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Abstract—Link adaptation provides an efficient and flexible
strategy to adapt transmission rates based on channel conditions.
To attain distributed optimal local and global utility, network
interference need to be mitigated therein allowing the users
to transmit at the minimum transmission power enough to
sustain connectivity. This paper proposes coupled interference
network utility maximization (NUM) strategy (i.e. CIN) for rate
adaptation in WLANs that is solved using ”reverse-engineering”
based on Karush-Kuhn-Tucker (KKT) conditions. The users
determine data rates based on their local observations (i.e.
coupled interference). Both pricing and limited message passing
mechanisms are employed in the NUM wherein pricing restrict
users from self-interest behaviours while limited message passing
assist users to announce their prices and transmit powers. It is
demonstrated theoretically that CIN satisfies the conditions of the
super-modular games and that its solution is optimal. Simulation
results show that adapting data rates based on the link conditions
can improve the performance of ad hoc networks.

I. INTRODUCTION

Though reducing interference by employing power control
increases system capacity, this has effect of yielding low signal
to interference plus noise ratio (SINR) which results from the
weak received signal. This consequently leads to low data rate;
increase in interference range and hence increase in hidden
node problem. Degrading of performance in WLAN is often
due to fading, multi-path, path loss and user mobility which
is commonly handled by adjusting data rates to a more error-
resistant rate. Considering ideal channel condition, optimal
throughput is easily achieved by transmitting at high data
rates so long as the sender and the receiver are within the
transmission range. Nevertheless, since transmission channels
are susceptible to errors, realizing optimal throughput requires
reliable transmissions that are achievable only at low data
rates. Therefore, efficient link adaptation algorithm need to
recognize the right time when it is advantageous to either
increase or decrease the data rates for optimal performance
based on the channel conditions[1].

In ad hoc networks, nodes are distributive and self-
configuring and may decide to cooperate to attain global utility
or to act selfishly to attaining self maximal utility without
considering other users’ utilities. In case of cooperation, mes-
sage exchange may be employed to enhance communication
among the network users such that users are able to select

their utilities based on other users’ choices[2]. Transmitting
at high power reduces network lifetime resulting to failure in
network connectivity. Moreover, high transmit powers degrade
channel reuse and results to interference problem (co-channel
and adjacent channel interferences[3]. The major challenge in
ad hoc networks is how to mitigate interference caused by the
transmitting nodes since this influences the link condition and
hence the choice of data rates.

Ad hoc networks are dynamic and scalability entities that
autonomously adapt to changes in topology, nodes entering
the network (i.e. increasing interference) and nodes leaving
the network due to poor connectivity or energy diminution.
Motivated by mentioned properties, the proposed coupled
interference NUM strategy optimizes the performance of ad
hoc network by allowing network users to determine optimal
data rates based on their local observations (i.e. coupled
interference). Therefore, a user’s choice of data rate is a
function of link dynamics and coupled interference that is
controlled by attaching cost function to a user’s transmit power
choice. This compels users to transmit at the least power that
can sustain the intended transmission. As a result, network
users are obliged to cooperate to maximize their utilities and
consequently maximizing the global network utility.

The reminder of this paper is organized as follows: Sec-
tion II reviews related works; Section III gives the problem
formulation, proposed algorithm and analysis of the proposed
algorithm. Simulation test and results is presented in Section
IV while Section V concludes this paper.

II. RELATED WORK

An efficient rate-adaptation scheme need to keep track of the
channel dynamics and react to channel changes by selecting an
appropriate transmission rate. Common approaches to estimate
channel conditions are either based on transmission history
(acknowledgement (ACK) of the previous transmission), re-
ceived signal strength (RSS)[4] or SINR and noise at the
receiver[3]. However, SINR based schemes outperforms both
RSS and ACK due to its robustness and quicker response
to link dynamics therein providing accurate channel state
information. ACK based rate adaptation scheme e.g. Auto Rate
Fall-back (ARF), Adaptive ARF performs rate shift based on



successful (or failure) of frame delivery which reflects the
channel statues during the previous transmission and may
not necessarily reflect the current channel statues since the
channel condition is time variant [5], [6]. Hence CIN considers
link adaptation based on SINR performance to derive transmit
power that minimizes coupled interference in the network.

