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Problem statement

Time series data of counts

Discreteness
* Positive counts

* Tends to be over-dispersed

Time series properties

* Typically contains serial
correlation
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* Cholera example

Need a model that can handle:
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Positive counts
Over-dispersion
Serial correlation

Static Poisson or negative binomial models with
constant mean do not perform well

Time series models for continuous data result in
negative values
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Brief overview

Many count data time series models can be characterised as
either observation-driven models or parameter-driven models

(Cox (1981))

Observation-driven models
* Generic form

Ve ~ Poisson(;)

where the equation for the mean,
L, includes lagged values of the
observed variable, vy,

* Easy to compute

* Parameter-driven models
* Generic form

Ve ~ Poisson ()
where the equation for the mean,
L, contains some random variable

which is independent of past
observations

* Computationally intensive
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ACP (Autoregressive Conditional Poisson)

* QObservation-driven model developed by Heinen (2003)

* Model handles:
* Discreteness
* Qver-dispersion
* Serial correlation

* Easy to estimate using maximum likelihood technigques

* ML estimation means that the usual diagnostic tests
can be used.

* Can easily incorporate explanatory variables g
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Description of the ACP model

Given a time series of counts, y,,...,y; ,where Y, ; denotes the information

on the time series up to time t - 1, then for the ACP(1,1) model, the counts,
conditional on past observations, are modelled as

VelYe—y ~ Poisson(u;)

with an autoregressive conditional mean given as
Uy = 0+ ay,_,+ B4

foro>0and o, = 0.

Note: This can be extended to include additional lags.
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ACP - properties of unconditional moments

Provided o + B < 1, the ACP(1,1) is stationary and has an unconditional mean
and variance given by

w

1—(a+p)

Ely.] =u=

ud—(a+p)*+a?)
1 — (a+ f)?

Varly,] =

So for a # 0, the variance is always greater than the mean.

Hence, the ACP model is over-dispersed, even though the conditional

distribution is equi-dispersed.
&
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DACP (Double Autoregressive Conditional
Poisson) model

* Observation-driven model developed by Heinen (2003)

* Uses ACP framework but replaces the Poisson distribution
with the double Poisson distribution of Efron (1986)

* Additional to the characteristics of the ACP model, the
DACP model allows the conditional variance to be larger
or smaller than the mean and therefore accommodates

* both under-dispersion and over-dispersion; and
° more extreme cases of over-dispersion.
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Description of the DACP model

The double Poisson density can be written as

roin = i) (7))

for u > 0 and y > 0. Requires a multiplicative constant to make it into a true
density with probabilities summing to 1.

For the DACP(1,1) model, the counts, conditional on past observations, are
modelled as

V¢|Ye_1 ~ Double Poisson(,,y)

with an autoregressive conditional mean given as

Ue = W+ ay,_1 + Pl g

forom>0and a, 3 20. GR
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DACP - properties of moments

The conditional mean and variance for the DACP(1,1) model are

Ely Y11 = 1,
U
Varly|Y,_1] = ?t

Provided o + 3 < 1, the DACP(1,1) is stationary and has an unconditional mean

and variance given by

Ely.] =u=

w

1—(a+p)

1p(l=(a+p)* +a?)
y 1-(a+p)?

Varly] =

So for y < 1, the variance is always greater than the mean e

and the model exhibits over-dispersion. G R
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Cholera example

Data of cholera outbreaks in Beira,
Mozambique
* Weekly data containing cholera counts,

average air temperature, cumulated rainfall,

and other variables obtained from remote
sensing.

Test the relationships between cholera
outbreaks and environmental factors

* Do climatic conditions drive the proliferation
of cholera cases?
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Map from: http://kids.yahoo.com/directory/Around-the-World/Countries/Mozambique/Maps G I 2
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Results: ACP & DACP vs Poisson

* Cholera cases modelled using
° Lag 6 air temperature

ACP DACP

RMSE 32.7 32.7 61.8

N 0.0991 0.1028

_ 0.0213 0.0222 All parameters

P 0.1724 0.1764 shown are
significant in the

0.0825

Intercept -9.0965

Lag6 temp 0.1300 0.1284 0.4961

YINS 15.9 15.9 37.2 E
RMSE — Root mean squared error G R

_ MAE — Mean absolute error
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Results: ACP & DACP vs Poisson

* Plots of actual vs predicted — models using lag6 air temperature

ACP model DACP model
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Results: ACP & DACP vs Poisson

Autocorrelation function plots — models using lag6 air temperature

ACP model
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Poisson regression

DACP model
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Results: ACP & DACP vs Poisson

* Cholera cases modelled using
* Seasonal variables and lag 6 air temperature

Parameters
0.0438
0.0214
0.2291

Intercept

Lag6 temp 0.1368
Cos(2nt/52) 0.1338
Sin(2nt/52) -0.3932

31.0
15.1

0.0530
0.0247
0.2628
0.0951

0.127/8
0.1902
-0.3217

31.2
15.3

DACP

All parameters
shown are
significant in the
models

-0.8624
0.1595
0.5925
1.2030

32.8 our future through science



Results: ACP & DACP vs Poisson

* ACF plots — models using seasonal variables and lag6 air temperature

ACP model
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Results: Poisson vs ACP vs DACP

* Likelihood ratio (LR) tests
* LR test can be:

° computed as twice the difference between the restricted and unrestricted
log-likelihoods

° Tested against X ? distribution

°* LR tests - models using seasonal variables and lag6 temperature
* LR test for autocorrelation in data using ACP model
l.e. testing a = B = 0 (equivalent to static Poisson with constant mean)
* LR testis highly significant
* Therefore reject static Poisson in favour of ACP model

* LR test for over-dispersion in data using DACP model
l.e. testing y = 1 (equivalent to ACP model)
* LR testis highly significant

* Therefore reject ACP in favour of DACP
B
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Final remarks
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Static Poisson regression not suited to
data with high serial correlation

ACP and DACP models

* (Can handle serial correlation
* Have a similar fit

For better estimation of standard errors
and log-likelihoods

* ACP more suited to data with small amounts
of overdispersion

* DACP model can accommodate large
amounts of overdispersion

ACP and DACP model are easy to
Implement and estimate
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Questions?
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