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ABSTRACT

In this paper, we discuss the advantages of using formal medical ontologies to enhance health information systems.

In particular, we consider the suitability of the medical ontology SNOMED CT for enhancing a health information

system developed in the OpenMRS framework. We propose ways in which SNOMED CT can be linked to an OpenMRS

application, based on our experience of extracting a module of SNOMED CT for tuberculosis.
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1 INTRODUCTION

An ontology (in the field of Computing) is a formal ex-
pression of knowledge about some domain, specifying
the commonly accepted terminology and the relation-
ships between its terms [1]. Perhaps the most well-
known use of ontologies is for the so-called semantic
web, where web pages are marked up with semantic in-
formation so that intelligent agents can mine them for
data more effectively [2]. Ontologies also have many
other uses, such as for specifying terminology in the
medical field.

SNOMED CT is the most comprehensive and
widely used ontology in health information systems.
It consists of clinical terminology “with unique mean-
ings and formal logic-based definitions organised into
hierarchies” [3]. Tt is used extensively in the USA and
UK, and is either being used or under serious consid-
eration in numerous other countries, as well as bodies
such as the EU.

OpenMRS is a “community-developed, open-
source, enterprise electronic medical record system
framework” [4]. The fact that it is a framework means
that it provides a shell for implementers to create ap-
plications for storing medical records that meet the
particular needs of a hospital or clinic. OpenMRS
applications have been implemented and successfully
deployed for keeping records about HIV/Aids and TB
patients at selected hospitals and clinics in a number

Email: Ken Halland? hallakj@unisa.ac.za, Katarina
Britz* arina.britz@meraka.org.za, Aurona  Gerber*
aurona.gerber@meraka.org.za

of countries in Africa, including South Africa, Kenya,
Rwanda, Lesotho, Zimbabwe, Mozambique, Uganda,
and Tanzania.

The HISA (Health Informatics South Africa) con-
ference in June 2008 incorporated an OpenMRS im-
plementers meeting where developers of the Open-
MRS framework and implementers of OpenMRS ap-
plications could get together and discuss issues of mu-
tual concern. During these meetings, the need was
expressed to enrich the data model, in particular the
concept dictionary provided by OpenMRS, with some
form of ontology. We therefore decided to investigate
the possibility of combining SNOMED CT and Open-
MRS in some way to fulfil this need. This paper de-
scribes why this would be a meaningful endeavour (i.e.
what the benefits would be) and how this could be
achieved.

The structure of this paper is as follows: In Section
2, we describe ontologies in more detail, and illustrate
how they can be used to specify terminology in the
medical domain. The main uses of ontologies, namely
for semantic interoperability, for reasoning and for en-
hancing database access, are also discussed. In Section
3, we describe the uses of SNOMED CT and list its so-
called upper level concepts. In Section 4, we discuss
OpenMRS, in particular its use of a concept dictio-
nary to store clinical terminology. In Section 5, we
discuss how the upper level concepts of SNOMED CT
could be linked to an OpenMRS concept dictionary,
and some of the issues involved in this, and in Sec-
tion 6, we describe our experiences and findings that
arose from such an attempt. Finally, in Section 7,
we make some recommendations about how problems



that were encountered, could be overcome, suggesting
various approaches that could be followed.

2 ONTOLOGIES AND THEIR USES

One of the most quoted definitions of ontology is due
to Gruber [5], namely “a formal, explicit specification
of a shared conceptualisation”. In other words, an
ontology defines the terminology or vocabulary used
in a domain so that people or systems can ensure that
they unambiguously mean the same thing when they
use those terms. The meaning(s) of the terms that
constitute the terminology are captured by precisely
specifying the types of terms and their relationships
with one another.

A medical ontology is therefore a list of medical
terminology and a specification of the relationships
between the terms that constitute it. For example,
here is part of a medical ontology about the disease
tuberculosis (TB):

Tuberculosis T BacteriallnfectiousDisease

MycobacteriumTB C Bacterium M MicroOrganism

Tuberculosis C JcausedBy.MycobacteriumTB
These three statements express the medical knowl-
edge that ‘tuberculosis is a bacterial infectious dis-
ease’, that ‘mycobacterium TB is a bacterium and a
micro-organism’, and that ‘tuberculosis is caused by
some mycobacterium TB’, respectively.

