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Abstract

For intra-cavity laser beam control, a small, low-cost deformable mirror is required. This mir-
ror can be used to correct for time-dependent phase aberrations to the laser beam, such as those
caused by thermal expansion of materials. A piezoelectric unimorph design is suitable for this
application. The proposed unimorph consists of a copper disc with mirror finish, bonded to
a piezoelectric disc. The deformations that the mirror is required to perform are routinely (at
least in optical applications) described using Zernike polynomials, which are a complete set
of orthogonal functions defined on a unit disc. The challengeis to design a device that can
represent selected polynomials as accurately as possible with a specified amplitude. To as-
sist in the design process, numerical modelling is requiredto predict the deformation shapes
that can be achieved by a unimorph mirror with a particular electrode pattern. In this pa-
per a previously proposed axisymmetric Rayleigh-Ritz formulation, is extended to account for
non-axisymmetric voltage distributions, and therefore non-axisymmetric displacements. The
Rayleigh-Ritz model, which uses the Zernike polynomials directly to describe the displace-
ments, produced a small model (stiffness matrix dimension equal to the number of polynomials
used) that predicts the deformations of the piezoelectric mirror with remarkable accuracy. The
results using this Rayleigh-Ritz formulation are compared toresults from a traditional finite
element analysis using a commercial finite element package.Both numerical models were ap-
plied to model a prototype deformable mirror and produced good agreement with experimental
results.

1 Introduction

Adaptive optics is routinely used in large earth based telescopes to correct for the effects of
atmospheric turbulence. These systems use large arrays of mirrors individually controlled by
sets of piezoelectric stack actuators and are therefore very expensive. For intra-cavity laser
beam control, a smaller, lower-cost deformable mirror is required. This mirror can be used to
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Figure 1: Side and back view of the proposed unimorph mirror design.

correct for time-dependent phase aberrations to the laser beam, such as those caused by thermal
expansion of materials. A piezoelectric unimorph design, such as that depicted in Figure 1, is
suitable for this application [1].

The unimorph consists of a thin copper disc with mirror finish, bonded to a piezoelectric disc.
In the proposed design, the thin copper disc is formed by removing material from behind the
mirror, thus leaving the disc supported by a thick and rigid rim. When a voltage is applied to the
piezoelectric disc the induced strains in the plane of the disc cause bending of the unimorph.
In this way relatively large displacements, compared to the10.6µm wavelength of the CO2
laser, can be obtained from a small, relatively inexpensivedevice. The electrode on the free
surface of the piezoelectric disc can be divided into numerous segments, which can each have a
different voltage applied. In this way the mirror surface can be deformed into complex shapes.

In adaptive optics the imperfections in the optical system and therefore the deformations that the
mirror is required to perform are described by Zernike polynomials. The Zernike polynomials
form a complete set of orthogonal functions on the unit circle. The challenge is to design
a device that can represent selected polynomials as accurately as possible with a specified
amplitude. To this end, numerical modelling is required to predict the deformation shapes that
can be achieved by a particular electrode pattern.

In this paper the axisymmetric Rayleigh-Ritz formulation, previously proposed by the authors
in [2], is generalised to account for non-axisymmetric voltage (and associated displacement)
distributions. The proposed Rayleigh-Ritz model has the advantage that the deformations are
directly expressed in terms of the Zernike polynomials, so that no post-processing of displace-
ments is required to interface with optical systems. The Rayleigh-Ritz model is also compact
and numerically efficient. For comparison with an existing numerical model, a commercial fi-
nite element package, namely Comsol Multiphysics [3], is used. A prototype device, schemat-
ically depicted in Figure 1 was constructed and surface displacements were measured using a
Polytec scanning laser vibrometer subject to various driving conditions. The results of both
numerical models are then compared to the experimental measurements.



2 Zernike Polynomial Description

As mentioned previously, in optical applications aberrations, and therefore the deformations
that the mirror is required to perform are routinely described using Zernike polynomials. The
forms of the even and odd polynomials used in this work are, respectively given by:

Zm
n (ρ, θ) = Rm

n (ρ) cos(mθ), and

Z−m
n (ρ, θ) = Rm

n (ρ) sin(mθ)
(1)

with non-dimensionalised radius0 ≤ ρ ≤ 1; angle0 ≤ θ ≤ 2π, n andm indices, and where

Rm
n (ρ) =







∑(n−m)/2
k=0

(−1)k(n− k)!

k!((n+m)/2− k)!((n−m)/2− k)!
ρn−2k for n−m even

0 for n−m odd.
(2)

Note thatRm
n is also only defined for(n−m) ≥ 0. For convenience, we will use a single-index

to denote the Zernike polynomials instead of the usual two-index notation presented in (1).
ThereforeZm

n → Zj, where the mode numberj is given by:

j =
n(n+ 2) +m

2
. (3)

Otherwise if the mode number is given, the radial ordern and angular frequencym can be
found using:

n = ceiling

(

−3 +
√
9 + 8j

2

)

, and

m = 2j − n(n+ 2).

