Fluidised bed gasification of high-ash South African coals: An experimental and modelling study A.D. Engelbrecht¹, B.C. North¹, B.O. Oboirien¹, R.C. Everson², H.W.P.J. Neomagus² ¹CSIR Materials Science and Manufacturing, Pretoria, South Africa ²North West University, Potchefstroom, South Africa Keywords: Fluidised bed gasification, high-ash coal, oxygen enrichment, modelling **Abstract** - The gasification of two high-ash South African coals were studied using a pilot- scale bubbling fluidised bed coal gasifier operated at atmospheric pressure with oxygen enriched air and steam as the gasification agents. Tests were carried out at temperatures between 875 and 975 °C and char residence times of between 15 and 55 minutes in the gasifier. The results of the test show that the fixed carbon conversion increases with an increase in temperature and residence time of char particles in the gasifier. The experimental results were used to calibrate a commercially available fluidised bed gasifier simulation model (CeSFaMB). The predictive capability of the model was analysed in terms of the degree of variation between experimental and simulated results for each test. The calibrated model was used to design a 15 MW fluidised bed coal gasifier. # INTRODUCTION Annually approximately 300 million tons of high-ash coal is mined in South Africa supplying 74 % of its primary energy requirements. In order to produce coal for the domestic and export markets a large percentage of the mined coal is beneficiated (washed) to produce lower-ash products. The beneficiation of high-ash coal results in the production of 55 million tons of discards that have an ash content of between 55 % and 70 %. The ash content of coal available to the domestic market is expected to increase in future since lower grade coal (high-ash) seams are being mined and coal washing is being scaled down as a result of environmental legislation. Fluidised bed combustion and gasification technologies have been identified as potential technologies that can be applied for the utilisation of raw (unwashed) high-ash coals and stockpiled discards with reduced environmental impact. The advantage of fluidised bed gasification it that gas can be produced for heating applications, Integrated Gasification Combined Cycle (IGCC) power generation and for the production of synthetic fuels and chemicals utilising high-ash coals. The advantages of fluidised bed gasifiers compared to fixed bed and entrained flow gasifiers are that due to the lower operating temperature (900 – 1000 $^{\circ}$ C), oxygen consumption is lower, sensible heat losses in the gas is lower and refractory life is increased. When high-ash coal is used the drainage rate of bed ash is higher which reduces accumulation of coarse particles on the distributor thereby preventing hotspot formation and clinkering of the bed. The disadvantage of fluidised bed gasification compared to fixed bed and entrained flow gasifers is that the carbon conversion is lower. The lower carbon conversion is due to: lower temperature, attrition and bypassing of char in the reactor and low char reactivity. Fluidised bed gasification tests done earlier [1] using air and steam as the gasification agents indicate that the gas calorific value of the gas is low when high-ash, low reactivity coals are gasified. The objective of the present investigation is to increase the calorific value and fixed carbon conversion in the gasifier by enriching the gasification air with oxygen. #### FLUIDISED BED GASIFICATION TESTS A bubbling fluidised bed gasifier (BFBG) pilot plant at the CSIR was used to investigate the effect of using oxygen enriched air on the gasification of two high-ash South African coals. A flow diagram and the specifications of the pilot-scale BFBG are given in Figure 1 and Table 1. # Process description Coal, air, oxygen and steam are the input streams to the process which produce the output streams: gas and char (ash). Coal is fed to the gasifier by means of a screw conveyor at a height of 1.5 m above the distributor. Steam is generated in an electrode boiler and is mixed with air and oxygen at the inlet to a shell-and-tube heat exchanger. The preheated steam, air and oxygen stream is injected into the gasifier via a nozzle-type distributor. Char (bed char) is removed from gasifier by means of a water-cooled screw conveyor and from the gas (cyclone char) by means of a cyclone which is placed after the gas cooler. Figure 1. Pilot-scale fluidised bed