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Abstract— This paper concerns modelling human hand or
tool trajectories when interacting with everyday objects. In
these interactions symmetries may be exhibited in portions
of the trajectories which can be used to identify task space
redundancy. This paper presents a formal description of a set
of these symmetries, which we term affordance symmetries, and
a method to identify them in multiple demonstration recordings.
The approach is robust to arbitrary motion before and after
the symmetry artifact and relies only on recorded trajectory
data.

To illustrate the method’s performance two examples are
discussed involving two different types of symmetries. An simple
illustration of the application of the concept in reproduction
planning is also provided.

[. INTRODUCTION

There has been much work in the way of enabling
trajectory-level imitation in manipulators and humanoids [1]
[2] [3]. By the term ’trajectory-level’ we refer to the imitation
of basic motions which guide a robot through its workspace
to yield behaviours such as pouring water or tossing a
ball. Common amongst many proposed imitation schemes
is the problem of generating a reliable and useful behaviour
model given very few actual demonstration recordings. Any
consumer would likely not have the patience to record more
than possibly ten demonstrations. It is also preferrable not
to expect a user to provide too much additional information
when interpretting their actions.

Another topic closely related to behaviour reproduction
is behaviour recognition. As with imitation it is difficult to
build a behaviour classifier given only a few examplar recor-
dings. There are approaches where imitation and behaviour
recognition are considered linked and, through simulation,
recognition systems try to answer the question: ‘If I were
doing behaviour A in the current situation, would I be doing
this?” [4]. If a user is executing an arbitrary behaviour in a
different situation to the training scenes and such a scheme
is applied, then the recognition system would have to try
generalize its small set of demonstrations to answer that
question.

This paper addresses the two problems simultaneously
by proposing a scheme to identify symmetries in behaviour
recordings in a household setting. These symmetries allow
reduction in the dimensionality of the recordings so that
in the lower dimension better models of behaviour can be
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constructed. They arise because man-made objects people
typically interact with in day to day living are often designed
using simple geometrical primitives, such as rectangles or
circles, and simple articulation freedoms, such as hinges or
prismatic joints. When people interact with these objects
their behaviour reflects some of those objects’ symmetry.

Consider Figure 1. In blue are two trajectories of a
demonstrator’s hand when opening the oven. Suppose that
we are not aware of the oven or the door’s hinge joint
and we are modelling the behaviour of the demonstrator’s
hand. We would prefer a model which would consider the
imagined trajectory (in red) as potentially equivalent to the
blue trajectories. Of course, from two demonstrations it is
difficult to assume that the trajectory in red is a viable option.
Perhaps the handle is split in the middle. But, being aware of
the potential equivalence of the red trajectory is an important
step in generalizing this behaviour. This hypothesis could
even then be tested by some robot that is modelling the
behaviour.

This paper proposes that the red trajectory is potentially
similar to the blue trajectories through identifying what we
term an ‘affordance symmetry’. The term affordance is, of
course, used in the same manner as in the work of [5]. It
refers to the implied function or interaction modalities of an
object. In the example, the symmetry could be considered
linear and is given by the fact that the hand trajectories
projected onto a plane perpendicular to the edge of the handle
lie precisely on top of each other when interacting with
the oven. It could be argued that with a kinematic model
of the oven such a ’symmetry’ would be obvious, but in
many interactions when the robot is unaware of an object’s
affordances identification of such artifacts can greatly im-
prove trajectory models and allow some redundancy in task
reproduction planning.

This paper proposes two things: Firstly, the concept of an
affordance symmetry and its mathematical expression and,
secondly, a means of identifying potential symmetries in
trajectory recordings. The scheme used to identify potential
symmetries is similar to the generalized Hough transform.
Because it is impossible to be absolutely sure that a potential
symmetry exists without a means to test it, verification is
considered out of the scope of the paper.

The structure of the paper is as follows: Section 2 will
discuss related work. The affordance symmetry concept will
be presented in section 4. The concept and its performance
will be illustrated with a number of experiments in the
same section. Section 5 will apply the concept to behaviour
reproduction. Conclusions and future work will be the topic
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of Section 6.

