGUAGE CODES, AND THE AMOUNT OF SPEECH CONTAINED IN THE

LWAZI CORPUS

Language code # total # speech
minutes minutes

isiZulu zul 525 407
isiXhosa xho 470 370
Afrikaans afr 213 182

Sepedi nso 394 301
Setswana tsn 379 295
Sesotho sot 387 313

SA English eng 304 255
Xitsonga tso 378 316
siSwati ssw 603 479

Tshivenda ven 354 286
isiNdebele nbl 564 465

The languages in Table I fall into two broad families, with
Afrikaans and English being Germanic languages and the
remaining nine languages belonging to the Bantu family of
languages (in particular, the Southern Bantu sub-family). The
co-location of these widely different groups of families in the
same country is a historical accident; although their many
years of co-existence have lead to some mutual influences,
the two groups remain separated by a wide linguistic gulf. For
example, the Bantu languages of South Africa are tonal lan-
guages characterized by an extensive system of noun classes;
they are strongly agglutinative, with affixes playing a variety
of syntactic and semantic roles; their syllables tend to have
regular CV or V structures. In all these respects the Southern
Bantu languages differ from English and Afrikaans, which are
fairly typical Germanic languages. Hence, these languages are
a good testing ground to search for differences in the way that
speaker age is expressed in speech.

III. CORPUS ANALYSIS

With over 14 GB of speech data, the Lwazi corpus is quite
substantial and working with it requires significant computing
time and processing power. Also, it was developed under
developing-world conditions, where limitations in infrastruc-
ture and the availability of skilled personnel are expected to

impact on corpus quality. An initial random listening and
signal analysis was therefore undertaken by one of us (MF); it
revealed some interesting facts about the material. Compared
to widely-used speech corpora such as GlobalPhone[8] or
Timit[9], there is considerable background noise, which is a
consequence of the fact that many speakers were speaking
on mobile telephones and from everyday locations. For the
same reasons, the amplitudes of the speakers are much more
variable than in standard corpora. On the signal level, the data
contained varying DC offset and even some clipping on some
speakers. Again, that is explained by the absence of constant
recording conditions with respect to the sender’s microphone,
the line and the recording equipment on the receiver’s side.
All of this is part of the compromise when trying to find
a large number of native speakers for these languages, and
it has to be taken into account when comparing the results
with evaluations done on other corpora. Note that the effects
were mostly randomly distributed over all languages - there
were no visible artifacts restricted to a single language. Thus,
for a comparative study on classification performance, these
observations are not considered critical.

To get an initial idea of how the influence of language and
culture manifests itself in a speaker’s voice, a semi-automated
corpus analysis was performed. In general, rather than simply
taking a random collection of features and processing them
with various out-of-the-box classification algorithms, it is more
purposeful to take a look at the expressiveness of some of the
available features individually (as was also done in [10]). This
not only saves time, but also gives a better understanding of
the decision criteria and simplifies the task of fine-tuning the
classifier later on. A representation that is well suited for this
purpose is the Gaussian approximation of the distribution of
feature values. Sketched over all utterances in the corpus or a
particular language, it provides a graphical comparison of the
differences between the target classes, i.e. ages and genders in
our case. This task can be automated to some extent, but many
of the more interesting relations are hard to recognize by a
machine and can usually only be spotted by manually looking
at the results. In order to make the results more comparable, we
chose the same definition of classes that had been used to train
our previous classifiers (see Table II). For now, we restricted
our experiments to a subset of languages as the age labels
were not yet fully available for the remaining languages. An
age histogram can be found in Figure 1. As can be seen, there
are almost no children in the corpus and only a relatively low
number of elderly people. Consequently, the results given in
Section V do not consider the children class and the error rates
may not be expressive enough to yield reliable benchmarks for
seniors in general.

The features that were selected for the corpus analysis
are acoustic long-term features computed on full utterances
that have proven useful already in the past [10]. They are
derivatives of the pitch, jitter and shimmer families of features
computed as averages on whole utterances and were obtained
using Praat[11]. This decision was made in spite of our recent
findings, where MFCC features generally produced lower error
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Fig. 1. Distribution of ages for a subset of seven languages in the Lwazi
corpus.

TABLE II
CLASSES USED FOR THE CURRENT AGE/GENDER SPEAKER

CLASSIFICATION SYSTEM

Index Class Ages
1 Children 7 – 14
2 Young female 15 – 24
3 Young male 15 – 24
4 Adult female 25 – 54
5 Adult male 25 – 54
6 Senior female 55 – 80
7 Senior male 55 – 80

rates than explicit long-term features [12]. However, long-term
features are still the preferred way to get an initial perfor-
mance measurement because they are much more expressive
to humans than raw MFCC coefficients, and thus provide a
better understanding of the phonetic causes for speakers of
some languages being classified better than those of others.
Also, there are without doubt certain overlaps concerning the
information the two feature sets contain.