gasification plant The de-dusted gas is combusted (flared) before it is vented to atmosphere. Coal particles that enter the furnace via the coal feed chute drop into the fluidised bed section and start conversion to gas and char. The char particles move rapidly up and down between the gasification and combustion zones in the bed. The combustion zone is limited to the lower 10-15% of the bed above the distributor and is rich in oxygen. Due to the fluidising action of the bed, the char particles experience attrition and break down into smaller particles. When the particles are small enough, they are entrained into the freeboard section (upper part) of the furnace. Due to the expanded nature of the freeboard, the gas velocity decreases and the particles fall back to the bed, resulting in internal circulation of particles between the bed and the freeboard. Further breakdown of the char particles results in their terminal falling velocity (U_t) being lower than the freeboard velocity and they are elutriated from the furnace. A significant proportion of the char particles (40-60%) are not elutriated from the furnace and these are drained from the bottom of the bed in order to maintain a constant fluidised bed height. **Table 1.** Specifications of the BFBG pilot plant | Operating pressure | Atmospheric | |--------------------------------------------|-----------------------------| | Bed dimensions (m) | 0.2×0.2 (square) | | Freeboard dimensions (m) | 0.40×0.40 (square) | | Furnace height (m) | 4 (2 m bed & 2 m freeboard) | | Fluidised bed height (m) | < 0.6 | | Coal feed rate (kg/h) | 15 – 35 | | Coal particle size (mm) (d ₅₀) | 1. 2 – 1.9 | | Coal CV (MJ/kg) | > 10 | | Air flow rate (Nm ³ /h) | 15 – 60 | | Oxygen flow rate (kg/h) | 4 – 16 | | Steam flow rate (kg/h) | 5 – 35 | | Bed temperature (°C) | 860 – 980 | | Air, steam and oxygen temperature (°C) | 155 – 300 | | Fluidising velocity (m/s) | 1.2 - 2.2 | # BFBG start-up and control The BFBG is started up by adding 15 kg of silica sand (0.4–0.85 mm) to the furnace. The silica sand is fluidised by starting the forced-draught (FD) and induced-draught (ID) fans. LPG is injected into the fluidised silica sand bed via the distributor nozzles. The LPG is ignited by means of a pilot flame which is inserted through the furnace door and directed down towards the bed. When the temperature reaches 850 °C, the pilot flame (lance) is removed and the furnace door is closed. The temperature is further increased to 930 °C by increasing the LPG flow. The furnace is operated with LPG at 930 °C for 6 h to allow thermal soaking of the refractories and heating of the freeboard. After 6 h, coal, steam and oxygen are added to the furnace and the temperature of the bed is controlled at the required set-point by varying the oxygen flow. The furnace is operated for a further 6 h to allow the bed carbon content and freeboard temperature to stabilise. Once stable conditions have been achieved, operating data are recorded and samples are collected for a period of 3 to 4 h. # Coals selected for BFBG tests Two high-ash South African coals that are currently being used as feed coals to the Lethabo and Matimba power stations were selected for the fluidised bed gasification tests. The proximate, ultimate and reflectance analysis of these coals on an air-dried basis are given in Table 2. **Table 2.** Analysis of New Vaal and Grootegeluk coals (air-dried) | | New Vaal | Grootegeluk | |----------------------------------|----------|-------------| | Calorific value (MJ/kg) | 14.84 | 21.40 | | Ash content (%) | 40.7 | 31.7 | | Moisture (%) | 5.7 | 1.9 | | Volatile matter (%) | 20.5 | 28.3 | | Fixed carbon (%) | 33.1 | 38.1 | | Total sulphur (%) | 0.84 | 1.17 | | Ultimate analysis: | | | | Carbon (%) | 39.25 | 52.93 | | Hydrogen (%) | 3.45 | 4.11 | | Nitrogen (%) | 0.90 | 1.19 | | Sulphur (%) | 0.84 | 1.17 | | Oxygen (%) | 9.16 | 7.00 | | Reflectance analysis: | | | | Vitrinite random reflectance (%) | 0.55 | 0.71 | The analysis shows that the selected coals have high ash and low inherent moistures contents. The vitrinite random reflectance shows that the New Vaal coal has a lower rank than the Grootegeluk coal. # Test results The operating conditions used during the fluidised bed gasification tests using Grootegeluk and New Vaal coals are given in Table 3. **Table 3**. BFBG operating conditions | Coal | New Vaal | Grootegeluk | |--------------------------------------|-----------|-------------| | Temperature (° C) | 875 – 975 | 