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Abstract

For intra-cavity laser beam control, a small, low-cost defable mirror is required. This mir-
ror can be used to correct for time-dependent phase alwgrsdt the laser beam, such as those
caused by thermal expansion of materials. A piezoelectiimarph design is suitable for this
application. The proposed unimorph consists of a copperwlith mirror finish, bonded to
a piezoelectric disc. The deformations that the mirror ¢gineed to perform are routinely (at
least in optical applications) described using Zernikeypoimials, which are a complete set
of orthogonal functions defined on a unit disc. The challeisg® design a device that can
represent selected polynomials as accurately as possitileavspecified amplitude. To as-
sist in the design process, numerical modelling is requioepredict the deformation shapes
that can be achieved by a unimorph mirror with a particulactebde pattern. In this pa-
per a previously proposed axisymmetric Rayleigh-Ritz foatiah, is extended to account for
non-axisymmetric voltage distributions, and therefore-agisymmetric displacements. The
Rayleigh-Ritz model, which uses the Zernike polynomialsaliyeto describe the displace-
ments, produced a small model (stiffness matrix dimensiprakto the number of polynomials
used) that predicts the deformations of the piezoelectiimmwith remarkable accuracy. The
results using this Rayleigh-Ritz formulation are comparedesults from a traditional finite
element analysis using a commercial finite element packagi numerical models were ap-
plied to model a prototype deformable mirror and produceatigigreement with experimental
results.

1 Introduction

Adaptive optics is routinely used in large earth based teless to correct for the effects of
atmospheric turbulence. These systems use large arraysrofsrindividually controlled by

sets of piezoelectric stack actuators and are thereforeesgrensive. For intra-cavity laser
beam control, a smaller, lower-cost deformable mirror gieed. This mirror can be used to
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Figure 1: Side and back view of the proposed unimorph mirror design.

correct for time-dependent phase aberrations to the l@senjssuch as those caused by thermal
expansion of materials. A piezoelectric unimorph desigichsas that depicted in Figure 1, is
suitable for this application [1].

The unimorph consists of a thin copper disc with mirror finisbnded to a piezoelectric disc.
In the proposed design, the thin copper disc is formed by vamganaterial from behind the
mirror, thus leaving the disc supported by a thick and rigid Mhen a voltage is applied to the
piezoelectric disc the induced strains in the plane of tlse dause bending of the unimorph.
In this way relatively large displacements, compared toli& m wavelength of the CO
laser, can be obtained from a small, relatively inexpendexce. The electrode on the free
surface of the piezoelectric disc can be divided into numesegments, which can each have a
different voltage applied. In this way the mirror surface t& deformed into complex shapes.

In adaptive optics the imperfections in the optical systechtaerefore the deformations that the
mirror is required to perform are described by Zernike potyials. The Zernike polynomials

form a complete set of orthogonal functions on the unit eircThe challenge is to design
a device that can represent selected polynomials as aelyues possible with a specified
amplitude. To this end, numerical modelling is requiredredict the deformation shapes that
can be achieved by a particular electrode pattern.

In this paper the axisymmetric Rayleigh-Ritz formulatiore\pously proposed by the authors
in [2], is generalised to account for non-axisymmetric agé (and associated displacement)
distributions. The proposed Rayleigh-Ritz model has the radge that the deformations are
directly expressed in terms of the Zernike polynomialshed ho post-processing of displace-
ments is required to interface with optical systems. The &gkitRitz model is also compact
and numerically efficient. For comparison with an existingnerical model, a commercial fi-
nite element package, namely Comsol Multiphysics [3], iKlugeprototype device, schemat-
ically depicted in Figure 1 was constructed and surfacelaispents were measured using a
Polytec scanning laser vibrometer subject to various migidonditions. The results of both
numerical models are then compared to the experimentalurerasnts.



2 Zernike Polynomial Description

As mentioned previously, in optical applications abeaasi, and therefore the deformations

that the mirror is required to perform are routinely desedilusing Zernike polynomials. The

forms of the even and odd polynomials used in this work aspeetively given by:
Z2(p,0) = RI"(p) cos(mb), and

n

Z,"(p,0) = R;'(p) sin(mb)

n

(1)
with non-dimensionalised radiws< p < 1; angle0 < 6 < 27, n andm indices, and where

(nom)/2 (ZD*(n —k)! -
R (p) = { k=0 k!((n+m)/2—k:)!((n—m)/2—k;)!p for n —m even )
0

for n — m odd.