From the data we were looking at, a large number of
distributions can be examined, comparing either languages
grouped by age class or age groups across language. In many
of these charts, there is indeed a notable difference in the
distribution of values for the individual languages. A selection
of these graphs is provided in this section in order to illustrate
some of the most interesting cases where major deviations
are visible. Two of the features with a very characteristic
language-specific average are the mean and standard deviation
of pitch. Figure 2 shows the typical distribution for speakers
of South African English, with male speakers having generally
lower pitch than female speakers. The adult female voices
are a bit higher than expected, which is probably due to the
slightly uneven distribution of ages (bias towards < 30). It
confirms that pitch is a good feature for gender recognition,
and to some extent helpful to distinguish ages. In order to
see how language affects this circumstance, we next study
that feature for the individual languages and a specific age
class. In Figure 3, this was done for young female speakers
of isiZulu and Sepedi. Our analyses revealed that voices of
isiZulu speakers are on average 25 Hz lower than those of
Sepedi speakers, which would make them easily confusable
with seniors if the system was trained only on data from

Fig. 2. Feature value distribution of mean pitch over the age/gender classes
for South African English speakers. The curve peaks represent the class mean
while the width indicates its inner-class variance. This Figure shows the typical
separation of female and male voices. There were no voices of children in
the data.

Fig. 3. Comparison of the mean pitch distributions for isiZulu and Sepedi
of speakers in the young female class.

Figure 2. Figure 4 shows a similar behavior for the standard
deviation of pitch with different speakers.

The observation that some languages are more different than
others in terms of long-time features surfaces in several of the
charts, and the actual ordering of languages changes depending
on the feature that is considered. The Germanic languages
in the Lwazi corpus are usually rather close. Although these
observations are at first an obstacle for speaker classification,
if such an aspect is stable over a set of languages, it can be ex-
ploited by creating language-specific classifiers. For example,
a particularly low jitter (micro-variations in the pitch level) can
be observed for adults speaking Sepedi (see Figure 5), while
a high shimmer (micro-variations of the amplitude) appears to
be characteristic for adult female Zulu speakers (see Figure 6).
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Fig. 4. Value distributions of frequency tremor for South African English
and isiZulu of adult female speakers. The separation is not as clear as in
Fig. 3, but it still shows a considerable difference.

Fig. 5. Jitter (here: relative average perturbation, RAP) as an example of a
criterium where one language (Sepedi) has an average that is rather distant
from that of all other languages. The statistics contains only speakers of the
adult male class.

Fig. 6. For adult female Zulu speakers, the value range of shimmer
(here: the amplitude perturbation quotient for 5-point periods, APQ5) is
characteristically higher than for the rest of the languages.

IV. EXPERIMENTAL APPROACH: REGRESSION ANALYSIS

To investigate the feasibility of age prediction with the long-
term features described in Section III, and to compare the dif-
ferent language families in this respect, we developed simple
least-squares linear regressors using training data from each of
the six languages listed in Table IV. (These languages were
selected since they span a variety of the (sub-)families found
in the Lwazi corpus, and reliable meta-data was available for
their speakers.) Two measures of predictive accuracy (mean
absolute error and correlation coefficient) were then computed,
employing the models trained on each language separately on
the test data from all languages. In particular, the following
steps were carried out:

∙ Each of the six sub-corpora were divided into training
and test sets; the ratio of training to test data was
approximately 80:20, with no speaker overlap between
these sets. The feature vectors listed in Table III were
calculated for each utterance in the training and test sets
of all languages.

∙ Each training set was scaled separately so that each fea-
ture has zero mean and unit variance; for each language
� the regression vector w� was then calculated as

w� = (Xt
�X�)

−1Xt
�t�, (1)

where X� is the matrix formed by stacking all the scaled
feature vectors (each extended with a “bias” term of 1)
together and t� is a vector consisting of all the true ages
corresponding to the feature vectors in X�.

∙ The ages of the speakers of all utterances in the test sets
were estimated as

y��i = xt�iw�, (2)

where x�i is the extended feature vector for speaker i
from language �. For each pair (�, �), we calculated the
average of the absolute difference between the estimated
and actual ages for all utterances in the test set, as well as
the Pearson correlation coefficients between the estimated
and actual ages.