In order to ensure that the meaning of each term
can be precisely defined, and also to allow computer
systems to work with them, an ontology is always ex-
pressed in some formal notation. Various formal no-
tations exist for expressing ontologies, e.g. abstract
description logic syntax (used in the example above)
[6], web ontology language (OwL) [7] and knowledge
representation system specification (KRSS) [8]. The
example above would look as follows in KRSS:

(define-primitive-concept Tuberculosis

BacterialInfectiousDisease)

(define-primitive-concept MycobacteriumTB

(and Bacterium MicroOrganism))

(define-concept Tuberculosis

(some causedBy MycobacteriumTB))
Most (but not all) ontology formalisms are logic-
based. The advantages of logic-based formalisms are
that the semantics are precisely defined and well-
understood (i.e. there is a long history of research into
the semantics of various forms of formal logic), and
they allow automated logical reasoning (i.e. many rea-
soning algorithms have been developed to work with
these formalisms).

In general, the two main uses of ontologies are for
semantic interoperability and for reasoning. There is
also renewed interest in the integration of ontologies
with databases. We discuss these three uses now.

2.1 Semantic interoperability

By interoperability we mean the ability of computer
systems to communicate with one another. Data
transfer between two systems has to be accurate (and
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this is normally achieved by some form of network pro-
tocol), but the systems must also be sure that they
understand what the data means in the same way. If
both systems use the same ontology, we can ensure
that the transfer of such knowledge and understand-
ing is accurate [9]. This is termed semantic interoper-
ability.

The ideal situation is where two systems use ex-
actly the same ontology, but often this is not possi-
ble. There is extensive and ongoing research in the
fields of ontology integration [10] and ontology map-
ping [11]. Ontology integration is where two differ-
ent ontologies need to be merged so that the resulting
ontology maintains the meanings of the terms speci-
fied in the separate ontologies. Ontology mapping is
where terms in one ontology are mapped to terms in
another ontology so that their meanings remain the
same. Things get even more complicated when the
two ontologies are specified in languages of differing
expressivity. (See Section 2.2 below for a discussion
of expressivity.) These are all problems in achieving
semantic interoperability.

In the medical domain, there are often multiple
health information systems (HISs) that need to com-
municate with one another. The SemanticHealth Re-
port published by the European Commission [12] de-
fines interoperability in the realm of HISs as

. the ability to ... exchange, understand
and act on citizens/patients and other
health-related information and knowledge
among ... disparate health professionals, pa-
tients and other actors and organisations
within and across health system jurisdictions
in a collaborative manner.

Interoperability becomes a challenge when the HISs
involved use different standards and/or data formats
for storing and processing information. Just as impor-
tant is the medical terminology that the two systems
use, and particularly what is meant by each of the
clinical terms. An important purpose of a medical on-
tology is therefore to achieve semantic interoperability
between HISs.

2.2 Reasoning

By reasoning, we mean being able to derive some log-
ical conclusion from knowledge. If the knowledge is
expressed in statements using some formal notation,
reasoning allows us to infer additional statements that
are implicit in the stated knowledge, i.e. which are not
stated explictly. For example, from the last two state-
ments given at the beginning of Section 2 above, we
could conclude that

Tuberculosis C JcausedBy.Bacterium
i.e. ‘tuberculosis is caused by some bacterium’, even
though this is not stated explicitly in our ontology.

There are different types of reasoning tasks that
can be posed to a reasoner about a set of statements.
One task would be to ask whether a particular state-
ment is true with respect to a set of statements. For
example, we could ask whether the above statement
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is true with respect to the three statements given ear-
lier. Another task would be to check whether a set of
statements is consistent, i.e. that they do not contra-
dict one another. Yet another task would be to check
whether a given description is satifiable with respect
to a set of statements, i.e. whether it is possible that
there are individuals which comply with the descrip-
tion. For example, we could ask the reasoner whether
the description Tuberculosis M Bacterium is satisfiable
with respect to the set of statements given earlier.
Finally, we could ask whether a statement about an
individual is true with respect to a set of statements,
i.e. whether some individual complies with a given de-
scription (see Section 6.2.2 below for an example).

This final reasoning task may seem similar to a
database query, like ‘is patient X infected with tu-
berculosis?’. However, reasoning over logic-based on-
tologies amounts to reasoning over all possible inter-
pretations of the statements expressed in the ontol-
ogy. This is in contrast to reasoning over a database,
which amounts to reasoning over a single interpreta-
tion. (See the discussion of the open- and closed-world
assumptions in Section 2.3 below.)

