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Abstract

Geospatially Enabled Scienti�c Work�ows o�er a promising paradigm to facilitate re-

searchers, in the earth observation domain, with many aspects of the scienti�c process. One

such aspect is that of access to distributed earth observation data and computing resources.

Earth observation research often utilises large datasets requiring extensive CPU and mem-

ory resources in their processing. These resource intensive processes can be chained; the

sequence of processes (and their provenance) makes up a scienti�c work�ow. Despite the

exponential growth in capacity of desktop computing, resources available on such devices

are often insu�cient for the scienti�c work�ow processing tasks at hand. By integrating

distributed computing capabilities into a geospatially enabled scienti�c work�ow environ-

ment, it is possible to provide researchers with a mechanism to overcome the limitations

of the desktop computer. The majority of e�ort in regard to extending scienti�c work-

�ows with distributed computing capabilities has focused on the web services approach as

exempli�ed by the OGC's Web Processing Service and by GRID computing. The approach

to leveraging distributed computing resources described in this paper uses instead remote

objects via RPyC and the dynamic properties of the Python programming language. The

Vistrails (http://www.vistrails.org) environment has been extended to allow for geospatial

processing through the EO4Vistrails package (http://code.google.com/p/eo4vistrails/). In

order to allow these geospatial processes to be seamlessly executed on distributed resources

such as cloud computing nodes, the Vistrails environment has been extended with both

multi-tasking capabilities and distributed processing capabilities.

1 Introduction

The last few decades has seen a legitimisation of in-silico science alongside more commonly

known and accepted scienti�c methods. Certain noteworthy characteristics of in-silico scienti�c

endeavour are important to identify. First, scientists have access to vast and increasing datasets,



generated by telescopes, physics experiments, sensor networks and remote sensing instruments,

for example. Second, modern computers have allowed scientists the latitude to develop complex,

long-running and often complex models and simulations which often emit enormous datasets,

such as is common in climate models. Thirdly, interconnected networks like the Internet have

enhanced scienti�c collaboration opportunities, necessitating an increased focus on data and

model provenance, and have also resulted in more network-centric or distributed deployments

of data, processing, storage and metadata services and resources. Fourthly, specialised high-

performance computing environments have emerged to support these trends. The large data

requirements and the need to perform complex calculations on these data in distributed multi-

core environments have made scientists turn to the concept of scienti�c work�ows [Asanovic

et al., 2006, Gil et al., 2007, Barker and Van Hemert, 2008, Meglicki, 2001, Ludascher et al.,

2006].

Research indicates that scientists can be shielded to an extent from the complexities of these

high perfomance environments through the mechanism of scienti�c work�ows, which automate

complex processes and provide integrated access to datasets often characterised by their large

sizes and distributed locations [Gil et al., 2007, Gibson et al., 2007, Ludascher et al., 2006].

Current approaches to distributed scienti�c computing in the geospatial domain are almost

exclusively Web Services based as found in the use of OGC Web Services [Open Geospatial

Consortium, 2010], OpenDAP [OPeNDAP development team, 2011] and, less commonly, GRID

computing [Foster et al., 2001, 2003]. A major limitation of these Web Services approaches is

that deployments are static, can not easily be modi�ed and require redeployment to enable

minor changes. This may be acceptable if the work�ows and algorithms to be run upon these

web services are prede�ned. However, not entirely clear is how a scientist would deploy his or

her own dynamically and continuously changing algorithms to these infrastructures whilst still

exploiting the massive computing power and extensive data handling capabilities available at

these resources [Deelman and Chervenak, 2008].

In a scienti�c work�ow computing environment, scientists may introduce entirely new al-

gorithms and continuously make minor alterations to re�ne and tweak them. In addition, the

pipelines connecting algorithms are continuously changing and being altered as the scientist

explores alternate mechanisms for proving or disproving their hypotheses. These algorithms

and pipelines of processes work upon large data sets that should not be moved around, but

rather remain upon the specialised hardware and software infrastructures that support them.

