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Problem statement

• Time series data of counts
• Discreteness

• Positive counts

• Tends to be over-dispersed

• Time series properties

• Typically contains serial 

correlation

• Need a model that can handle:

• Positive counts

• Over-dispersion

• Serial correlation

• Cholera example
• Static Poisson or negative binomial models with 

constant mean do not perform well

• Time series models for continuous data result in 

negative values
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Brief overview 

• Observation-driven models
• Generic form

where the equation for the mean, 

t, includes lagged values of the 

observed variable, yt

• Easy to compute

• Parameter-driven models
• Generic form

where the equation for the mean, 

t, contains some random variable 

which is independent of past 

observations

• Computationally intensive

• Many count data time series models can be characterised as 
either observation-driven models or parameter-driven models 
(Cox (1981))
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ACP (Autoregressive Conditional Poisson)

• Observation-driven model developed by Heinen (2003)

• Model handles:
• Discreteness

• Over-dispersion

• Serial correlation

• Easy to estimate using maximum likelihood techniques

• ML estimation means that the usual diagnostic tests 
can be used.

• Can easily incorporate explanatory variables
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Description of the ACP model

Given a time series of counts, y1,…,yT ,where Yt -1 denotes the information 

on the time series up to time t - 1, then for the ACP(1,1) model, the counts,

conditional on past observations, are modelled as

with an autoregressive conditional mean given as

for > 0 and , ≥ 0.

Note: This can be extended to include additional lags.
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ACP - properties of unconditional moments

Provided < 1, the ACP(1,1) is stationary and has an unconditional mean

and variance given by

So for ≠ 0, the variance is always greater than the mean.

Hence, the ACP model is over-dispersed, even though the conditional

distribution is equi-dispersed.
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DACP (Double Autoregressive Conditional 
Poisson) model

• Observation-driven model developed by Heinen (2003)

• Uses ACP framework but replaces the Poisson distribution 
with the double Poisson distribution of Efron (1986)

• Additional to the characteristics of the ACP model, the 
DACP model allows the conditional variance to be larger 
or smaller than the mean and therefore accommodates
• both under-dispersion and over-dispersion; and
• more extreme cases of over-dispersion.
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Description of the DACP model

For the DACP(1,1) model, the counts, conditional on past observations, are

modelled as

with an autoregressive conditional mean given as

for > 0 and , ≥ 0.

The double Poisson density can be written as

for > 0 and > 0. Requires a multiplicative constant to make it into a true

density with probabilities summing to 1.
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DACP - properties of moments

Provided < 1, the DACP(1,1) is stationary and has an unconditional mean

and variance given by

So for < 1, the variance is always greater than the mean

and the model exhibits over-dispersion.

The conditional mean and variance for the DACP(1,1) model are
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Cholera example

• Data of cholera outbreaks in Beira, 
Mozambique
• Weekly data containing cholera counts, 

average air temperature, cumulated rainfall, 

and other variables obtained from remote 

sensing. 

• Test the relationships between cholera 
outbreaks and environmental factors
• Do climatic conditions drive the proliferation 

of cholera cases?

Map from: http://kids.yahoo.com/directory/Around-the-World/Countries/Mozambique/Maps
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Results: ACP & DACP vs Poisson

• Cholera cases modelled using
• Lag 6 air temperature

Parameters

ACP DACP Poisson

0.0991 0.1028

0.0213 0.0222

0.1724 0.1764

0.0825

Intercept -9.0965

Lag6 temp 0.1300 0.1284 0.4961

ACP DACP Poisson

RMSE 32.7 32.7 61.8

MAE 15.9 15.9 37.2

All parameters 

shown are   

significant in the 

models

RMSE – Root mean squared error

MAE – Mean absolute error
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Results: ACP & DACP vs Poisson

• Plots of actual vs predicted – models using lag6 air temperature
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Results: ACP & DACP vs Poisson

• Autocorrelation function plots – models using lag6 air temperature
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Results: ACP & DACP vs Poisson

• Cholera cases modelled using
• Seasonal variables and lag 6 air temperature

Parameters

ACP DACP Poisson

0.0438 0.0530

0.0214 0.0247

0.2291 0.2628

0.0951

Intercept -0.8624

Lag6 temp 0.1368 0.1278 0.1595

Cos(2 t/52) 0.1338 0.1902 0.5925

Sin(2 t/52) -0.3932 -0.3217 1.2030

ACP DACP Poisson

RMSE 31.0 31.2 57.0

MAE 15.1 15.3 32.8

All parameters 

shown are   

significant in the 

models
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Results: ACP & DACP vs Poisson

• ACF plots – models using seasonal variables and lag6 air temperature
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Results: Poisson vs ACP vs DACP

• Likelihood ratio (LR) tests
• LR test can be: 

• computed as twice the difference between the restricted and unrestricted 

log-likelihoods

• Tested against      distribution

• LR tests - models using seasonal variables and lag6 temperature
• LR test for autocorrelation in data using ACP model 

i.e. testing = = 0 (equivalent to static Poisson with constant mean)

• LR test is highly significant 

• Therefore reject static Poisson in favour of ACP model

• LR test for over-dispersion in data using DACP model 

i.e. testing = 1 (equivalent to ACP model)

• LR test is highly significant

• Therefore reject ACP in favour of DACP
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Final remarks

• Static Poisson regression not suited to 
data with high serial correlation

• ACP and DACP models 
• Can handle serial correlation

• Have a similar fit

• For better estimation of standard errors 
and log-likelihoods
• ACP more suited to data with small amounts 

of overdispersion

• DACP model can accommodate large 

amounts of overdispersion

• ACP and DACP model are easy to 
implement and estimate
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