II. RELATED WORK

The concept of symmetry has found application in ma-
ny fields not least of which are theoretical physics, cry-
stallography and molecular biology. In computer vision,
it has been applied to modelling human attention [6]. In
psychology, symmetry has been found to be an important
aesthetic for people. A study was conducted where faces
were manipulated to appear more symmetrical. They were
judged to be more attractive than the original faces [7]. In
an experiment investigating the appreciation of symmetry in
art, symmetrical patterns were found to be preferred over
assymmetrical versions [8]. We propose to bring a form of
this concept in trajectory modelling.

Determining invariance in sets of behaviour demonstra-
tions is the subject of many imitation papers. Work by
Calinon, et. al. [1] focuses of wrapping a corridor around
demonstration trajectories in the form of a Gaussian mixture
model. This corridor captures the allowable variance in
different stages of a task. This approach is very successful in
situations where the task is fairly specific such as painting
a pattern and where the user is trying to demonstrate the
task as consistently as possible. The framework, however,
requires many demonstrations in tasks where variance in
demonstration trajectories is large.

Another work which related to ours is Jikel, et. al. [9].
Based on assumptions about the objects used in interaction
their system attempts to establish volumetric constraints
consistent with the demonstrations. An example would be
that at a certain stage the open end of a bottle is over the open
end of a cup. The constraints also have temporal ordering. In
our work, we propose that often trajectory data need only be
considered in a lower dimensional space. This concept may
very well reduce the search space necessary for [9]. Also,
combined with the Gaussian mixture model approach [1] we
are enabling an imitation scheme with very few assumptions
except that objects may have affordance symmetries that can
be exploited.

There is growing interest in identifying object articula-
tion freedoms visually [10] [11]. Once such freedoms are
identified imitation of interaction with the object is greatly
simplified. Although the proposed approach could be used
to suggest such freedoms, it assumes much less knowledge
of the environment. It uses just the recorded trajectories.
Interaction between objects need not be identified and is

especially useful in behaviours where interactions are dif-
ficult or impossible to identify.

The works [12] and [13] discuss various ways to deter-
mine coordinate frames of demonstrations to align trajectory
recordings. Our work differs in that rather than looking for a
specific frame in which trajectories appear to be consistent,
we try to identify the redundancies of the frames.

There is work where rotational symmetries are identified in
demonstration grasping motions, but they do not generalize
the concept [14]. A method to generate similar demonstration
trajectories given model trajectories which uses Gaussian
Process Latent Variable Models has been proposed [15]. The
approach parameterizes trajectories in the same manner as
Schaal [3] and differs to the presented work in that we do
not fit a simplifying attractor model to recorded data. This
difference allows our approach to complement agnostically
current methods in imitation.

ITII. DATA CAPTURE

All data shown in this paper was captured using an Opti-
Track NaturalPoint motion capture system with 8 cameras
and a frame rate of 100Hz. An object in the hand of a
single human demonstrator is tracked using reflective stickers
attached to the target object. To speed up processing the raw
data was resampled so that only data points at least 4cm
apart were taken. This also removed portions of recordings
where the tracked object was stationary.

IV. AFFORDANCE SYMMETRIES

An affordance symmetry can be precisely explained as
follows. Suppose several recordings of an object or end-
effector’s motion during some particular task are taken. It
is assumed that the motion of the object is determined
according so some flow in the dynamical systems sense. That
is, the motion of the object is dependent on its position and
time or

z = f(z,1) (D

During some portion of all the trajectories the flow may
exhibit a symmetry for some interval of time during the
demonstrations. In this paper, we consider two symmetries:
Firstly, a linear symmetry is defined by Equation 1 depending
on only two dimensions in object position (Z). The oven door
example mentioned above is an example of this. Secondly,
we present the revolute (cylindrical) symmetry about some
axis in space. This can be visualized as a simpler 2D flow
revolved about the axis.

This paper proposes a manner of identifying such sym-
metries. There is an issue which makes the problem more
difficult. If we look back to the oven example, it is possible
for a person to slide his hand along the handle while opening
the oven. He/she may do this to avoid an obstacle. This
motion along the handle will, in general, not correlate with
other demonstrations of opening the oven unless the obstacle
is persistent. In identifying a affordance symmetry, it is
perferred that the method be robust to such motions.