In the case of geospatial-temporal processing, moving the data away from the infrastructures

that support indexing and rapid data retrieval, to the infrastructure containing a process is

not always as viable as moving the process to the data. This speaks to a need for supporting

mobile code in a high performance geospatial-temporal processing environment [Deelman and

Chervenak, 2008, Barker and Van Hemert, 2008].

Although GRID computing does promise much of the above, the approach can be compli-

cated, requiring the deployment of complex software infrastructure and expert knowledge to

use the GRID resources. We describe an approach in this paper that is lighter, intuitive and



requires less specialised expertise on the part of the end user. It is true that the approach is

somewhat less sophisticated with respect to aspects such as automated scheduling and load

balancing; however we expect that this challenge will be overcome in time [Foster et al., 2001,

2003].

The work described in this article couples the scienti�c work�ow value proposition to the

use of remote objects and provision of mobile code support enabled by the dynamic nature of

the Python programming language. This paper describes the broader architecture and design

of the work, some lessons learnt and discussion of various strengths and weaknesses of this

particular approach. These lessons and discussions include, for example, discovering limitations

of inter-process communication and the implications of the use of the C and C++ programming

languages that underpin the performance in many FOSS4G software tools. Figure 1 shows the

general overview of this interaction.

Figure 1: A researcher on his laptop gaining access to a compute cluster and a high performance
computer via RPyC

The remainder of the article proceeds as follows: First we present some background on

geospatially enabled scienti�c work�ows and remote objects and mobile code in Section 2.

Section 3 looks at the design decisions made in building the prototype of our system. Section

4 presents some results of using the prototype within the earth sciences domain together with

lessons learnt. Section 5 discusses future work and research directions.

2 Background

In order to discuss the approach to distributed geospatial processing taken within this article,

the concepts of geospatially enabled scienti�c work�ows, remote objects and mobile code need

to be explored. In the remainder of this section we expand on these ideas and provide the

reader with some additional background.



2.1 Geospatially Enabled Scienti�c Work�ows

Given the iterative and fast-paced nature of in-silico science and often an imperative for re-

searchers to share their results with the broader scienti�c community and to verify, interrogate

and build upon the results of others in the community, an e-toolset is required that can sup-

port these tasks. This points to a need for a collaborative environment that allows for proper

provenance, reproducibility, extensibility, knowledge sharing and automation of the scienti�c

process. Scienti�c work�ows provides an environment that allows these requirements to be met

.

Scienti�c work�ows and work�ow environments are used as means for modelling and enact-

ing scienti�c experiments. They share and leverage many features and techniques of mainstream

business work�ows and work�ow environments, but also o�er di�erent or enhanced function-

ality. Conversely, scienti�c work�ows promise to become an important area of research within

work�ow and process automation, possibly leading to the development of the next generation

of problem-solving and decision-support environments. Scienti�c work�ow environments have

capabilities for handling data or transaction intense computation, more human interaction,

and a large array of methods and tools to support scienti�c activities (e.g. visualisation, data

transformation). Further, they focus strongly on work�ow provenance, capturing rich details

of in-silico experiments, and place an emphasis on re-execution and comparison [Barker and

Van Hemert, 2008, Deelman and Gil, 2006, Deelman and Chervenak, 2008, Howe et al., 2008].

This paper uses the concept of geospatially enabled scienti�c work�ows a concept that is

tangential to that of geospatial work�ows and expanded upon in previous work by the authors.