875 – 975 | | Residence time (min) | 15 – 36 | 30 – 55 | | Fluidising velocity (m/s) | 1.5 - 2.1 | 1.2 - 2.2 | | Oxygen enrichment (%) ¹ | 35 – 37 | 30 -38 | | Absolute pressure (kPa) | 95 | 95 | | Coal particle size (mm) ² | 1.7 | 1.6 | Oxygen concentration of the enriched "air" stream ² d₅₀ To represent the operating conditions given in Table 3, six pilot-scale gasification tests were carried out on New Vaal coal and five on Grootegeluk coal. The results of the tests on New Vaal and Grootegeluk coal are summarized in Tables 4 and 5. Table 4. Summary of fluidised bed gasification tests on New Vaal coal | Test number | 1 | 2 | 3 | 4 | 5 | 6 | |---------------------------------------------|-------|-------|-------|-------|-------|-------| | Mid-bed temperature (°C) | 880 | 944 | 943 | 944 | 940 | 976 | | Average char residence time (min) | 25.0 | 18.1 | 25.4 | 30.4 | 30.0 | 25.8 | | Coal feedrate (kg/h) | 32.2 | 32.2 | 32.2 | 32.2 | 26.9 | 32.2 | | Airflow (Nm ³ /h) | 24.2 | 23.8 | 24.4 | 23.8 | 21.9 | 24.0 | | Steam flow (kg/h) | 16.5 | 15.6 | 16.0 | 16.0 | 16.5 | 13.9 | | Oxygen flow (kg/h) | 8.9 | 9.0 | 9.2 | 9.3 | 8.7 | 9.9 | | Oxygen in enriched air (%) ¹ | 35.7 | 36.1 | 35.8 | 36.0 | 36.6 | 36.7 | | Oxygen in total inlet flow (%) ² | 21.1 | 21.7 | 21.5 | 21.5 | 21.4 | 23.3 | | Total inlet flow temperature (°C) | 281 | 275 | 299 | 285 | 281 | 285 | | Coal particle size (mm) ³ | 1.80 | 1.6 | 1.40 | 1.75 | 1.7 | 1.70 | | Minimum fluidising velocity (m/s) | 0.24 | 0.21 | 0.14 | 0.21 | 0.16 | 0.21 | | Superficial gas velocity (m/s) | 1.64 | 1.67 | 1.70 | 1.69 | 1.59 | 1.66 | | Lower bed temperature (°C) | 908 | 965 | 958 | 960 | 958 | 997 | | Gasifier exit temperature (°C) | 735 | 730 | 762 | 757 | 743 | 757 | | Dry gas composition (Volume %) | | | | | | | | CO | 16.60 | 19.90 | 19.40 | 17.60 | 18.90 | 19.10 | | H_2 | 24.00 | 24.3 | 23.90 | 22.70 | 24.20 | 22.50 | | CH ₄ | 1.30 | 1.10 | 1.0 | 1.20 | 1.00 | 1.0 | | CO_2 | 20.70 | 18.80 | 19.10 | 20.80 | 20.30 | 20.20 | | N_2 + others ^{4, 5} | 37.4 | 35.90 | 36.5 | 37.6 | 35.5 | 38.6 | | Gas calorific value (MJ/Nm ³) | 5.75 | 6.12 | 5.97 | 5.69 | 5.94 | 5.77 | | Bed pressure drop (Pa) | 1905 | 1185 | 1868 | 2356 | 1839 | 1896 | | Ash extracted from the bed (kg/h) | 6.1 | 5.64 | 4.81 | 6.78 | 4.40 | 6.63 | | Carbon in bed ash (%) | 13.7 | 7.2 | 4.4 | 2.92 | 3.21 | 2.50 | | Bed ash particle size (mm) | 0.90 | 0.81 | 0.65 | 0.79 | 0.69 | 0.81 | | Ash elutriated to cyclone (kg/h) | 9.04 | 8.91 | 9.66 | 7.92 | 7.27 | 6.63 | | Carbon in cyclone ash (%) | 24.7 | 23.24 | 22.66 | 17.62 | 19.78 | 14.9 | | Cyclone ash particle size (µm) | 60 | 62 | 62 | 50 | 62 | 40 | | Ash elutriated (%) | 59.72 | 61.24 | 66.76 | 53.87 | 62.28 | 54.10 | | Fixed carbon conversion (%) | 73.40 | 78.54 | 79.25 | 85.05 | 83.65 | 87.54 | | Total carbon conversion (%) | 78.37 | 82.54 | 83.12 | 87.40 | 86.68 | 89.49 | | Cold gas efficiency (%) ⁶ | 60.4 | 65.5 | 65.3 | 61.4 | 62.8 | 63.1 | $^{^{1}}$ Oxygen concentration of combined air and oxygen flow stream 2 Total inlet flow consists of air, steam and oxygen 3 d₅₀ – 50% of the coal mass is less than the d₅₀ size $^{^4}$ Others are <0.4% and include $H_2S,\,NH_3,\,HCN$ and ${C_2}^+$ $^{^{5}}$ (N₂ + others) by difference ⁶ Energy in the cooled gas as a percentage of the energy in the coal. **Table 5.** Summary of fluidised bed gasification tests on Grootegeluk coal | Test number | 1 | 2 | 3 | 4 | 5 | |------------------------------------------------|-------|-------|-------|-------|-------| | Mid-bed temperature (°C) | 979 | 983 | 976 | 943 | 876 | | Average char residence time (min) ⁷ | 52.5 | 40.4 | 32.8 | 34.5 | 33.9 | | Coal feedrate (kg/h) | 16.0 | 19.6 | 23.0 | 23.0 | 23.0 | | Airflow (Nm ³ /h) | 15.9 | 20.9 | 22.1 | 22.7 | 24.5 | | Steam flow (kg/h) | 11.5 | 15.0 | 18.3 | 20.0 | 17.8 | | Oxygen flow (kg/h) | 6.5 | 7.6 | 9.5 | 7.2 | 4.9 | | Oxygen in enriched air (%) | 37.5 | 36.0 | 37.5 | 34.4 | 30.0 | | Oxygen in total inlet flow (%) | 21.9 | 20.9 | 20.6 | 18.0 | 16.7 | | Total inlet flow temperature (°C) | 247.7 | 273.8 | 293.9 | 287.4 | 255.7 | | Coal particle size (mm) ³ | 1.7 | 1.4 | 1.4 | 1.7 | 1.7 | | Minimum fluidising velocity (m/s) | 0.09 | 0.13 | 0.16 | 0.21 | 0.29 | | Superficial gas velocity (m/s) | 1.19 | 1.54 | 1.75 | 1.76 | 1.63 | | Lower bed temperature (°C) | 998 | 1003 | 999 | 958 | 908 | | Gasifier exit temperature (°C) | 752 | 768 | 808 | 810 | 747 | | Dry gas composition (Volume %) | | | | | | | CO | 16.6 | 17.0 | 16.1 | 13.6 | 10.5 | | H_2 | 20.9 | 20.7 | 18.6 | 18.6 | 14.8 | | CH ₄ | 1.5 | 1.4 | 1.7 | 2.2 | 2.9 | | CO_2 | 22.8 | 20.0 | 21.2 | 22.3 | 20.5 | | N_2 + others | 38.1 | 40.8 | 42.3 | 43.2 | 51.2 | | Gas calorific value (MJ/Nm ³) | 5.48 | 5.46 | 5.46 | 5.09 | 4.51 | | Bed pressure drop (Pa) | 1816 | 1816 | 1816 | 1964 | 1964 | | Ash extracted from the bed (kg/h) | 3.27 | 3.10 | 5.05 | 5.90 | 8.85 | | Carbon in bed ash (%) | 4.50 | 10.80 | 21.71 | 28.24 | 36.3 | | Bed ash particle size (mm) | 0.52 | 0.70 | 0.88 | 1.05 | 1.35 | | Ash elutriated to cyclone (kg/h) | 2.88 | 5.0 | 5.18 | 5.12 | 3.23 | | Carbon in cyclone ash (%) | 32.4 | 30.7 | 35.51 | 40.10 | 49.0 | | Cyclone ash particle size (µm) | 67 | 67 | 70 | 72 | 70 | | Ash elutriated (%) | 46.86 | 61.54 | 50.69 | 46.49 | 26.74 | | Fixed carbon conversion (%) ⁸ | 82.26 | 75.08 | 66.51 | 57.56 | 45.23 | | Total carbon conversion (%) | 87.23 | 82.06 | 75.89 | 69.48 | 60.57 | | Cold gas efficiency (%) | 57.43 | 51.36 | 45.11 | 44.44 | 41.02 | ⁷ The average char residence time was calculated using the coal feedrate and bed pressure drop. 8 The fixed carbon conversion is calculated using the: - Coal feedrate - Fixed carbon in coal - Flows of bed and cyclone ashes. - Carbon contents of bed and cyclone ashes. The effect of temperature on the fixed carbon conversion for New Vaal and Grootegeluk coals is given in Figure 2. Figure 2. Fixed carbon conversion as a function of temperature Figure 2 shows that the fixed carbon conversion achieved in the BFBG pilot plant increases with temperature and that due to the higher reactivity of the New Vaal coal the fixed carbon conversions were higher than those obtained for the Grootegeluk coal. The effect of residence time on fixed carbon conversion is given in Figure 3. **Figure 3**: Fixed carbon conversion as a function of residence time Figure 3 shows that the fixed carbon conversion in the BFBG pilot plant increases when the residence time of char particles in the gasifier are increased. The fixed carbon conversion of the lower reactivity Grootegeluk coal can be increased to over 80 % if the residence time is increased to 52.5 min. The higher fixed carbon conversion is however achieved at the expense of plant thermal output since the residence time of char in the gasifier is increased by decreasing the coal feedrate. The effect of temperature on the calorific value of the gas is given Figure 4. **Figure 4**. Gas calorific value as a function of temperature. Figure 4 shows that due to the higher fixed carbon conversion of New Vaal coal a higher calorific value was achieved in the gasifier. Calorific values obtained during earlier air-blown gasification tests [1] are also shown in Figure 4. The oxygen enrichment gasification tests produced a significantly higher calorific value than the air-blown tests since the dilution effect of nitrogen is reduced and the fixed carbon conversion is higher due to the higher steam concentration in the gasifier. Due to thermal fragmentation and attrition of char, fines are produced which are elutriated from the gasifier. Tables 4 and 5 show that the elutriated chars has a higher carbon content than the bed char due to the shorter residence time of the elutriated char. ## FLUIDISED BED COAL GASIFIER MODELLING ## **Background** The objective of fluidised bed coal gasifier modelling is to predict the performance of the gasifier based on given input conditions. The input conditions usually include: - Coal feedrate and analysis - Flowrate, temperature and pressure of air, oxygen and steam - Fluidised bed height - Gasifier design parameters such as diameter, height and thickness of thermal insulation. The performance parameters include: - Gasifier temperature - Carbon conversion - Gas flowrate and composition Fluidised bed gasifier models can be used for: - Design, optimisation and scale-up - Assistance with accessing start-up and shutdown conditions - Adaptive control - Trouble shooting Fluidised bed gasifier models Fluidised bed gasifier models that have been used (with increasing degree of complexity) are mass and energy balance models, equilibrium models and kinetic models. # Mass and energy balance models Mass and energy balance models are based on the conservation of mass and energy. Carrying out mass and energy balances over the gasifier results in more un knows (output variables) than equations meaning that more than one possible output condition can satisfy the mass and energy balance equations. In this case assumptions regarding some