Almost all logic-based ontologies are based on de-
scription logics [6] (or DLs), a family of decidable log-
ics particularly suited to expressing ontological knowl-
edge and reasoning about it. Informally, a decidable
logic is one for which an algorithm exists that is guar-
anteed to answer queries in a finite amount of time.
Each member of the DL family of logics has a differ-
ent measure of expressiveness, i.e. it is able to express
particular nuances of knowledge. The reason why all
these logics are not lumped together into one iiber-
expressive logic is that one wouldn’t be able to rea-
son efficiently over knowledge expressed in it. So each
logic in this family is limited in its expressiveness by
the existence of an efficient algorithm to reason over
it. In other words, there is a trade-off between the
expressiveness of respective description logics and the
efficiency of algorithms that can reason about knowl-
edge expressed in them.

There are some highly expressive description log-
ics, e.g. SHOZN (D) and SROZQ [13], whose reason-
ing algorithms, although theoretically shown to be of
intractable complexity, in practice perform quite ac-
ceptably for small to medium-sized ontologies.

For very large ontologies, less expressive de-
scription logics which have reasoning algorithms of
tractable complexity are preferred. For example, the
description logic ££T [14], which is the underlying
logic of SNOMED CT, has limited expressiveness (e.g.
it does not allow one to express negation, as in ‘a
bacterium is not a virus’). This restriction allows al-
gorithms to reason efficiently over large ontologies ex-
pressed in ££T. On the other hand, the description
logic DL-Lite [15] allows primitive negation but does
not allow qualified existential quantification (as in ‘tu-
berculosis is caused by some bacterium’) as provided
in £L£T. This allows the implementation of reasoners
which can operate efficiently over database schemas
expressed as DL-Lite ontologies [16].

2.3 Integration with databases

Linking ontologies to databases has been an active
field of research recently and several approaches have
been proposed [17, 18, 19, 6]. The reader should note
that in this field, the term ontology does not always re-
fer to a formal, logic-based ontology, but is often used
in a wider context. However, we limit our definition
of ontology to mean a logic-based ontology.

There are many applications of logic-based ontolo-
gies in the field of databases [20, 6]. Firstly, reasoning
can be used to identify problems in the conceptual
data model of an existing system, or during the de-
velopment of a system. If the data model is expressed
as an ontology, reasoning can be used to find seman-
tic inconsistencies such as any concepts that are un-
satisfiable. An example of this is the ICOM tool for
intelligent conceptual modeling [21].

Furthermore, when using an ontology as concep-
tual data model, it is possible to reason over queries.
In other words, it is often possible to simplify the
query before it is posted to the database, or even to an-
swer the query without doing a table lookup. Reason-
ing can also be used for so-called intelligent querying,
i.e. answering queries utilising logic-based reasoning
that can’t be answered by standard query mechanisms
[22]. (Note, by reasoning over queries we exclude the
types of query simplifications which are possible with
standard database technology.)

With regards to the coupling of ontologies to
databases, several of the initial tools that were de-
veloped, imported the data from a database into the
ontology as instance data (see Section 6.2.2). Exam-
ples are DataMaster, RDB20nto and Relational. OwL
[17, 23, 18]. Other tools such as DB20wL, VisAVis,
DBowM, R20O, D2R Map, D2RQ and OBDA retain the
database separate from the ontology implementation
and provide an ontology-to-database mapping mecha-
nism to interact with the data [24, 25, 26, 27, 28, 19].
Except for OBDA, these tools support the coupling
to database data using binary relations only and they
mostly do not support the latest OWL 2.0 standard or
state of the art reasoning technologies. For the pur-
pose of this paper, we limit the discussion to tools
that support the most recent developments in OWL
reasoning, namely SHER [29] and the work related to
DL-Lite and the OBDA toolset [30, 31, 32].

One of the most active fields of research in the area
of combining formal ontologies with large databases,
is in the DL-Lite family of description logics [33, 34].
The intent is to provide access to data in a database
through a mediating ontology. The ontology provides
the semantic model of the data which should allow
for the inference of new knowledge from the data, the
verification of data integrity and semantic data inte-
gration. An OBDA plugin for Protégé is available for
this purpose that provides ontology editing and data
mapping functionality, as well as a querying facility
that allows a user to query the database through the
mediating ontology [30, 31, 32].

The biggest disadvantage of the DL-Lite and
OBDA approach is the limited expressiveness of DL-
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Lite. However, inference of subsumption queries al-
ready provide a user with functionality that is not
readily available in RDBMSs with SQL queries. In
addition, the fact that a query can be posed to the
data source through the ontological domain model is
regarded as a substantial benefit by most users. This
advantage means that it should not be necessary to ap-
point database and SQL specialists in order to extract
relevant information from the relational data sources.
A domain expert should be able to extract informa-
tion using domain knowledge through the ontology in
a far more intuitive way.