In our definition, an affordance symmetry consists
of two, potentially nonlinear mappings: T(Z, R,A) and



G(Z,R,Z,0,A). Input 7 is a recorded point of a object’s
trajectory. R is the orientation rotation matrix of the object
at that point, & is the change in rotation and Z is the velocity.
The parameters of the symmetries are represented by A.

A measure of a symmetry’s applicableness is given by
counting the number of occasions

|T(£LT1,RZ,A) — T(fj,Rj,A)‘ <6 — (2)
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is true for a given symmetry and its parameters. This is
similar to the generalized Hough transform. The € and §
represent thresholds that must be chosen. Function D(z,y)
determines a distance metric between x and y. The Euclidean
norm may not always be appropriate because direction of
change is often more important. In the equation, z; and x;
must come from different demonstrations.

To find a symmetry, the parameters, A are searched for
a set that produce a significant maxima. This scheme takes
a number of issues into account. Firstly, during a demon-
stration, the symmetry may not be adhered to for all time.
For instance, a demonstrator may approach the handle in a
completely arbitrary manner in the above example. During
search for a symmetry, arbitrary motion will contribute to
all variations of the symmetry parameters in a not specific
way and thus will, on average, produce no artifact. If
iterative closest point or such approaches were used to locate
symmetries, arbitrary motion would be considered equally
with points adhering to the symmetry and so will throw off
the search.

Secondly, the scheme may identify several symmetries as
separate extrema in a single pass and is thus not a restrictive
single hypothesis approach. Lastly, the metric is very cheap
to calculate especially if fast nearest-neighbor methods are
used to identify points which satisfy the left side of 3.

A. Linear Symmetry

The oven example above is one of many examples where
a linear symmetry exists. Others include: pressing of piano
keys, cutting bread with a knife, planing a surface, wrapping
a cable around a bobbin, sanding a surface with file, there are
an endless number of examples of objects which exhibit line-
ar affordance symmetries. The parameter of such a symmetry
is a direction vector representing a normal to a plane onto
which trajectory points are projected. The direction vector
can be parameterized with two angles, 6 and ¢.

T can be determined by in the following way. We find

[ cos(¢+ 5)cos(f) ]
sin(¢ + 3) “)
| cos(¢+ 5)sin(0) |

Is]
Il

and
[ cos(¢) cos(f+5) |
sin(¢) &)
| cos(¢)sin(0+5) |

then if we consider just translation T(%;, R;,A) =
Tm((b, 0)@ and G(.’f“ Ri7 fm (477;, A) = Gm(¢, 9)[171 Wlth

T0(0.6) = Gu(6.6) = | §r | ©

To illustrate this type of affordance symmetry we consider
the task of slicing a vegetable. Figure 2 shows the recorded
trajectories. The regular straight paths of the knife can be
seen in the middle of the plot.
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Fig. 2. Recorded trajectories of a knife slicing a vegetable.

To apply Equation 3, the distance function used was
_ z Yy
D) BN
The thresholds ¢ and € was set to 6cm and 20 degrees
respectively. Figure 3 is an intensity plot of the affordance
symmetric metric for the linear case over a intervals of 6 and
¢. A maxima can be clearly seen (dark red) at ¢ ~ 0 and
0 ~ 2. If we project the recorded trajectories onto a plane
defined by these parameters the result is plotted in Figure 4.
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Fig. 3. Symmetry metric parametrized by ¢ and 6.

The cutting motions are placed on top of each other as
we would expect. Figure 5 highlights the points that had
Equation 3 true across all trajectories. The cutting segments
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Fig. 4. Projected trajectories on the optimal symmetry plane.
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Fig. 5. Motion trajectories with points belonging to the symmetry labelled
in blue. The black arrow indicates the direction of the symmetry.

are clearly visible. Other tasks with linear symmetries are
shown in Figure 11. In the case of opening the laptop,
two peaks were observed in the parameter space. The figure
labels the points associated with the lower of the two.

B. Cylindrical Symmetry

The cylindrical symmetry is illustrated in Figure 6. The
parameters of the symmetry are parameters for a line (black
in the figure): a point in 3 space, Z.s, and an axis direction
vector, a. The symmetry converts trajectory points into
cylindrical coordinates around the line and keeps the height
and radius’s only. The azimuth is discarded. In this frame,
the pouring task is equivalent no matter the approach.