(4)

The first 15 Zernike polynomials using this single-index notation are depicted in Figure 2.
The Rayleigh-Ritz formulation making use of these functions to interpolate the displacements
directly will now be presented.

3 Rayleigh-Ritz Model Formulation

A Rayleigh-Ritz numerical model employing Zernike polynomials directly to describe the de-
formation of a mirror for optical applications, was previously presented by the authors [2]. This
numerical model was inspired by the work of Hagoodet al. [4] who applied the Rayleigh-Ritz
method to model a cantilever beam with attached piezoelectric ceramic patches. However, this
previously developed procedure considered only axisymmetric displacements, and its scope
of application is therefore limited. For example, non-axisymmetric deformations may be re-
quired to remove phase aberrations introduced as a result ofmanufacturing errors. Once again,
Zernike polynomials will be used to directly describe the deformation of the mirror.

A generalised form of Hamilton’s principle for coupled electromechanical systems is given by
Hagoodet al. [4] as:

δ

∫ t2

t1

L dt+
∫ t2

t1

δW dt = 0, L = T − U +We +Wm (5)



Figure 2: First fifteen Zernike polynomials labelled using a single-index notation.

in whichL is the Lagrangian function andδW is the virtual work. The kinetic energyT , strain
energyU , and electrical energyWe, are respectively given by:

T = Ts + Tp =

∫

Vs

1

2
ρsu̇

T u̇ dV +

∫

Vp

1

2
ρpu̇

T u̇ dV, (6)

U = Us + Up =

∫

Vs

1

2
STTdV +

∫

Vp

1

2
STTdV, and (7)

We =

∫

Vp

1

2
ETDdV. (8)

The kinetic and strain energies are decomposed into their structural i.e. non-piezoelectric and
piezoelectric components, denoted by subscripts andp respectively. The effects of electrical
energy,We, in the structure and free space due to fringing is neglected. For piezoelectric ap-
plications, the magnetic term,Wm, may be neglected. The vector of mechanical displacements
is given byu and the stresses and strains byT andS respectively. The vector of electrical
displacements (charge/area) is represented byD andE is the vector of the electric field in the
material (volts/meter). The material density is denotedρ.

Since our implementation is similar to that of Hagoodet al. [4], only the details required to
apply the method to the proposed geometry will be presented here. Firstly, sets of assumed
displacement and electrical potential distributions are required. In this case we use the Zernike
polynomials, shown in Figure 2, as the assumed displacementdistributions. The normal dis-
placement may then be written as a superposition of assumed displacement functions with



unknown coefficients as

w(r, θ, t) = Z(r, θ)a(t) = R [Z0(ρ, θ) Z1(ρ, θ) ... Zn(ρ, θ)]
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whereR is the radius of the disc,Zi are the Zernike polynomials as defined in (1),ρ = r/R is
the non-dimensionalised radius,θ is the polar angle andai(t) are the time dependent amplitude
coefficients for the polynomials, which have to be determined. The kinematic relationships
between displacements is given by

u = u0 − z
∂w

∂r
(10)

v = v0 −
z

r

∂w

∂θ
(11)

whereu andv represent the radial and circumferential displacements respectively.

Next, a strain-displacement operator is required for the particular structure being modelled. If
we limit ourselves to a thin circular plate in bending, the appropriate strain-displacement oper-
ator is given by [5] in (12), whereLw is the strain-displacement operator,w is the displacement
normal to the neutral axis andz is the distance from the neutral axis, given in (9).
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The strain may then be written in terms of the unknown coefficients as

S(r, θ, t) = LwZ(r, θ)a(t) = Nw(r, θ)a(t). (13)

It can then be shown that the resulting stiffness matrix can be written in the usual form as

K =

∫

V

NT
wcNw dV, (14)

wherec is the material elastic matrix.