SHER is described as a scalable highly expressive
reasoner [35] that provides the functionality for se-
mantic querying of large relational datasets through
OWL ontologies. SHER provides standard description
logic reasoning services including consistency check-
ing and conjunctive query answering, and supports
the OWL 1.0 logic OWL-DL but excluding nominals
and datatypes [29]. The SHER toolset performs lim-
ited reasoning when loading an ontology and executes
most of its reasoning when doing query answering.
Another key feature of SHER is its ability to tolerate
logical inconsistencies in the data by not terminating
when inconsistencies are detected, but by pointing a
user to the source of the inconsistencies.

One issue that has to be borne in mind when
coupling ontologies with databases is the impedance
mismatch problem. Poggi et al [19] summarise the
impedance mismatch as the problem arising from the
difference between the basic elements managed by the
data source, namely the data tuples, and the elements
managed by the ontology, namely concepts and in-
stances. When this problem is not handled properly,
the user will not extract the correct data. The solu-
tion is a robust mapping language that allows a user
to map data source elements appropriately to the el-
ements of the ontology, a claim made by the OBDA
team. The impedance mismatch has to be managed
by creating mappings that ensure the correct conse-
quences and inferences.

Another issue that has to be borne in mind is that
formal ontologies support an open-world assumption,
whereas in the database world a closed-world assump-
tion holds. The closed-world assumption means that
“if a fact is not contained in the database, the fact
is assumed false” [36]. The open-world assumption
means that if a fact is not known, an answer of not
known will be returned.

For example, when querying a database about
whether there is stock of some medicine, an absence
of any record of stock will be used to infer that there
is no stock. In other words, absence of data will re-
sult in the answer false. However, posing the same
question to an ontology will result in an empty or null
answer, not false. Conversely, if it is not recorded that
a patient is infected with some disease, a query to a
database would yield the answer false based on the
absence of information, whereas the answer provided
by an ontology would be inconclusive. These exam-
ples illustrate the usefulness of the open- and closed-
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world assumptions in different contexts, but also the
necessity of being aware of which assumption is being
used, particularly when posing queries to a database
through an ontology. Results from the ontology will
be based on an open-world assumption and only facts
that are asserted or that can be inferred from asser-
tions, will be returned.

3 SNOMED CT

As stated above, SNOMED CT is an industrial-scale,
logic-based ontology specifying all the terminology one
needs for any medical or clinical purpose.

As stated in Section 2.2, SNOMED CT is based
on the description logic ££%. The main reason why
it is based on this relatively inexpressive DL is that
SNOMED CT is a massive ontology (consisting of more
than 300 000 terms representing medical concepts as
well as over 1 000 000 terms representing relations be-
tween the concepts). Any more expressive logic would
not allow reasoning in an acceptable amount of time.

3.1 Uses

As with other ontologies, SNOMED CT can be used
for semantic interoperability, reasoning and integra-
tion with databases (see Sections 2.1, 2.2 and 2.3).

An example of semantic interoperability is dis-
cussed by Ryan [37] who proposed enhanced interoper-
ability by basing Health Level 7 (HL7) standard mes-
sage models on SNOMED CT concepts. HL7 standard-
izes the information models for messages in health in-
formation systems but without semantics which means
that it addresses only one aspect of interoperability,
namely standardized formats. Integrating HL7 with
SNOMED CT facilitates the automated generation of
HL7 messages from the structure of SNOMED CT
concepts and relationships, which results in seman-
tic interoperability from the common vocabulary of
SNOMED CT. Similar work has been done by Benson
[38].

The use of reasoning with the SNOMED CT ontol-
ogy is discussed by Patel et. al. [39] who investigated a
case study that explores the applicability of ontology
reasoning to automate common clinical tasks. They
identified the need to bridge the semantic gulf between
raw patient data, such as laboratory tests or specific
medications, and the way a clinician interprets this
data and they formulated a problem of semantic re-
trieval to match patients to clinical trials. Similarly,
Milian et. al. [40] use the ontological structure and as-
sertions to extract all relevant concepts of a specific
medical subdomain (breast cancer) from the ontology.
The reasoning allows for the extraction of concepts
such as malignant tumor as a relevant concept. This
term would not be identified when doing a basic key-
word match on the term breast cancer. Zimmerman
did his research on extending SNOMED CT to include
explanatory reasoning, specifically for clinical pathol-
ogy [41]. He found that SNOMED CT supports some
structures necessary for explanatory reasoning, but for
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it to be really useful, it has to be extended with addi-
tional explanatory structures and concepts.