We prescribe to the following de�nition of a geospatially enabled scienti�c work�ow McFerren

et al. [2010]:

�In our conception of geospatially enabled scienti�c work�ow environments, geospa-

tial functionalities and data are intermingled with a variety of other sets of tools,

functionalities and data, from, for example, the numerical modelling, computational

intelligence, high performance computing and statistical domains.�

EO4Vistrails is an attempt at supporting this concept of geospatially enabled scienti�c work-

�ows [EO4Vistrails development team, 2011]. The EO4Vistrails package shown in Figure 2

extends the capabilities of the Vistrails scienti�c work�ow environment [Callahan et al., 2006]

to support geospatial functionalities and datasources such as OGCWeb Services [Open Geospa-

tial Consortium, 2010]. In EO4Vistrails, the geospatial functionality supplied by the QGIS API

[Open Source Geospatial Foundation Project, 2010], PostGIS [Refractions Research, 2010] and

certain OGC services is being intertwined with a variety of other toolsets, functionalities and

data, for example, the numerical analysis library NetworkX, computational intelligence libraries

and statistical programs such as R and PySAL [R development team, 2008, PySAL develop-

ment team, 2011]. EO4Vistrails connects these toolsets with distributed and high performance

computing environments.



Figure 2: Modules from the EO4Vistrails package



In Vistrails the basic unit of work�ow composition is the a Vistrails module. A Vistrails

module has a set of input ports and output ports. An input port can either take its value from

the output port of some other Vistrails module or may be set to a constant value. When a

Vistrails module is executed by the work�ow engine the values from the input ports are read

some processing is done using those inputs and any results are placed on the output ports for

the next module. By connecting the input ports and output ports of Vistrails modules in this

way a pipeline is formed and this is called a work�ow [Callahan et al., 2006].

Developers specialise the basic Vistrails module to provide various additional modules with

speci�c processing capabilities. All ports are typed and only input ports and output ports of

the same specialised type may be connected.

2.2 Remote Methods and Mobile Code

As parallel computing expands, systems such as cloud computing and standards such as message

parsing interface (MPI) encourage scientists to construct complex distributed solutions that

span the networks [MPI development team, 2011, Zinn et al., 2010]. A valuable addition to

geospatialy enabled scienti�c work�ows aims to provide a simple concise notation that allows

for easy parallelization and supports the composition of large numbers of parallel computations

exploring various parameterisations.

Mobile code has found its most succes in the �eld of relational databases where structured

query language (SQL) performs the function of a concise code snipit sent to a remote data source

where it is executed, prcoessing occurres and possibly results resturned. In many cases scienti�c

computing has very similar requirements to relational databases in that performing operations

at the data is far more e�cient than retrieving the entire data set and then performing those

operations locally. In the same way the dynamic nature of python simpli�es the use of mobile

code and allows for some elegant and sophisticated solutions in which mobile code like SQL

can be sent to a remote data source for execution.

Another technolgy is that of remote objects supported by remote method invocation (RMI)

that allows developers to instantiate an instance of a object on a remote compute node and

iteract with it as if it were a local instance. The research involved the evaluation of a number

of remote objects and parallel process execution frameworks including Pyro [Pyro development

team, 2011], Python multiprocessing [Python development team, 2011], Parallel Python [Par-

allel Python development team, 2011] and ipython. Eventually RPyC was decided upon due

to its �exibility, stability and support for both mobile code and remote objects [RPyC Team,

2011].

RPyC provides us with both remote objects capabilities via remote method calls, remote

procedure calls and the ability for mobile code that can be execute on a compute node. Here we

use the term compute node to refer to a computing resource along with any peripheral network

and data handling capabilities that allows us remote access to a fully �edged python interpreter

via RPyC. It is thus possible for a number of compute nodes to be running on a single physical

machine. In the future the RPyC requirement will be weakened as it is possible to deploy a



RPyC compute node to any python capable physical machine that has SSH running [RPyC

Team, 2011].

3 Design

In order to allow for the execution of Vistrails modules on remote compute nodes a decorator

is applied to a standard Vistrails module. The decorator is contractual agreement by the

developer indicating the module is now capable of executing on remote compute nodes i.e.

it is thread and multi-processor safe. In addition the decorator acts as a mixin that upon

execution of the Vistrails module by the work�ow engine replaces the module in Vistrails on

the users desktop with a proxy and moves all execution code to the remote compute nodes.