TABLE III
FEATURE VECTOR USED IN THE REGRESSION EXPERIMENT; FULL

DEFINITIONS OF THESE FEATURES ARE AVAILABLE IN [10]

# Feature # Feature # Feature # Feature
1 pitch min 8 intens mean 12 jit l 16 shim l
2 pitch max 9 intens min 13 jit la 17 shim ldb
3 pitch quant 10 intens max 14 jit ppq 18 shim apq3
4 pitch mean 11 intens stddev 15 jit rap 19 shim apq5
5 pitch stddev 20 shim apq11
6 pitch mas
7 pitch swoj

V. RESULTS

Figures 7 and 8 show the mean prediction errors and
correlation coefficients resulting from our linear regression,
respectively. We see that the highest accuracy by both mea-
sures is generally achieved when training and test sets are
drawn from the same language, suggesting that the age factors
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TABLE IV
DATA USED FOR REGRESSION TRAINING AND TESTING

Language # training # test Mean Std dev
speakers / speakers / age age
utterances utterances

Afrikaans 159 / 4767 40 / 1193 34.7 14.3
English 155 / 4623 37 / 1105 37.7 15.8
isiZulu 149 / 4349 38 / 1122 35.4 14.1

isiXhosa 131 / 3865 34 / 1007 36.8 10.3
Sesotho 153 / 4576 36 / 1049 34.3 12.7

Setswana 152 / 4481 39 / 1149 36.0 13.6

are expressed differently in the different languages. When
training and test languages agree, the correlation coefficients
range between approximately 0.2 and 0.36, suggesting that
this is a challenging task; the corresponding mean values of
the absolute errors range between 7.7 and 12.8 years. (As a
basis for comparison, when we apply these same methods to
a previously-used corpus of German utterances, we obtain
correlation coefficients and mean absolute errors of 0.38
and 17.2, respectively. The range of ages in that corpus is
substantially larger than in Lwazi, which explains both the
higher correlation coefficient achieved – since it is easier to
predict more extreme ages – and the larger mean absolute
error.)

Afr Eng Zul Xho Sot Tsn

Tsn

Sot

Xho

Zul

Eng

Afr

Fig. 7. Mean absolute prediction errors when linear regressor from one
source language is applied to all six target languages. The rows correspond
to error values for the same target language, and the columns correspond to
the language used for training.

When comparing the cross-language predictors, it is inter-
esting to note that the language families are apparently not
particularly relevant to age prediction. Thus, the predictor for
English ages with the largest correlation coefficient is derived
from Sesotho data, and the isiZulu and Setswana predictors are
quite accurate when applied to data from the other language
in this pair. In contrast, the Sesotho and Setswana regressors

Afr Eng Zul Xho Sot Tsn

Tsn

Sot

Xho

Zul

Eng

Afr

Fig. 8. Correlation coefficients for the same conditions as those in Fig.7.
Negative values are indicated by red areas.

do not perform well when applied to test data from the other
language in this closely-related pair of languages.

Figure 9 shows the regression weights w� calculated for all
languages. Since all features were normalized to have the same
mean and variance, these weights are directly comparable.
Many features show significant variation across the different
languages. The most consistently important value corresponds
to feature 13, which is a long-term average of the jitter in
pitch frequency; however, even that feature contributes little
to the isiZulu regressor. Feature 10 (related to the minimum
intensity within an utterance) has a large negative contribution
for English, but contributes somewhat positively to the age
regressors for isiZulu and isiXhosa.

Fig. 9. Regression weights calculated on training data from six different
languages
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VI. CONCLUSION

The results from the distribution analysis show that the
various languages do not behave in a consistent fashion with
respect to age changes. Thus, even this basic para-linguistic
information source seems to have significant language-specific
(or culture-specific) aspects. The differences between the dif-
ferent features in this respect suggest that in the end, a single
feature set may not provide the optimal performance for all
languages. Further investigation along these lines would be
most interesting, and should include studies on MFCCs as an
alternative set of features.

The cross-language comparisons of the age regressors show
that the best predictions (in terms of both measures employed
in our study) are obtained when training and test data are
drawn from the same language. This confirms that the age pre-
dictors, in terms of the features employed here, are somewhat
language dependent – a conclusion that is further strengthened
by the fact that the regression vectors have significantly differ-
ent shapes for the different languages. However, the predictors
are not particularly accurate when applied to test data within
the same language family. This observation may indicate that
there are other relevant variables – possibly cultural or socio-
economic – which play an important role in the observed inter-
language differences.
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