of the output variables such as the fixed carbon conversion, methane concentration and carbon monoxide composition of the gas are required in order to calculate the values of the remaining output variables. # **Equilibrium models** Equilibrium models add equilibrium equations to the mass and energy balance equations which reduces the difference between the number of variables and equations to one and only an assumption regarding the fixed carbon conversion is required in order to calculate the values of the other output variables. However due to the short gas residence time in a BFBG the gasses are seldom in equilibrium which reduces the predictive capability of equilibrium models. Equilibrium models are useful in that they can indicate output conditions that are not attainable due to equilibrium limitations. This can assist in the estimation of the methane and carbon monoxide concentration that are required in the mass and energy balance model. #### **Kinetic models** Kinetic models include the rates of the heterogeneous (gas-solid) and homogenous (gas-gas) reactions that take place in the gasifier. A hydrodynamic model that describes the flow pattern of gasses and solids in the gasifier is also included. A hydrodynamic model is required since the flow pattern of gasses and solids affects the reaction rates and rates of heat and mass transfer in the gasifier. Reaction models (sub-models) are used to describe the rates of the heterogeneous and homogenous reactions. Reaction models have parameters which depend on the reactivity of the coal and the catalytic effect of the ash components in the coal. The model parameters can be determined by means of laboratory TGA experiments and pilot plant tests. The advantage of kinetic models are that the fixed carbon conversion and the approach to equilibrium of the gas-gas reactions are calculated based on chemical kinetics and therefore no assumptions regarding output values are required. # Comprehensive simulation of fluidised and moving beds (CeSFaMB) Several kinetic models have been developed for the fluidised bed coal gasification process [2-10]. The model developed by de Souza Santos [10] is available commercially and was obtained by the CSIR and North West University under an academic licence. Development of the model started in 1987 at the University of Sheffield in the UK and is described in the PhD thesis of de Souza-Santos [11]. As detailed in the thesis correlation are given to describe the rates of chemical reaction, hydrodynamics, mass transfer and heat transfer rates and elutriation. These are summarized Table 6. **Table 6.** CeSFaMB sub-models and correlations | Sub-model | Correlation used by CeSFaMB | |------------------------------------------------|-------------------------------| | Hydrodynamics: | | | Minimum fluidising velocity (U _{mf}) | Wen and Yu [12] | | Bubble diameter (d _b) | Mori and Wen [13] | | Bubble rise velocity (m/s) | Davidson and Harrison [14] | | Bubble fraction (-) | Davidson and Harrison [14] | | Reaction rates: | | | Gas-solid (combustion and gasification) | Yoon et al [15], Johnson [16] | | Gas combustion | Villenski and Hezeman [17] | | Water gas shift | Franks [18] | | Mass transfer coefficients | | | Bubble - emulsion | Sit and Grace [19] | | Emulsion- solid | La Nauze et al [20] | | Heat transfer coefficients | | | Bubble - emulsion | Kunii and Levenspiel [21] | | Emulsion- solid | Kunii and Levenspiel [21] | | Elutriation | Wen and Chen [22] | The pilot plant tests given in Tables 4 and 5 were used to calibrate CeSFaMB for New Vaal and Grootegeluk coals respectively. Calibration of CeSFaMB for high-ash coal gasification involves adjusting the pre-exponential factors of four reactions: $$C + H_2O \rightarrow CO + H_2$$ $$C + CO_2 \rightarrow 2CO$$ $$C + 2H_2 \rightarrow CH_4$$ $$CO + H_2O \rightarrow CO_2 + H_2$$ $$(1)$$ $$(2)$$ $$(3)$$ $$(4)$$ The reaction model used by CeSFaMB for reactions (1) to (3) is: $$\frac{dX}{dt} = k_{oi} \exp(\frac{-E_i}{RT}) F(X) P_j^n \tag{5}$$ for i = 1, 2 and 3. F(X) is the exposed core particle conversion model and P_j is the partial pressure of H_2O , CO_2 and H_2 in the gasifier. The pre-exponential factors (k_{oi}) for reactions 1 to 4 were adjusted in order to obtain the best fit between the experimental and simulated results. For the activation energy (E_i) the default values calculated by CeSFaMB were used. For the combustion reaction the value calculated by CeSFaMB was also used since at the conditions used