This proxy Vistrails module is wired to the Vistrails module on a remote compute node. In

other words: remote objects occures. The result is that the user of the Vistrails system is

unable to di�erentiate between a locally executing Vistrails module and a remotely executing

Vistrails module as shown in Figure 3. In fact if there are no remote compute node capabilties

available the module will run on the local machine as if it were a normal Vistrails Module.

Figure 3: A Vistrails module capable of remote compute node execution looks and behaves just
like any other Vistrails module

In the instance where the user wishes to execute a code snippet such as a new algorithm

in his or her work�ow, the system uses mobile code to transfer the given code to the remote

compute node as shown in Figure 4. All relevant variables from the current local context are

also transfered to the remote context. The remote compute node is now able to execute the

mobile code remotely. Upon completion of execution on the remote compute node relevant

results are copied back into the local context. It should be noted that the use of remote objects

in our conntext involves mobile code as well since the objects need not have existed on the

remote compute node prior to execution but are transferred as needed.



Figure 4: Example of a code snipit to be executed on a remote compute node

The result is that the entire process of remote code execution is being abstracted away

from the user. This allows the user to focus mainly on the scienti�c work�ow construction

and evaluation and less on the technology that enables it. Long running, complex modules can

be deployed dynamically to distributed high performance computing infrastructure where they

have access to large amounts of RAM, CPU cycles and high performance data access just by

selecting the appropriate destination from a drop down as shown in Figure 5.

Figure 5: Selection of the destination remote compute node from a drop down selection box

Where possible, the appropriate library dependencies and Vistrails dependencies are also

remoted to the executing remote compute node. E�ectively, the compute nodes need have

very little knowledge of the work�ows that will be executed on them. This creates a level

of independence between the user and the infrastructure being used. In our research, we

seamlessly integrated remote execution of PostGIS queries, Numpy remoting, NetworkX and

PySAL on distributed computing resources to perform spatio-temporal processing of multi-

million row datasets. {signi�cantly reducing processing time and allowing careful re-inspection

of the process steps to check for correctness}



4 Results and Lessons Learnt

4.1 Results

The system was primarily tested in the wild�re research domain using amongst many the

work�ow shown in Figure 6. 500 metre burned area observations from the MODIS instrument

for a four year period, across four scenes, derived from two algorithms (> 200 individual scenes)

needed to be roughly clustered (via spatial and temporal adjacency) into presumed individual

�re events for the given time period. These events then needed to be associated with weather

data at a coarser resolution, and the resultant data exported to a collection of CSV �les for

use in a downstream statistical analysis. The approach taken to this problem involved the

development of a graph data structure from a set of spatial and temporal queries and the use

of an algorithm to extract all the subgraphs, where each subgraph would be one �re event.

PostGIS, PostGIS WKT Raster and NetworkX were the primary tools used in the exercise,

alongside the functionality provided by Vistrails. Figure 7 shows the provenace of this work�ow.



ExecuteInOrder

ExecuteInOrder

FIRE DATABASE
(PostGisSession)

Find connected neighbours
(connected_components)

Fetch self-unioned feature ids
(Basic Returning Query)

Prep db for indiv fires
(Non Returning Query)

Generate Neighbourhoods Graph
(Graph)

Insert indiv fires
(Non Returning Query)

RpyC Node

RPyC Code

spatial merge final fires
(Non Returning Query)

Figure 6: One of the work�ows used in the �re prototype
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Moved module
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Run 50 Days
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Deleted module

Deleted module

Changed parameter

Added connection

Added connection
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Figure 7: Provenance for prototype test work�ow

Given the large spatial and temporal extent of the data and the number of spatial tests

that needed to be executed, the RAM requirements and the parallel nature of the problem ne-

cessitated the use of some high performance computing capabilities. The problem was initially

solved on the desktop in EO4Vistrails using a small subset of the data. Then the relevant mod-

ules where tasked to execute on remote compute nodes and the work�ow was re-parameterised

and re-executed, without altering or specialising the logic of the process. Results were returned

acceptably after a moderately long running time.