As mentioned in Section 2.3, several approaches
have been proposed to integrate or couple ontologies
with databases. In the case of SNOMED CT the ontol-
ogy is often used as a system component in a database
driven system. Since SNOMED CT is not designed to
specify instance data (see Section 6.2.2), there is not
a strong integration of the ontology to database data.
SNOMED CT is rather used as an intelligent system
module specifying clinical terms, and queries to the
database are handled by a separate system module.
An example of such an approach is the semantic sys-
tem developed by Bouamrane et. al. [42] that allows
backward compatibility to all patient records held in
a legacy information system database.

3.2  Structure

The concepts of SNOMED CT are arranged into hi-
erarchies, with more general concepts higher up, and
more specific concepts lower down. The so called up-
per level concepts are the most general [3] and are as
follows:

- Clinical finding/disorder Results of clinical obser-
vations, assessments or judgements, including dis-
eases and disorders

- Procedure/intervention Activities performed in
the provision of health care, including invasive
procedures, administration of medicines, imag-
ing, education and administrative procedures

- Observable entity Aspects, factors or procedures
to which values can be assigned, for example
blood pressure, temperature, colour of nails, etc.

- Body structure Normal as well as abnormal mor-
phological/anatomical structures specifying body
sites involved in diseases or procedures

- Organism Animals, plants and micro-organisms
of significance in medicine, particularly causes of
diseases and conditions

- Substance Active chemical constituents of drugs,
food and chemical allergens, causes of adverse re-
actions, toxicity or poisoning, etc.

- Pharmaceutical/biologic ~ product  Medicines,
drugs, vaccines and other pharmaceutical
compounds

- Specimen Entities obtained (usually from a pa-
tient) for examination or analysis, often including
the source from which they are obtained, the pro-
cedure used to collect them and the substance(s)
of which they are comprised

- Physical object Natural and man-made objects
such as medical devices, implants, surgical imple-
ments, life support systems and artificial organs

- Physical force Primarily forces that represent
mechanisms of injury, such as heat, pressure, elec-
tric current, or friction

- FEvent Environmental occurrences such as floods,
earthquakes and chemical spillages
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- Environment/geographical location Medical and
other environments as well as named locations
such as countries, states, and regions

- Social context Social conditions and circum-
stances such as family and economic status, eth-
nic and religious heritage, life style, and occupa-
tions

- Staging and scales Assessment scales (e.g. burn
degrees and intelligence scales) and tumor/cancer
stages

These upper level concepts each represent entire hier-
archies of further, more specific concepts. Concepts
from one hierarchy are linked to concepts in other hi-
erarchies by means of relations. For example, the re-
lation hasCausativeAgent relates some subconcept of
Disease in the ClinicalFinding hierarchy to some con-
cept in the Organism or Substance hierarchies.

4 OPENMRS CONCEPT DICTIONARY

The OpenMRS data model comprises numerous tables
for storing all sorts of data; primarily health records
of patients. A selection of these tables are used to de-
fine the so-called concept dictionary of an application.
This lists all the possible medical concepts that can
occur in the application. These concepts are grouped
into classes, and together they can be considered as a
‘flat ontology’. The guidelines provided to Open MRS
implementers for populating the concept dictionary
recommend the following classes [4]:
- Test Laboratory tests or physical examination
maneuvers
- Procedure Actions performed in the diagnosis or
treatment of conditions
- Drug Medications, prescriptions and over-the-
counter dispensing
- Diagnosis Medical conclusions
- Finding Observations or results of tests or exam-
inations
- Anatomy Body parts
- Question Queries to which there are open-ended
or coded responses
- LabSet Groupings of tests or procedures
- MedSet Groupings of medications
- ConwvSet Groupings of questions (e.g. vital signs)
- Symptom Signs or indications of possible conclu-
sions
- Specimen Samples of tissue or fluid
- Program Plans or sets of plans consisting of tests
or procedures to be followed
- Workflow Processes described/prescribed by the
organisation
- State Descriptions of patients’ status
- Misc Unclassifiable concepts
Some of these classes are represented by their own
tables (e.g. drugs) which are related to concepts in the
dictionary by standard database relations. However,
apart from this and the simple is-a relation provided
by the abovementioned classes, the OpenMRS data



model does not allow the definition of hierarchies of
concepts or of relations between concepts as a proper
ontology would.