In a similar fashion the electrical potential field is described by assumed functions. As this
is a thin piezoelectric disc it will be assumed that the electric field varies linearly through the
thickness of the disc. We set the voltage on the electrode contacting the copper to be zero and
the voltages on theith free electrode segment to beVi. We assume that there is no radial or
circumferential variation of the electrical potential under an electrode segment. The electrical
potential under electrode segmenti is therefore simply

Vi(z, t) = −Vi(t)(z − z0)/h1, (15)



wherez0 is the position of the neutral axis andh1 is the thickness of the piezoelectric ceramic.
The electric field is simply the negative of the gradient of the voltage ie.,E(t) = Vi(t)/h1, and
the complete field is written as,

E(t) = [1/h1 1/h1 ... 1/h1]
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= N vV (t). (16)

The piezoelectric coupling matrix is then,

ϑ =

∫

V

NT
v eNw dV, . (17)

wheree is the piezoelectric coupling material matrix. The mass matrix M and capacitance
matrixCp can be implemented if we wish to compute natural frequencies, as follows:

M =

∫

V

ZTρZ dV, and (18)

Cp =

∫

V

NT
v ǫN v dV, (19)

whereǫ is the material capacitance matrix. The coupled electromechanical equations are then,

Ka− ϑV = F

ϑTa+CpV = Q,
(20)

whereF andQ represent the applied forces and charges respectively. Theprocedure proposed
in [2] to compute the material properties (c, e andǫ) for a thin piezoelectric disc, is again used
here. Similarly, the process to compute thez−position of the neutral axis (z0), by minimizing
the strain energy or flexural rigidity, proposed in [2] is employed. The integrals required to
construct (20) can conveniently be computedanalytically using symbolic mathematics software
such as Mathematica or Maxima.

Since the proposed mirror design has a thin deformable membrane spanning a thick and rela-
tively rigid rim, some special attention has to be paid to theboundary conditions. In particular,
the Lagrangian presented in (5) is modified as follows:

L̃ = L+
1

2
kr · [w(r = R)]2 (21)

wherekr is a parameter related to the stiffness of the rim, and wherew(r = R) is the dis-
placement at the outer radius of the discr = R. As kr → ∞, w(r = R) → 0 simulating
a completely rigid rim. However, realistic values forkr could also be estimated using plate
theory to simulate a flexible attachment if necessary.

4 Experimental Details

In order to assess the practicality of the proposed numerical models, a physical prototype of
the device depicted in Figure 1 was constructed. The prototype unimorph-type deformable
mirror consists of a 40 mm diameter, 0.3 mm thick, PZT4 piezoelectric ceramic disc bonded to



Figure 3: Photograph of mirror prototype showing electrode pattern.

a copper disc 44 mm in diameter and 0.3 mm thick. The copper disc is formed by machining
material from behind the reflective surface until the membrane is formed, spanning the rigid
rim. The free electrode on the piezoelectric disc is segmented into nine separate electrodes
(three concentric rings and then the two outer rings are further divided into four segments
each) as shown in Figure 3. The electrode patterning was carried out using laser ablation with
an excimer laser. The unimorph was driven by applying a harmonic voltage excitation to the
segmented electrodes. Point deformations on the mirror surface were measured using a Polytec
scanning laser vibrometer.

In order to interface with optical systems, and to compare the experimental (as well as the con-
ventional finite element analysis) results with the Rayleigh-Ritz model, a procedure is required
to determine which of the Zernike polynomials are excited. To this end, a least-squares fit of
the surface displacements is employed, i.e. we minimize thefunction

χ2 =
N
∑

i=1

[

yi −
M
∑

k=0

akZk(ri, θi)

]2

, (22)

whereyi is theith of theN surface nodal displacements. The minimization is carried out using
the procedure described in [1]. The output of this process isa vector of the coefficientsak
which scale the magnitude of theM Zernike polynomialsZ.

5 Comparison of Results

In this section, the two numerical models are compared to experimental results. Firstly, the
actual displacements will be compared qualitatively, after which the extracted Zernike polyno-
mials will be compared quantitatively. The Rayleigh-Ritz model employed in the comparison
makes use of 66 interpolation terms in total (Z0, Z1, ... Z65, or up to 10th radial order). The
same number of polynomials were therefore also extracted from the finite element analysis and
the experimental results.
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(a) Computed surface deformation
(Comsol Multiphysics).
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Figure 4: Computed, measured and fitted displacements driving electrode 4 (see Figure 3) at 20 V and
with all other electrodes grounded. Displacements inµm.
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(a) First thirteen non-rigid body Zernike poly-
nomial coefficients (Z3 toZ15).
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Figure 5: Comparison of extracted and computed Zernike polynomials resulting from application of
a driving voltage of 20 V applied to electrode 1 (see Figure 3)with all other electrodes
grounded.

For the qualitative comparison between measured and numerical mirror deformations, a non-
axisymmetric voltage distribution is selected. The prototype mirror is arbitrarily excited by
applying a voltage of 20 V to electrode 4 (see Figure 3) with all other electrodes grounded. The
elastic modulus of copper was set toE=110 GPa and a Poisson’s ratio ofν = 0.33 was used.
The required material properties used for the piezoelectric material in both numerical models
were as follows:

sE11 = 12.3× 10−12 m2/N; sE12 = −4.05× 10−12 m2/N; sE66 = 32.7e× 10−12 m2/N;

d31 = −123× 10−12 m/V; ǫE33 = 635× 8.85× 10−12F/m.