for the tests (Table 3) the rate of this reaction is not dependant on the reactivity of the coal but is limited by diffusion of oxygen to the coal particles. The pre-exponential factors and the comparison between measured and simulated results for New Vaal and Grootegeluk coals are given in Tables 7 and 8. | Test number | 1 | 2 | 3 | 4 | 5 | 6 | |----------------------------------------------------------------|--------|--------|--------|-------|-------|--------| | Pre-exponential factors (s ⁻¹) | | | | | | | | $C+H_2O \rightarrow CO + H_2$: k_{01} | 1500 | 15000 | 15000 | 15000 | 15000 | 15000 | | $C + CO_2 \rightarrow 2CO$: k_{02} | 200 | 200 | 200 | 200 | 200 | 200 | | $C + H_2 \rightarrow CH_4$: k_{03} | 0.8E-7 | 0.3E-7 | 2.5E-7 | 5E-07 | 5E-07 | 0.1E-7 | | $CO + H_2O \rightarrow CO_2 + H_2$: k_{04} | 80 | 65 | 80 | 80 | 80 | 80 | | Deviations between measured and simulated results ¹ | | | | | | | | Mid-bed temperature (°C) | 1 | -42 | -18 | -20 | 19 | -18 | | Gasifier exit temperature (°C) | -22 | -27 | -62 | -6 | -50 | -9 | | Dry gas composition (vol. %) | | | | | | | | CO | -0.92 | 0.46 | -0.9 | -0.18 | -3.2 | -1.4 | -6.47 **Table 7**. Pre-exponential factors and deviations for New Vaal coal | CH ₄ | 1.03 | -0.26 | 0.2 | 0.1 | 0.27 | -0.68 | |-----------------------------|------|-------|-------|------|-------|-------| | CO_2 | 1.67 | -0.5 | 0.6 | 0.05 | 2.02 | 0.7 | | Fixed carbon conversion (%) | -4.1 | 0.96 | -0.55 | -0.7 | -4.45 | -6.79 | ¹ A positive value indicates that the value predicted by CeSFaMB is higher than the measured value and a negative value indicates that the predicted value is lower than the measured value. **Table 8**. Pre-exponential factors and deviations for Grootegeluk coal | Test number | 1 | 2 | 3 | 4 | 5 | | |-----------------------------------------------|--------|-------|-------|---------|-------|--| | Pre-exponential factors (s ⁻¹) | | | | | | | | $C+H_2O \rightarrow CO + H_2$: k_{01} | 49 | 49 | 49 | 49 | 49 | | | $C + CO_2 \rightarrow 2CO$: k_{02} | 6 | 6 | 6 | 6 | 3 | | | $C + H_2 \rightarrow CH_4$: k_{03} | 4E-07 | 4E-07 | 4E-07 | 1.5E-05 | 1E-06 | | | $CO + H_2O \rightarrow CO_2 + H_2$: k_{04} | 25 | 25 | 25 | 7 | 25 | | | Deviations between measured | | | | | | | | and simulated results | | | | | | | | Mid-bed temperature (°C) | -21 | 9 | 21 | -2 | -38 | | | Gasifier exit temperature (°C) | -116.3 | -46 | -43.3 | -79 | -136 | | | Dry gas composition (vol. %) | | | | | | | | CO | 1.7 | -2 | -0.4 | 0.8 | 1.6 | | | H_2 | -4.7 | -7.7 | -4.6 | -8.9 | -3.7 | | | CH ₄ | 0.1 | 0.1 | -0.9 | -0.3 | -0.7 | | | CO_2 | -1.8 | 2.7 | 2.4 | 0.01 | 0.4 | | | Fixed carbon conversion (%) | 0.19 | -1.78 | 0.99 | -2.56 | 3.37 | | Tables 7 and 8 shows that due to the higher reactivity of New Vaal coal the reaction rate constants for reaction (1) and (2) are significantly higher than the values obtained for Grootegeluk coal. Due to the higher volatile matter content of Grootegeluk coal more CH_4 is present in the syngas and higher values of k_{03} were required to fit the experimental data. The higher rate of the water gas shift (k_{04}) obtained for New Vaal coal could be attributed to better catalytic activity of the ash compared to Grootegeluk coal. For New Vaal coal satisfactory deviation between measured and simulated results were obtained. However for Grootegeluk coal, CeSFaMB produced significant deviations for the gasifier exit temperature and the hydrogen in the gas. This could be attributed to the fact that for Grootegeluk coal, CeSFaMB produced higher elemental mass balance non-closures. For Grootegeluk coal the simulation results show that 13 % less carbon leaves the gasifier with the gas and the ashes in comparison to the carbon that enters the gasifier with the coal. For oxygen the elemental mass balance deviation is 5 % with more oxygen leaving the gasifier in comparison to the oxygen in the reactants and coal feed streams. The mass balance non-closures effect the gasifier syngas composition and the gasifier exit temperature. ## FLUIDISED BED GASIFIER SCALE-UP USING CeSFaMB A 15 MW thermal fluidised bed coal gasifier was designed using CeSFAMB with New Vaal coal as feed. The model parameters used for the design were the average values obtained from the six pilot plant tests given in Table 7. The design and operation was optimized by using a circular and expanded bed (Figure 5), increasing the bed height and increasing the preheat temperature of the air, steam and oxygen to 450°C. An expanded bed was used to accommodate the increase in net gas flow produced by the gasification reactions. The reduced superficial gas velocity in the bed reduces the bubble size which increases the rates of inter-phase heat and mass transfer. The bed height was increased to increase the residence time of char in the gasifier and the reactants were pre-heated in order to reduce the oxygen consumption. Input conditions are given in Table 9 which is a 100 times scale-up of the BFBG pilot plant. Figure 5. 