5 LINKING OPENMRS AND SNOMED CT

51 Why?

Potentially, OpenMRS could benefit from the incor-
poration of a medical ontology such as SNOMED CT
in terms of semantic interoperability, reasoning and
database integration as discussed in Section 3.1.

Benson [38] describes the use of SNOMED CT to
achieve semantic interoperability between health in-
formation systems. Although OpenMRS already al-
lows the incorporation of health information standards
such as ICD-10 and HL7 to ensure interoperability
with other systems, this does not ensure semantic in-
teroperability at all. OpenMRS applications inter-
operate with larger HISs on district, provincial and
national level for the purposes of data gathering and
surveillance. For example, health authorities might
require data on the number of successfully treated TB
patients. However, if the OpenMRS application and
the larger HIS attach different meanings to ‘success-
ful treatment’, the data that is gathered will be in-
accurate. A shared ontology could ensure semantic
interoperability.

In its current form, OpenMRS doesn’t allow rea-
soning over the medical terminology stored in its con-
cept dictionary. Since a rich hierarchy of concepts
cannot be specified in the concept dictionary of an
OpenMRS application, inference on related concepts
cannot be made. For example, one would like to spec-
ify that extreme drug resistant (XDR) TB is a type
of multi-drug resistant (MDR) TB, that MDR TB is
a type of active TB, and that active TB is a type of
TB. An ontology like SNOMED CT would allow such a
hierarchy to be expressed and allow one to infer that
XDR TB is a type of TB. It would also allow one to
infer that a patient infected with some variant of TB
(e.g. MDR TB or XDR TB) is a TB patient. Open-
MRS in its current form would require one to specify
each of these separately.

Integrating a medical ontology with the informa-
tion stored in an OpenMRS database would allow rea-
soning over the patient data that is not possible in
OpenMRS at present. As stated in Section 3.1, rea-
soning over part-whole relationships is one type of rea-
soning that is not possible with database systems. An
example of this type of reasoning is given in Section
6.2.1 below.

5.2 How?

The similarities between the upper level concepts of
SNOMED CT and the concept classes in an OpenMRS
concept dictionary suggest the possibility of a map-
ping. Upper level concepts of SNOMED CT missing
from the recommended classes in an OpenMRS con-
cept dictionary include Observable entity, Organism
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and Substance, whereas the concepts Diagnosis, Ques-
tion and Symptom are missing the other way around.

As stated above, the concept classes in the concept
dictionary of an OpenMRS application are only rec-
ommended in the guidelines; there is nothing to stop
one from populating the concept dictionary with con-
cepts from SNOMED CT. This could address the mis-
match in one direction, but not the other way around.

Another issue is that SNOMED CT is a large and
cumbersome ontology, and since OpenMRS applica-
tions generally only store information about medical
interventions of limited scope, it makes sense to only
link a part of SNOMED CT to an OpenMRS applica-
tion. In particular, we decided to extract a module
from SNOMED CT dealing specifically with TB, and
link it to the concept dictionary of a simple Open-
MRS application dealing only with TB patients. (By
a module, we mean a sub-ontology that only uses a
subset of the terminology of the main ontology, but
that preserves the meaning of the terminology [43].)
The smaller scale of this problem would also make it
easier to evaluate the process.

We foresaw that some adaptation of the extracted
module would be needed in order to match the con-
cepts in the OpenMRS dictionary and/or to address
local issues of MDR and XDR TB.

6 FINDINGS

6.1 Experiences of extracting a module from
SNOMED CT

We considered two approaches for extracting the mod-
ule: (i) to use the ProSE plugin [44] for the Protégé
ontology editor [45], and (ii) to use the module extrac-
tion facility provided by the CEL reasoner [46].

The version of SNOMED CT we had access to was
in KRSS format. There are a number of different ver-
sions of KRSS syntax used by different ontology soft-
wares. For example, Protégé can convert files from a
particular KRSS format to (its native) OWL format,
and the CEL reasoner accepts ontologies in KRSS for-
mat of a different syntax. Some syntax massaging of
the version of SNOMED CT that we were in possession
of was required to make it readable by these programs.

Two other problems that we experienced with
Protégé were that the reasoners that could be used
with it at that stage only supported description log-
ics like SROZQ and SHOZN (D) which are far more
expressive than ££7, the underlying description logic
in which SNOMED CT is defined. (The CEL reasoner
can now be used with Protégé, see [43].) There were
also memory problems of loading SNOMED CT into
Protégé, since it is such a massive ontology.