In [5], an algorithm is proposed where an average value of
SINR for a set of 10 frames is calculated at the receiver and
conveyed back to the sender to assist determine the data rate
for the subsequent transmissions. The authors in [6] proposes
pre-calculation algorithm for rate selection where PHY mode
table is indexed by the system status i.e. channel condition.
Each entry in the table is presumed the optimal PHY mode that
optimizes throughput. However, this is an offline algorithm
that requires strict condition that the sender perceives exact
channel condition variance for proper choice of PHY mode.
In [7], rate adaptation scheme is proposed wherein nodes select
the power-rate pair to maximize their utility based on the
previous measured SINRs. The values of SINR employed by
[5],[6] and [7] may not be reactive to link dynamics since the
perceived SINR is captured from the previous transmissions
and not as a function of the current transmission interference
or power thus the information could be stale.

In our proposed, coupled interference is controlled by
dynamically adjusting network users’ transmit power choices
based on the network link conditions and interference cost
penalties attached to that transmit power choice. The users are
therefore aware of the current link status while determining
their data rates. In addition, every user maximizes utility
of other users as it maximize its own due to the forced
cooperation, hence, improving network performance.

III. COUPLED INTERFERENCE BASED RATE ADAPTATION

A. System Model

Consider an ad hoc network with N stations where the
sender i communicates to receiver j on a single hop. It is
assumed that all the stations can hear transmissions from each
other such that a user’s transmission interferes with other users
in the network. Ordinarily, the link between i and j is subject
to path loss, shadowing and multi path fading dynamics[8].
Further, consider p as a set of discrete power levels p =
{pmin, p1, p2..., pmax} constrained by minimum and maximum
transmit power allowed to transmitter i while transmission rate
is a set of definite values r = {rmin, r1, r2..., rmax} where
rmin and rmax are the maximum and the minimum data rates
respectively possible in the network. These rate and power sets
are assumed identical to all users in the network. The channel
gain between transmitter i and receiver j is given as Gij

pj = Gijpi (1)

where i, j ∈ N , pj is the received power at j while and
pi is transmit power for transmitter i. Notably, Gij is not
necessarily equal to Gji since the channel condition is time
variant. Half duplex model is assumed i.e. a user can either
receive or transmit but not both simultaneously.

The objective is to determine a user’s power choice that
optimizes local utility with minimal coupled interference con-
sidering that other network users equally want to optimize
their utility and therefore there exist interference cost in all the
transmissions. User utility function un(γn(p)) for user n ∈ N
is strictly concave, differentiable and increasing function of the
received SINR [7], [9], [18]. The NUM problem based on the
coupled interference can therefore be formulated as follows:

max
∑
n∈N

un(γn(p)) (2)

such that

rmin ≤ r ≤ rmax∀N (3)

pmin ≤ p ≤ pmax∀N (4)

where SINR, γn(p) is given by

γij =
Gijpi∑

k 6=i,j
Gkjpk + ηo

(5)

∑
k 6=i,j

Gkjpk is the sum of interference power Iij at node j due

to communication of other users in the network other than i.
ηo is the thermal noise, Gij is the channel gain while pi is
the transmit power used by i to communicate to j.

B. Coupled Interference Minimization

Every network user has a coupled utility function - due
to existence of mutual interference - that depends on both the
user’s local decision and other users’ decisions in the network.
We can therefore derive NUM problem that all users must
maximize to attain both local and global optimality from (2)
as follows:

max
{p:pi∈P∀n}

N∑
n=1

un (γn (p)) (6)

such that (3) and (4)

The problem in (6) is a coupled objective function which
requires ”consistency pricing” [17] or dual decomposition[10]
approaches to solve. However, these approaches employs
significant message passing before the users can derive optimal
decision. Moreover, they require strict convexity in the NUM
problem whereas Uk(.) in (6) is concave in γn. We therefore
adopt reverse-engineering based on KKT conditions proposed
in [9], [11] where the network objective function is localized
and limited message passing used to keep user’s aware of their
neighbour’s utility choices.

Define pi as the power profile of user i in the network and
p−i as the power profile for user i’s opponents i.e. p−i =
(p1, ..., pi−1, pi+1, ..., pn) such that p ∈ {pi; p−i}. The utility
maximization for such a network can be modelled as a power
control game G = [N, {pi}, {ui}] where all the players, N =
n selects transmit power pi that maximize their utility ui given
that ui(i) represents user i’s pay-off (or reward). Then user



i’s optimal response is pi that maximizes its utility ui given
by ui(γi(pi, p−i)) formulated as (7) (ref.[12], [13]).