15 MW fluidised bed coal gasifier **Table 9.** Input values for 15 MW thermal fluidised bed coal gasifier design | New Vaal coal feedrate (tons/h) | 3.22 | |-------------------------------------|------| | Steam flow (tons/h) | 1.60 | | Airflow (tons/h) | 3.03 | | Oxygen flow (tons/h) | 0.85 | | Reactant pre-heat temperature (° C) | 450 | | Expanded bed height (m) | 3.0 | | | | | Bed diameter (m) | 2.26 | |------------------------|---------| | Bed section height (m) | 6.0 | | Freeboard diameter (m) | 3.38 | | Freeboard height (m) | 3.0 | | | | | $k_{01} (s^{-1})$ | 15000 | | $k_{02} (s^{-1})$ | 200 | | $K_{03} (s^{-1})$ | 77.5 | | $K_{04} (s^{-1})$ | 3.1E-07 | Table 10. CeSFaMB output values for the 15 MW thermal fluidised bed coal gasifier | Mid-bed temperature (° C) | 948 | |--------------------------------------------------|-------| | Gasifier exit temperature (° C) | 931 | | Dry gas flow (Nm ³ /h) | 6024 | | CO (%) | 19.80 | | H ₂ (%) | 24.23 | | CH ₄ (%) | 1.2 | | CO ₂ (%) | 18.62 | | Calorific value of dry gas (MJ/Nm ³) | 6.2 | | Superficial bed velocity (m/s) ¹ | 1.84 | | Fixed carbon conversion | 98.2 | | Cold gas efficiency (%) ² | 78.2 | At the middle of the bed ² Based on energy in coal A higher fixed carbon conversion is predicted by CeSFaMB for the 15 MW gasifier due to the increased residence time of char (90 minutes), compared to 30 minutes in the pilot- scale BFBG. Increased residence times are achieved due to the increased bed height and lower void fraction of the bed. The void fraction of the pilot-scale BFBG bed was high due to the slugging behaviour of the bed. Slugging occurs when the bubble diameter increases to 60 % of the bed diameter. Figure 6 shows that the predicted bubble diameter for the 15 MW BFBG is less than 60 % of the bed diameter for the entire height of the bed. CeSFaMB assumes that a single ash stream leaves the gasifier with a carbon content equal to the carbon content of the bed which could result in an over-prediction of the fixed carbon conversion when the residence times are extrapolated significantly beyond the value at which CeSFaMB was calibrated. ¹ Superficial gas velocity = Total syngas flowrate (m³/s)/bed area (m²) Figure 6. Bubble diameter and rising velocity as a function of bed height Due to thermal fragmentation and attrition of char particles, a fluidised bed coal gasifier produces bed ash and fly-ash (elutriated char). The higher carbon content of the fly ash (Table 5) reduces the fixed carbon conversion of the gasifier. Figures 7 and 8 show the concentration profiles of CO₂, CO, O₂, H₂O, H₂ and CH₄ in the bed and freeboard of the 15 MW gasifier. Figure 7 shows that most of the O₂ in the reactant gas is consumed in the lower 15 % of the bed. When O₂ has been depleted the concentrations of CO and H₂ increase due to gasification reactions. The water-gas shift reaction is the dominating reaction occurring in the freeboard of the gasifier. Figure 7. Mole fractions of CO₂, CO, O₂ as a function of gasifier height **Figure 8.** Mole fractions of H₂O, H₂ and CH₄ as a function of gasifier height # **CONCLUSSIONS** Two high-ash South African coals were successfully gasified in a pilot-scale fluidised bed gasifier. Compared to air-blown gasfication, oxygen-enrichment of the gasification air results in a significant increase in the calorific value of the gas. The fixed carbon conversion in the fluidised bed gasifier increases with an increase in coal reactivity, temperature and residence time of char particles in the gasifier. A fluidised bed coal gasification simulation model (CeSFaMB) was calibrated using the pilot-scale fluidised bed gasifier test results. Satisfactory agreement was obtained between measured and simulated results for New Vaal coal. Grootegeluk coal however produced significant deviations between the measured and simulated gasifier exit temperature and the gas calorific value. This was attributed to higher elemental mass balance non-closures produced by CeSFaMB in the case of Grootegeluk