We had more success with the CEL reasoner which
was specifically designed to work with ontologies de-
fined in ££T and expressed in KRSS format, and could
also be used to extract modules.!

IThe module we extracted from SNOMED CT about TB using
the CEL reasoner is available from the first author on request.
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The problem with the module that we extracted
was that it only contained the superconcepts of
Tuberculosis, not the subconcepts. To be usable as an
ontology for linking to the concept dictionary of an
OpenMRS application, this ontology would have to
be expanded to include many of the relevant subcon-
cepts of Tuberculosis, for example, ActiveTuberculosis,
ChronicTuberculosis, DrugResistant Tuberculosis etc.

We did not proceed with extracting a more com-
prehensive TB module due to some problems that had
become apparent during the process. These are dis-
cussed below.

6.2 Pros and cons of SNOMED CT

As mentioned above, SNOMED CT has numerous
strengths that make it the medical ontology of choice
for this enterprise. It is an international standard,
and for this reason it is good for semantic interoper-
ability. SNOMED CT is also a logic-based ontology
and is therefore eminently suitable for reasoning. A
number of efficient reasoners have been developed for
processing and reasoning over SNOMED CT.

SNOMED CT has two major disadvantages, how-
ever, namely its design legacy and its lack of support
for instance data.

6.2.1 Design legacy

SNOMED CT has undergone numerous reincarnations
in its development. Since the expressiveness of the
underlying logic was restricted by the availability of
reasoners (during the early stages of the development
of SNOMED CT) that could operate effectively over
the ontology, restrictions were placed on what knowl-
edge could be expressed. A particular problem was to
express certain part-whole relations, particularly for
describing parts of the anatomy. For example, the fin-
ger is part of the hand and the hand is part of the arm.
From this we would like to be able to infer that the
finger is part of the arm without having to explicitly
state it.

Such part-whole reasoning requires transitive rela-
tions (i.e. from R(a,b) and R(b, ¢) infer R(a, c)) which
were not available in the reasoner being used. A clever
trick called Sep (Structure, Entire, Part) triplets was
introduced by Schulz et al [47] to allow transitive re-
lations to be expressed in the ontology without imple-
menting them in the reasoner. Here is an example of
SEP triplets being used to express the transitivity of
the part-of relation of fingers, hands and arms:

Arm T ArmS

ArmP C ArmS M dpartOf.Arm

HandS C ArmP

Hand C HandS

HandP C HandS 1 JpartOf.Hand

FingerS C HandP

Finger C FingerS

FingerP C FingerS M JpartOf.Finger
As shown here, this requires the introduction of two
additional (S and P) concepts for each concept which
needs to participate in the partOf relation.

After the ‘SEP-triplification’ of SNOMED CT, Sun-
tisrivaraporn et al [48] developed a reasoner that could
work with transitive relations and showed that it could
do so without any additional complexity (i.e. with-
out the algorithm requiring any appreciably additional
time or space). By specifying that the part-of relation
is transitive (with a statement like (transitive partOf)),
the eight statements above could be expressed simply
as follows:

Finger C dpartOf.Hand

Hand C dpartOf.Arm
From this, Finger C dpartOf.Arm could be inferred.

Despite this breakthrough, the damage had been
done. Unfortunately researchers have been unable
to automate the expunging of SEP triplets in a safe
way (without affecting the relationships between other
terms) — it has to be done manually. As it stands
now, SNOMED CT is still riddled with redundant SEP
triplets.

Although this problem is not evident in the mod-
ule which we extracted, any more extensive module
that would (need to) be extracted that refers to any
body structure (for example, the lungs or the alve-
oli) would involve SEP triplets. In fact, just for the
concept Lung, SNOMED CT currently has the con-
cepts EntireLung, LungPart and LungStructure for this
purpose. Transitivity of relations for the TB module
would be necessary to be able to infer, for example,
that the alveoli are part of the lungs, and that infec-
tion of the alveoli would imply infection of the lungs.

Considerable reworking of the more extensive
module would be necessary to get rid of SEP triplets.

6.2.2 Instance data

SNOMED CT is a list of clinical terms which refer to
types of diseases, parts of the body, drugs, etc. in gen-
eral terms. It is not designed or intended to express
knowledge about specific patients, specific measure-
ments or specific interventions performed at specific
times.

In ontologies based on some description logic, in-
stance data is stored in the form of assertional state-
ments about individuals. For example,

Patient(P123)

infectedWith(P123, DrugResistant Tuberculosis)

To be able to infer that P123 is a TB patient, there
would need to be addition terminological statements
like

TBPatient T Patient M JinfectedWith. Tuberculosis

DrugResistantTuberculosis C Tuberculosis
SNOMED CT only contains terminological statements
to define medical terminology. It has no assertional
statements, and no terminological statements that de-
fine or use the concepts needed for such assertional
statements.