βn (p−i) = argmaxui
p
i
∈p

(γi(pi, p−i)) (7)

Assuming fixed p−i, reward ui(γi(pi, p−i)) in (7) is strictly
increasing with pi.

In view of a Non Cooperative Game (NCG) where players
selfishly select optimal power levels to maximize their rewards
at the expense of others players, a fixed point p = p∗ defined
by (8) is the nash equilibrium (NE)[18].

ui
(
γi
(
p∗i ; p

∗
−i
))
≥ ui

(
γi

(
p
′

i; p
′

−i

))
(8)

where p′ ∈ p is any power chosen by any user i other than p∗

in view of the fact that each user’s reward ui(γi(pi, p−i)) is
strictly increasing with pi for fixed p−i [7], [9].

Since the NE in (8) may not necessarily be the social
optimal operating point, introducing pricing in a user’s choice
can assist to achieve both local and global optimality given
that pricing has effect of discouraging user’s selfish behaviours
but promoting user’s cooperation. Therefore if fi(γi) in (9)
is the reward/pay-off for choosing transmit power pi, every
network user will strive to minimize its cost c in (9) attached
to transmitting with pi.

ui(pi, p−i) = fi(γi)− cpi (9)

Considering (9) as cost function obtruded to user i for
generating interference to other network users, user i have
to minimize the cost it pays to other network users for it to
maximizes its utility. Rewriting ui(pi, p−i) as a function of
γi, results to ui(pi, p−i) = ui(γi(pi; p−i)), and since the cost
c depends on Gij and network factor εj , we can rewrite cost
function (9) as a surplus function below:

Si(pi; p−i, ε−i) = ui(γi(pi; p−i))− pi
∑
j 6=i

εjGij (10)

Lemma 1 (KKT conditions) [9]: For any local optimal
p∗ of problem (6), there exist unique lagrange multipliers
µ∗1,u, ..., µ

∗
I,u and µ∗1,g, ..., µ

∗
I,g such that for all n ∈ N ,

∂ui (γi (p
∗))

∂pi
+
∑
k 6=i

∂uk (γk (p
∗))

∂pk
= µ∗i,u − µ∗g,u (11)

where

µ∗i,u (p
∗
i − pmax

i ) = 0, µ∗i,g (p
max
i − p∗i ) = 0, µ∗i,u, µ

∗
g,u ≥ 0

(12)
The KKT set of problem (6) need to contains all solutions
that satisfy conditions (11) and (12) for all n ∈ N [11]. We
therefore need to design a distributed algorithm that converges
to KKT set. Substituting (11) in (6), the KKT condition for
user i can be expressed as

∂ui (γi (p
∗))

∂pi

∑
k 6=i

εj
(
p∗j , p

∗
−j
)
Gi,j = µ∗i,u − µ∗g,u (13)

where

εj(pj , p−j) = −
∂uj (γj (pj , p−j))

∂Ij(p−j)
(14)

Iy(p−y) is locally measured total interference at user j given
by
∑
i 6=j

piGij . Notably, the cost function εj(pj , p−j) is always

non-negative and represents user js marginal increase in utility
per unit decrease in total interference. The reward is the
product of users transmission power p and weighted sum
of other users’ prices defined in (10). ε−j is equal to c in
(9) and defines the penalty inflicted on network users for
generating interference to user i, hence (13) is an acceptable
optimal condition for the problem in which each user i chooses
transmit power pi ∈ p to maximize its surplus function
(10)[11] compared to NE in (8).

At an instance of time t, network users announce their cost
in reference to (14) and adjust their transmit power taking
into account network dynamics according to (10). The chosen
power is constrained to (13) and as a result, an optimal
localized distributive power algorithm with costing constrains
is derived. The surplus in (10) and cost function (14) can be
formulated as function of the desired power pi and SINR as
in (15) and (16) respectively.

Si(p−i, ε−i) =

min

max

pmin,
pi
γi(p)

 pi
γi(p)

∑
k 6=i

εiGik

 , pmax


(15)

εi(p) =
∂ui(γi(p))

∂γi(p)

(γi(p))
2

βpiGij
(16)

where β is the spreading factor while ∂ui(ωi)
∂ωi

is given by
ui(ω

t
i)−ui(ω

t−1
i )

ωt
i−ω

t−1
i

[18].