Other problems that have been tested using remote compute nodes include various raster

operations including NDVI calculations. The overall result is that the architecture and design

of the system supported the requirments as layed out in Section 1. In the following section we

describe some of our lessons learnt.

4.2 Lessons Learnt

The overall result was mixed, with some success and in other places much di�culty. Here we

outline and discuss some of the lessons learnt:

• Modules should be stateless and atomic. This is especially important when modules

need to be placed on remote nodes and when parallelisation is required. This style of

componentisation is common in scienti�c work�ow environments and encouraged by the

community at large. However, this has a signi�cant impact on performance, as the module

needs to complete its operations on all the data before it can pass control to the next

Vistrails module. A more e�cient mechanism may be for the current module to perform

some processing and write back intermediate results for the next Vistrails module in

the processing chain to work on concurrently, though this possible solution remains an



open research question. This limitation can be overcome to some extent by allowing for

multiple concurrent executions of the same work�ow each tackling a di�erent piece of the

same problem.

• Passing of URIs is preferable to passing of data in many cases. A module should read

the data from the URI (which may be local). After processing, the module should write

the results back to a �le. This procedure has signi�cant bene�t since the storing of

intermediate results allows for a form of caching such that work�ows can be resumed from

the last unchanged module. Additionally, this provides for persistence of intermediate

results. Passing URIs around is far cheaper than moving data and allows for a level of

�exibility where, for example, if a module is run from di�erent locations, there is no e�ect

on the code.

• C and C++ code underlying Python libraries is not easily remoted in the same way that

Python code is. In these scenarios the libraries must be present on the remote compute

node.

• C and C++ data structures such as Numpy arrays and the GDAL and OGR data trans-

lators can not be used via Python remote objects. These issues can be overcome by

following the recommendation to write all intermediate results to disk or some shared

high performance data space.

• Visualisation requires special precautions especially in cases where the interaction with the

visualisation is dynamic such as found in a GIS. In cases of less interactive visualisation,

the images or videos may be generated and transfered to the users desktop from the

remote nodes.

• Vistrails modules accessing data from a Vistrails module on another compute node can

be prohibitively slow, even when the compute nodes reside on the same machine. This is

due to interprocess communication. This problem can be overcome on a single physical

device by placing all data structures in shared memory. However, when working across

physical devices, the correct solution is the intermediate writing of data to a fast shared

data store such as a storage area network (SAN) or Network-attached storage (NAS).

In the case where two process will run sequentially on the same data, the two Vistrails

modules can be run in the same compute node one after each other. Certain naturally

parallel processes are not bound by the same problem.

• Although the RPyC approach taken tries to protect the end user from the underlying

technology and the details of where processes are running as much as possible, this is not

always easy when Vistrails modules make use of local resources such as temporary �les.

However this detail in most cases becomes a challenge for the Vistrails module developers

as opposed to the end user.



• Allowing users to execute arbitrary mobile code on private infrastructure may seem like

a major security issue. Providing read only access to a data source may be one solu-

tion, which would not hinder the scienti�c process much, since most scienti�c processes

transform a copy of the source data rather than the source data itself.

5 Conclusion

In conclusion the use of remote objects and mobile code coupled with geospatially enabled

scienti�c work�ows provides a viable alternative to web service based approaches. In fact when

combined with the Web Services based approach, better results may be achieved. We expect

an increased up take of scienti�c work�ows and access to distributed commodity computing

resources will see mobile code becoming more mainstream. The architecture and design outlined

here is a candidate solution to enabling these resources in the geospatial scienti�c computing

environment.
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