Note thatR!” is also only defined fofn —m) > 0. For convenience, we will use a single-index
to denote the Zernike polynomials instead of the usual tvdex notation presented in (1).
ThereforeZ" — Z;, where the mode numbegiis given by:

n(n+2) +m

: ®)

j=
Otherwise if the mode number is given, the radial ordeand angular frequency: can be
found using:

n = ceiling (_3+— ”29+8‘7) , and @

m=2j —n(n+2).

The first 15 Zernike polynomials using this single-indexatimn are depicted in Figure 2.
The Rayleigh-Ritz formulation making use of these functiansiterpolate the displacements
directly will now be presented.

3 Rayleigh-Ritz Model Formulation

A Rayleigh-Ritz numerical model employing Zernike polynolsidirectly to describe the de-
formation of a mirror for optical applications, was prevsbupresented by the authors [2]. This
numerical model was inspired by the work of Hagabdl. [4] who applied the Rayleigh-Ritz
method to model a cantilever beam with attached piezo@&emtramic patches. However, this
previously developed procedure considered only axisymendisplacements, and its scope
of application is therefore limited. For example, non-grisnetric deformations may be re-
quired to remove phase aberrations introduced as a resutiofifacturing errors. Once again,
Zernike polynomials will be used to directly describe théodaation of the mirror.

A generalised form of Hamilton’s principle for coupled dleenechanical systems is given by
Hagoodet al. [4] as:

to to
5/ Ldt+/ SWdt=0, L=T—U+W,+W, (5)
t1 t1
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Figure 2: First fifteen Zernike polynomials labelled using a singidéx notation.

in which L is the Lagrangian function anidV’ is the virtual work. The kinetic enerdy, strain
energyU, and electrical energy/., are respectively given by:

1 1
T=T,+T,= / §psuTu dv + / §p,,uTu dv, (6)
s Vp
1 1
U=U,+U,= / 5STTolv + / §STTdv, and (7)
s Vp
1
W.= | —ET"DdV. (8)
v, 2

The kinetic and strain energies are decomposed into thectstal i.e. non-piezoelectric and
piezoelectric components, denoted by subscrighdp respectively. The effects of electrical
energy,IV,, in the structure and free space due to fringing is negledted piezoelectric ap-
plications, the magnetic termil/,,,, may be neglected. The vector of mechanical displacements
is given byw and the stresses and strainsByand S respectively. The vector of electrical
displacements (charge/area) is representeBand E is the vector of the electric field in the
material (volts/meter). The material density is dengied

Since our implementation is similar to that of Hagosidal. [4], only the details required to
apply the method to the proposed geometry will be presengeel. hFirstly, sets of assumed
displacement and electrical potential distributions aruired. In this case we use the Zernike
polynomials, shown in Figure 2, as the assumed displacedistnibutions. The normal dis-
placement may then be written as a superposition of assumgthcement functions with



unknown coefficients as

ao(t)
w(r,0,t) = Z(r.0)a(t) = R[Zo(p,0) Z:(p,0) ... Zu(p,0) a¢>, )

an(t)

whereR is the radius of the disc; are the Zernike polynomials as defined in (1) /R is
the non-dimensionalised radiusis the polar angle and (¢) are the time dependent amplitude
coefficients for the polynomials, which have to be determiinghe kinematic relationships
between displacements is given by

ow

z 0w
=y — 2 11
R Y] (1)

whereu andv represent the radial and circumferential displacemesizedively.

Next, a strain-displacement operator is required for thiéqudar structure being modelled. If
we limit ourselves to a thin circular plate in bending, themgpriate strain-displacement oper-
ator is given by [5] in (12), wheré&,, is the strain-displacement operatoris the displacement
normal to the neutral axis andis the distance from the neutral axis, given in (9).

@
€r or
& b= Low= 1ov, u (12)
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e 00O
r 00 Tf)r r

The strain may then be written in terms of the unknown coeffits as
S(r,0,t) = L,Z(r,0)a(t) = N,(r,0)a(t). (13)

It can then be shown that the resulting stiffness matrix aawitten in the usual form as
K = / NTeN, dV, (14)
\%

wherec is the material elastic matrix.