C. Link Adaptation

From the SINRs of the distributive pricing power control
algorithm above, best constellation size for M −QAM mod-
ulation that is supported by SINR (i.e.γi) in (15) and (16) is
determined. From Shannon theory of communication ([14])
we can deduce the following: M = 1+

(
−ϑ1

ln−ϑ2BER)

)
SINR

where BER is the bit error rate while ϑ1 and ϑ2 are
modulation type dependent constants. Let δ = −ϑ1

ln(ϑ2BER) , then
data rate ri for transmit power pi between the sender i and
receiver j is a function of γi(p) given as M = 1+ δγi(p) and
hence

ri =
1

T
log2 (1 + δγi(p)) ≈ ri =

1

T
log2 (δγi(p)) (17)

where δSINR� 1 while 1
T is the bandwidth of the channel

used for data transmission. When the signal level is much
higher than the interference level or when the spreading gain
is large then ri lies within (3).



D. CIN Algorithm

1) Let time t = 0
2) For user i : k

a) Initialize power p(x) and cost ε−j(x),
p(x), ε−j(x) > 0

b) Determine data rate r(x) according to (17)
3) End if
4) For t = 1 : end of communication

a) For user i : k
i) Update and advertise cost ε−j according to (16)

ii) Update power p(x) according to (15)
iii) Determine data rate r(x) according to (17)

b) End if
5) End if

E. Convergence and Optimality of CIN

By CIN, a the derived solution is unique and optimal
if the power vector p = [pmin, ..., pmax] exist for all the
transmissions. In such a solution, an iterative power control
algorithm p(q + 1) = I(p(q)) is optimal if ∀p ≥ 0, the
following properties are observed [7].
• Positivity: I(p) ≥ 0 and
• Monotonicity: if p ≥ p

′
, then I(p) ≥ I(p

′
) where I(p)

is the interference function.
Preposition 1: If CIN is optimal on

[
pi, pi

]
∀i, the interference

function is defined as I(p) = [I1(p), I2(p), ..., In(p),] where
p = [pmin, ..., pmax] and Ii(p) = γi(p), then the following
properties can deduced from (5). There exist positivity since
background noise η0 > 0 and therefore I(p) > 0. There
exist monotonicity as shown: I (p) = γi (pi) =

SINRi

ψi
where

ψi = Gii

(
K∑

j=1,j 6=i
Gijpj + η0

)
, we get ψi (p) ≤ ψi (p

∗)

for p ≤ p∗. Since γi (pi) increases with increase in pi on[
pi, pi

]
∀i, I (p) is increasing with pi. Therefore, for a fixed

price coefficient ε−i, I (p∗) ≥ I (p). The optimality and
uniqueness of CIN solution is further analysed using super-
modular game theory in the appendix.

IV. SIMULATION TEST AND RESULTS

Simulation is performed in MATLAB with 32 nodes ran-
domly placed in a 20m × 20m field free of obstacles. It’s
assumed that only Tx and Rx are transmitting while the other
network users are actively interfering. Performance metrics are
evaluated for 50 independent runs (transmissions). For all the
simulations, we assume single hop with the following sim-
ulation parameters: path loss model exponent = 1, AWGN =
-96dB, Pmax = 10dB, Pmin = 1dB, initial cost = 0.1 and utility
function, ui(γi) is given by log(γi). It is further summed that
all transmissions are successful. Channel bandwidth of 20MHz
and spreading factor, β = 5 is also assumed. Two scenarios
as considered: scenario 1 reflects a stationary network where
all the users are static while scenario 2 considers random
movement. Tx−Rx pair moves in the same direction while the
other network users move on a predefined trajectory whereby

the distance of separation between Tx−Rx and other network
users always increases with increase in transmission. The
interval of mobility is after 2 transmissions at a velocity of
20kmph.
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Fig. 1. Stationary Users

In all the runs, it’s observed that CIN attains the higher
data rates at minimal transmission power compared to the
legend 802.11. The costing mechanism drives the power
selection response in CIN to the most cost effective option.
At the beginning, transmission power hikes due to limited
information available to Tx on the channel conditions. As the
other users advertises their network costs, Tx determines the
most appropriate power level for the subsequent transmissions
till most optimal transmission power is attained. This is the
NE. 802.11 transmit at higher power levels and hence attains
higher SINR than CIN. However, CIN still attains the higher
data rate which is the global data rate for the network. The
improvement on CIN compared to 802.11 is that CIN operates
at optimal power just enough for the transmission packets to
be decoded at the Rx.