Another important aspect of patient data is the
necessity of being able to express negation, for exam-
ple when a particular condition is ruled out by the
results of a test. As stated in Section 2.2, negation is
not expressible in ££7, the underlying DL of SNOMED
CT. This ‘disadvantage’ of SNOMED CT would only



be an issue if one wanted to use the ontology to in-
tegrate with the rest of an OpenMRS database (as
explained in Section 2.3), i.e. to allow reasoning over
instance data in the form of patient records.

Some work has been done to allow instance data
with SNOMED CT, and to reason over it. The SHER
reasoner (described in Section 2.3) is designed to rea-
son over large ABoxes (i.e. large collections of asser-
tional statements) [49], and has been used to reason
over patient data together with SNOMED CT [39].

7 RECOMMENDATIONS

We are convinced of the advantages of enhancing
OpenMRS with some (richer) ontology (see Section
5.1). As argued above, some adaption of SNOMED
CT or at least of a module of it would be needed for
this purpose (Section 5.2).

An important decision would be whether one
wanted to allow reasoning over the clinical terms
(i.e. the medical terminology) stored in the concept
dictionary alone, or over the patient records (i.e. the
instance data) stored in the rest of the database as
well. We envisage three possible options:

Use an ontology that defines and allows
reasoning over the clinical terms alone. This
is the simplest option, since one wouldn’t have to
worry about modelling the instance data. It would
simply require cleaning up a module extracted from
SNOMED CT and perhaps adding concepts needed for
the missing (recommended) classes (Section 5.2). If
the SNOMED CT module were left unaltered (i.e. with
its SEP triplets and other redundant concepts), an-
other advantage would be its compatibility with the
current state of SNOMED CT, allowing semantic inter-
operability with other systems that use SNOMED CT
(Section 2.1).

Use two ontologies: one for reasoning over
the clinical terms, and another for reasoning
over the patient records. The first ontology could
be the one developed for the first option above. The
second ontology could be created in a different (more
or alternatively expressive) description logic. For ex-
ample, if the underlying DL of the second ontol-
ogy were DL-Lite, one could reason over the patient
records by means of the OBDA technology (Section
2.3).

One disadvantage would be that semantic inter-
operability could only be achieved with other systems
that use compatible ontologies (Section 2.1).

Another disadvantage would be if one wanted to
integrate the two ontologies for performing reasoning
which involved both the clinical terms and instance
data (Section 6.2.2). Some form of ontology integra-
tion or ontology mapping would have to be employed,
with the added complexity of having to deal with for-
malisms of different expressivity (Section 2.1).

Create a new, combined ontology for rea-
soning over both clinical terms and patient
records. The main advantage of doing things to-
gether would be that the ontology could be used for
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reasoning over both clinical terms and patient records
(Section 6.2.2). In other words, the problem of ontol-
ogy integration or mapping of second option would be
avoided.

A disadvantage would once again be that seman-
tic interoperability could only be achieved with other
systems that use a compatible ontology.

One could consider developing the entire ontology
in something like DL-Lite (Section 2.3), but this would
prevent much of the type of reasoning over clinical
terms that is possible in SNOMED CT. One could also
consider using the SHER reasoner which has been used
to reason over patient data together with SNOMED
CT (Section 6.2.2). Alternatively, one could consider
using one of the highly expressive DLs like SROZQ
(Section 2.2). Since one would be dealing with a much
smaller ontology than the entire SNOMED C'T', accept-
able response times should be obtained.

8 CONCLUSION

In this paper we have documented an attempt to en-
rich an OpenMRS application with the SNOMED CT
medical ontology. The main reason for this enterprise
was to allow reasoning over the health information
stored in such a system, that is not possible with
the database technology currently used by the Open-
MRS framework. Although we did not complete the
planned implementation, we gained a number of in-
sights into the process that will be useful for anyone
attempting to do something similar. In summary, we
contend that SNOMED CT in its unaltered form is not
suitable for linking to an OpenMRS application. A
module extracted from SNOMED CT would be more
suitable, and this would further need to be refined
and adapted to suit the concept dictionary of the par-
ticular OpenMRS application. Various strategies are
possible, as outlined in Section 7. These primarily de-
pend on whether one would want to be able to reason
over patient records in addition to the clinical terms.
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