As in [2], the extent of the first electrode is fromρ = 0 to ρ1, the second ring of four electrodes
is fromρ = ρ1 to ρ2, and the third fromρ = ρ2 to 1. The electrodes were positioned where they
would be expected to best excite the third Zernike polynomial, i.e. ρ1 = 0.27 andρ2 = 0.72.
These points are found in [2].

Figure 4 depicts the displacements computed using the two numerical models (Figures 4(a)
and 4(g)) together with the measured displacements (Figure4(d)). Also plotted in Figures 4(b)
and 4(e) are the displacements fitted to the finite element andexperimental results respectively,
using the extracted Zernike polynomial coefficients. The fitting errors are also depicted in
Figures 4(c) and 4(f) for the Comsol Multiphysics and experimental results respectively.

Figure 4 demonstrates that the results of both numerical models and the experimental result are
qualitatively similar in shape. The values of the maximum displacements are also very similar,
with the experimental displacements slightly higher than the results of the two numerical mod-
els. This suggests that attention should be paid to the material properties in future works. The
figure also demonstrates that the fitting procedure was correctly implemented.

In order to quantitatively compare the predicted and measured results, the coefficients of the
Zernike polynomials computed using the proposed Rayleigh-Ritz method are compared to
those extracted from the Comsol Multiphysics model and the experimental measurements. Fig-
ure 5 depicts the results for the axisymmetric case where thecentre electrode (electrode 1 in
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(a) First thirteen non-rigid body Zernike poly-
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Figure 6: Comparison of extracted and computed Zernike polynomials resulting from application of
a driving voltage of 20 V applied to electrode 4 (see Figure 3)with all other electrodes
grounded.

Figure 3) is driven with 20 V and all other electrodes are grounded. Figure 5(a) depicts the
coefficient of the first thirteen non-rigid body Zernike polynomial coefficients, i.e.a3 to a15
corresponding toZ3 to Z15). In Figure 5(b), the coefficients are sorted and the ten largest
non-rigid body coefficients are plotted.

From Figure 5(b) it is clear that only the axisymmetric Zernike polynomials are excited, with
Z4, Z12, Z24, Z40 andZ60 all being axisymmetric modes. As expected, the magnitude ofthe
coefficients decays from low orders of Zernike polynomials to higher orders. Good agreement
between the two numerical models is achieved. The extractedcoefficients also agree well with
axisymmetric models previously developed by the authors [2].

In order to further verify the implementation, the coefficients extracted from the previously
studied non-axisymmetric case depicted in Figure 4 are quantitatively compared in Figure 6.
In particular, Figure 6 depicts the results for the non-axisymmetric case where electrode 4 in
Figure 3 is driven with 20 V all other electrodes are grounded. Once again, Figure 6(a) depicts
the coefficient of the first thirteen non-rigid body Zernike polynomial coefficients and Figure
6(b) the coefficients of the ten largest non-rigid body coefficients. Once again, excellent agree-
ment between the numerical results is achieved, as well as good agreement with experimental
results.

6 Conclusion and Planned Future Work

In this paper, a previously proposed axisymmetric Rayleigh-Ritz model was extended to ac-
count for non-axisymmetric displacements. The method proposed produces a small model
(stiffness matrix dimension equal to the number of polynomials used) that predicts the defor-
mations of the unimorph-type deformable mirror with remarkable accuracy. This method also
provides insight into the operation of the device and can be used in future to optimize the design
in an elegant manner since the parameters of the design are analytically available. Excellent
agreement between the proposed Rayleigh-Ritz model and the Comsol Multiphysics model was
achieved. The conventional Comsol Multiphysics model, however naturally requires signifi-
cantly more computational effort. The results from the proposed Rayleigh-Ritz model would



therefore provide a good starting point for more detailed finite element modelling.

Future work planned for this effort will focus on the practical construction of a more refined
deformable mirror. In order to used such a mirror in a laser, specification on the initial flatness
of the mirror are extremely tight (usually in the order ofλ/20, in the case of the CO2 laser
considered hereλ = 10.6 µm). Currently facilities in South Africa do not exist to manufacture
a thin copper mirror to these specifications. In order to achieve this flatness, it will be attempted
to spin-coat PDMS onto the copper mirror to achieve an optically flat surface. Since PDMS is
not reflective, a gold coating will be deposited to achieve the desired reflectivity. Work in this
direction has already been started and good reflectivity from the gold coating has been achieved
at low laser power density.
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