Similar to figure 1, 802.11 records better SINR performance
than CIN in figure 2. 802.11 employs maximum allowable
power throughout the transmission process without taking into
account channel conditions. In CIN, power is adjusted depend-
ing on the network conditions and the users are restricted
from using higher transmit powers as this would result to
high interference cost and thus lowers the user’s utility. As
a result, minimal power level that can sustain the connectivity
and ensures delivery of data frames is always chosen and hence
the low SINR in CIN. The single power choice made by 802.11
makes it to have a constant maximum SINR throughout the
transmission process. The power level that CIN settles on is
apparently the most optimal power that maximizes both local
and global utility based on the network conditions. 802.11 have
no effect of reducing interference in the network thus users are
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at will to use power levels that maximize their utility without
considering others.

After few iterations, CIN converges to NE transmit power
where interference cost function is always minimized while
reward function (data rate) is maximized hence improving
network performance.

V. CONCLUSION

This paper proposes a distributive algorithm that adapts
data rates based on coupled user interference in the network.
Users are obligated to transmit at minimum cost (interference)
by employing minimum power that can sustain successful
transmission between the transmitter and receiver to maximize
its utility. The NUM problem is formulated as coupled in-
terference minimization strategy subject to channel condition
dynamics. Reverse-engineering based on KKT conditions is
used to solve the NUM problem with limited message passing
to update user’s of their neighbour’s utility choices. The
simulation results shows that penalizing selfish behaviours of
users in the network can improve network performance since
every user aims to transmit at NE.

VI. APPENDIX

Lemma 2 [15]: Let X ⊆ R and T ⊂ Rk for some k, a partial
ordered set with the usual vector order. Let f : X×T → R be
a twice continuously differential function. Then, the following
statements are equivalent:
• The function f has increasing differences in (x, t),

• For all t
′ ≥ t and x ∈ X , we have ∂f(x,t

′
)

∂x ≥ ∂f(x,t)
∂x

and,
• For all x ∈ X, t ∈ T and all i=1,2,...,k, we have

∂2f(x,t)
∂x∂ti

≥ 0

Theorem 1: Define X ⊆ R as a compact set and T as some
partially ordered set. Assume that the function f : X×T → R

is upper semi-continuous in x for all t ∈ T and has increasing
differences in (x, t). Define x(t) = argmaxx∈X f(x, t). Then,
we have: for all t ∈ T , x(t) is non-empty and has a greatest
and least element, denoted by x(t) and x(t) respectively and,
for all t′ ≥ t, x(t′) ≥ x(t) and x(t′) ≥ x(t).

From lemma 2 and theorem 1, every user’s utility function
ui(pi, p−i) has increasing differences in (pi, p−i) given that
−γif

′′
i (γi)

f
′
i (γi)

≥ 1,∀γi ≥ 0 hence the convergence.
Definition 1 [15]: Super modular games have the following
properties:

• Pure strategy NE exist.
• The largest and smallest strategies are compatible with

iterated strict dominance nationalization, correlated equi-
librium, and NE are the same.

• If a super modular game has a unique NE, it is domi-
nance solvable (and lots of learning and adjustment rules
converge to it, e.g., optimal (best) response dynamics).

Assume (I, (p), (ui)) is a super modular game. Then
Bi(p−i) in (7) has a greatest and least element, denoted by
Bi(p−i) and Bi(p−i), and if p′−i ≥ p−i then Bi(p

′
−i) ≥

Bi(p−i) and B−i(p′−i) ≥ B−i(p−i) [15], [16]
This implies that each player’s best response is increasing in

the actions of other players. The set of strategies that survive
iterated strict dominance (i.e. iterated elimination of strictly
dominated strategies) has greatest and least elements p and
p, which are both pure strategy in Nash Equilibrium. Since
(7) satisfies all the conditions of a super modular game, the
solution derived from (7) is optimal.
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