If we are simply concerned with motion and not orientati-
on in the object trajectory being modelled then the cylindrical
symmetry may be expressed in the following way. For every
trajectory point, Z,

A ®)
- aaq
and
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Fig. 6. The cylindrical symmetry in pouring with a teapot.

Then
(10)

=(\T
r= [ ]
is a 2x3 matrix and G = T. Figure 7 shows trajectories
of a pizza being sliced on a table. If we assume that a =
[0 1 0 ] and calculate Equation 3 over that perpendicu-
lar plane we get the image (plotted with matlab’s imagesc)
in Figure 8. The thresholds and distance function used were
the same as in the linear case. As we expect the symmetry
axis passes through the middle of the pizza.
Other tasks with cylindrical symmetries are shown in
Figure 12.

Fig. 7.

Motion trajectories of a knife cutting a pizza.

Figure 9 is a plot of recorded points and their motion direc-
tion in the revolving redundancy plane. Figure 10 highlights
the points that had Equation 3 true across all trajectories.

V. APPLICATIONS OF AFFORDANCE
SYMMETRIES

To be absolutely sure that an affordance symmetry actually
exists there must be some form of feedback, or a method to
test the hypothesis. This is not the focus of the paper. We
merely provide a means to identify a potential symmetry.
This is analogous to a feature detector in computer vision
which identifies potentially useful structures in an image.
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Various other tasks with linear symmetries. On the left are recordings of a hand opening a laptop monitor. On the right are trajectories of a
wobbly line being drawn down a board.
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Fig. 12. Various other tasks with cylindrical symmetries. On the left are recordings of odd cutting pattern on a board. On the right are trajectories of a
jar’s contents being poured into a cup. The green dotted lines show the position and orientation of the axis of the symmetry in each case.
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Fig. 10. Motion trajectories with points labelled when found to be part of
the symmetry. The axis of symmetry is drawn in green.

But, once a symmetry is verified it can be used to provide
a dimension of redundancy for a reproduction planner or a
means to equate similar trajectories in classification. For the
planning case, consider the example presented in subsection
IV.A of slicing a long vegetable. If we take points that
were in near contact with the table and project those that
obeyed the identified affordance symmetry onto the plane
perpendicular to the redundancy direction, we get Figure 13.
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Fig. 13. The projected trajectories that agreed with the linear symmetry
and are within contact range of the table in blue. An average trajectory in
red

In the figure is an average trajectory generated using
the approach of [1] shown in red. This approach relies on
Gaussian Mixture Models (GMM) and Gaussian Mixture
Regression (GMR). The reader is directed to [1] for a
detailed discussion. If this average trajectory is placed along
the redundancy direction within the variance shown in the
recordings we get Figure 14. These trajectories represent
alternative paths that could be supplied to a planner to cut
the vegetable.

Also, portions of trajectories that do not exhibit symme-
tries in their motion are potentially arbitrary. It is, however,
difficult to be certain of this without user assistance.

Fig. 14. Possible cutting trajectories in black over the recorded trajectories
in red

VI. CONCLUSIONS AND FUTURE WORK

The concept of an affordance symmetry was presented
along with a voting scheme to quantify the applicability
of a hypothesized symmetry. The approach also allows
the identification of portions of recorded trajectories that
exhibited the symmetry. Two example symmetries, linear and
a cylindrical, were presented and discussed to illustrate the
principle. The approach successfully identified portions of
recorded trajectories that exhibited symmetries.

To illustrate the application of the approach an example of
producing reproduction plans using a affordance symmetry
was discussed.

Future work will focus on a number of issues. Firstly, the
proposed algorithm can detect a potential symmetry, but the
existence of the symmetry cannot be verified without user
assistance. Secondly, there may be many other symmetries
that can be leveraged to compress complex behavior into
lower dimensional trajectories. Also, the paper only consi-
ders displacement and not velocity or acceleration. In the
act of stirring a cup of coffee, one could argue that only
the circular motion of the spoon is important. We plan to
explore whether this can be captured in the proposed frame-
work. Lastly, the efficient exploitation of reduced behavior
trajectories remains explored.
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