coal. The simulation model predicts that a significant increase in performance of the fluidised bed gasifier can be achieved for a scaled-up 15 MW gasifier compared to the pilot plant. This is possible due to an increase in residence time of char and the absence of bed slugging. #### NOTATION | d_b | bubble diameter, m | |----------|----------------------------| | d_{50} | mean particle diameter, mm | | d_n | particle size, mm | k_{0i} pre-exponential factor of reaction i, s⁻¹ E_i Arrhenius activation energy of reaction i, kJ.mol⁻¹ n reaction order, - P_j partial pressure of reactant j, atm R universal gas constant, 8.314 J.mol⁻¹.K⁻¹ U superficial gas velocity in the bed, m.s⁻¹ U_{mf} minimum fluidizing velocity, m.s⁻¹ U_t terminal falling velocity, m.s⁻¹ X fractional conversion of fixed carbon in coal, - Z (m) height above distributor, m # **Acronyms/Abbreviations** BFBG Bubbling Fluidized Bed Gasifier CeSFaMB Comprehensive Simulation of Fluidised and Moving Beds C_2^+ Ethane and higher hydrocarbons CSIR Council for Scientific and Industrial Research FD Forced draught ID Induced draught IGCC Integrated Gasification Combined Cycle LPG Liquefied Petroleum Gas MW Megawatt TGA Thermogravimetric Analyser/Analysis #### **ACKNOWLEDGEMENTS** The authors would like to extend their appreciation to: - The Council for Scientific and Industrial Research (CSIR) and the South African National Energy Research Institute (SANERI) for providing financial support. - New Vaal and Grootegeluk collieries for collection, preparation and delivery of coal samples. ## **REFERENCES** - 1. ENGELBRECHT, A.D., EVERSON, R.C., NEOMAGUS H.W.P.J. AND NORTH, B.C (2010) Fluidised bed gasification of selected South African coals. *The Journal of the South African Institute of Mining and Metallurgy* 110: 225-742 - 2. CIESIELCZYK E. AND GAWDZIK, A. (1994). Non-isothermal fluidised bed gasifier model for char gasification taking into account bubble growth. *Fuel* 73:105-111. - 3. GURURANJAN, V.S. AND ARGARWAL, P.K. (1992). Mathematical model of fluidized bed coal gasifiers. *Chem. Engng Res. Des. Trans.* 70A: 211-237. - 4. CHATTERJEE, P.K., DATTA, A.B. AND KUNDU, K.M. (1995). Fluidised bed gasification of coal. *The Canadian Journal of Chemical Engineering* 73: 204-210. - 5. MA, R.P., FELDER, R.M. AND FERREL, J.F. (1988). Modelling a pilot-scale fluidised bed coal gasification reactor. *Fuel Processing Technology* 19:265-290. - 6. ROSS, D.P., YAN, H-m., ZHONG, Z. AND ZHANG, D-k. (2005). A non-isothermal model of a bubbling fluidised bed coal gasifier. *Fuel* 84:1469-1481. - 7. YAN, H.-M., HEIDENREICH, C. AND ZHANG, D.K. (1999). Modelling of bubbling fluidised bed coal gasifiers. *Fuel* 78:1027-1047. - 8. YAN, H-m. AND ZHANG, D-k. (2000). Modelling of fluidised bed coal gasifiers: Elimination of the combustion product distribution coefficient by considering homogeneous combustion. *Chem. Engng Proc.* 39: 229-237. - 9. YAN, H-m., HEIDENREICH, C. AND ZHANG, D-k. (1998). Mathematical modelling of a bubbling fluidised bed coal gasifier and the significance of 'net flow'. *Fuel* 77:1067-1079. - DE SOUZA-SANTOS M.L. (1989). Comprehensive modelling and simulation of fluidized bed boilers and gasifiers. *Fuel* 68:1507-1521. - DE SOUZA-SANTOS M.L. (1987). Modelling and simulation of fluidized-bed boilers and gasifiers for carbonaceous solids. Doctoral thesis. University of Sheffield. UK. - 12 WEN, C.Y. AND YU, Y.H. (1966). AIChE Journal 12: 610-612. - 13 MORI, S. AND WEN, C.Y. (1975). AIChE Journal 21: 109-115. - DAVIDSON, J.F. AND HARRISON, D. (1963). Fluidized Particles, *Cambridge University Press*. - 15 YOON, H., WEI, J. AND DENN M.H., (1978). AIChE Journal 24: 885-903 - JOHNSON, J.L. (1979). Chapter 1. In: Kinetics of Coal Gasification, New York: Wiley. - 17 VILIENSKI, T. AND HEZMALIAN, D.M., (1978). Dynamics of the Combustion of Pulverized Fuel. *Energia, Moscow*, 246p - FRANKS, R.G.E., (1967). Mathematical Modelling in Chemical Engineering, *Wiley N.Y.* - 19 SIT, S.P. AND GRACE, J.R. (1981). Effect of Bubble Interaction on the Interphase Mass Transfer in Gas Fluidised Beds. *Chem. Eng. Science 36*: 327-335. - 20 LA NAUZE, R. D., JUNG, K. AND KASTL, J. (1984). Mass Transfer to Large Particles in a Fluidized Bed of Small Particles. *Chem. Eng. Science* 39: 1623-1633 - 21 KUNII, D. AND LEVENSPIEL, O. (1969). Fluidisation Engineering, *J. Wiley*, *N.Y.* - WEN, C.Y. AND CHEN, L.H. (1982). Fluidized Bed Freeboard Phenomena: Entrainment and Elutriation. *AIChE Journal* 28: 117.