In a similar fashion the electrical potential field is deksed by assumed functions. As this
is a thin piezoelectric disc it will be assumed that the eiedteld varies linearly through the
thickness of the disc. We set the voltage on the electrodi&cting the copper to be zero and
the voltages on thé" free electrode segment to b&. We assume that there is no radial or
circumferential variation of the electrical potential @ncn electrode segment. The electrical
potential under electrode segmems therefore simply

Vi(z,t) = =Vi(t)(z = 20)/ (15)



wherez is the position of the neutral axis ang is the thickness of the piezoelectric ceramic.
The electric field is simply the negative of the gradient eftoltage ie. E(t) = V;(t)/hi, and
the complete field is written as,

Vi(t)
E(t)=[1/hy 1/hy ... 1/h4] : = N,V(t). (16)
Vi (£)
The piezoelectric coupling matrix is then,
9 = / NTeN, dv,. (17)
14

wheree is the piezoelectric coupling material matrix. The massrixat/ and capacitance
matrix C,, can be implemented if we wish to compute natural frequena®ollows:

M = / Z"pZ dv, and (18)
1%

C, = / NTeN,dV, (19)
\%4
wheree is the material capacitance matrix. The coupled electrvangical equations are then,

Ka—-9V =F

20
9'a+C,V =Q, (20)

whereF andQ@ represent the applied forces and charges respectivelyprbeedure proposed
in [2] to compute the material propertias e ande) for a thin piezoelectric disc, is again used
here. Similarly, the process to compute theposition of the neutral axis:{), by minimizing
the strain energy or flexural rigidity, proposed in [2] is dayed. The integrals required to
construct (20) can conveniently be compudedlytically using symbolic mathematics software
such as Mathematica or Maxima.

Since the proposed mirror design has a thin deformable namelspanning a thick and rela-
tively rigid rim, some special attention has to be paid tolibendary conditions. In particular,
the Lagrangian presented in (5) is modified as follows:

L=L+ %k‘r [w(r = R))? (21)

wherek, is a parameter related to the stiffness of the rim, and whére= R) is the dis-
placement at the outer radius of the dise= R. As k, — oo, w(r = R) — 0 simulating

a completely rigid rim. However, realistic values flor could also be estimated using plate
theory to simulate a flexible attachment if necessary.

4 Experimental Details

In order to assess the practicality of the proposed numeriodels, a physical prototype of
the device depicted in Figure 1 was constructed. The prpgotynimorph-type deformable
mirror consists of a 40 mm diameter, 0.3 mm thick, PZT4 piéatac ceramic disc bonded to



Figure 3: Photograph of mirror prototype showing electrode pattern.

a copper disc 44 mm in diameter and 0.3 mm thick. The copperigli®rmed by machining
material from behind the reflective surface until the membres formed, spanning the rigid
rim. The free electrode on the piezoelectric disc is segatentto nine separate electrodes
(three concentric rings and then the two outer rings aréhdurtlivided into four segments
each) as shown in Figure 3. The electrode patterning wakedarut using laser ablation with
an excimer laser. The unimorph was driven by applying a harowoltage excitation to the
segmented electrodes. Point deformations on the mirrfaciwere measured using a Polytec
scanning laser vibrometer.

In order to interface with optical systems, and to compagesttperimental (as well as the con-
ventional finite element analysis) results with the RayldRitz model, a procedure is required
to determine which of the Zernike polynomials are excited.this end, a least-squares fit of
the surface displacements is employed, i.e. we minimizéuthetion

X* = Z [yz Y arZu(rs, 9z)] ; (22)

wherey; is thei™" of the N surface nodal displacements. The minimization is carrigdising
the procedure described in [1]. The output of this processsctor of the coefficients,,
which scale the magnitude of thié Zernike polynomials?.

5 Comparison of Results

In this section, the two numerical models are compared temxental results. Firstly, the
actual displacements will be compared qualitatively,rafteich the extracted Zernike polyno-
mials will be compared quantitatively. The Rayleigh-Ritz rabemployed in the comparison
makes use of 66 interpolation terms in tota}( Z,, ... Zss, or up to 10" radial order). The
same number of polynomials were therefore also extracted fhe finite element analysis and
the experimental results.
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(a) Computed surface deformati@m) Fitted surface deformatiofc) Difference between computed
(Comsol Multiphysics). (Comsol Multiphysics). and fitted (Comsol Multiphysics).

(d) Measured surface deformati¢e) Fitted surface deformation (eff) Difference between measured
(experiment). periment). and fitted (experiment).
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Figure 4: Computed, measured and fitted displacements driving ettt (see Figure 3) at 20 V and
with all other electrodes grounded. Displacementgrin
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Figure 5: Comparison of extracted and computed Zernike polynomessilting from application of
a driving voltage of 20 V applied to electrode 1 (see Figurev8h all other electrodes
grounded.

For the qualitative comparison between measured and ncahenirror deformations, a non-
axisymmetric voltage distribution is selected. The pngtet mirror is arbitrarily excited by
applying a voltage of 20 V to electrode 4 (see Figure 3) wiklothler electrodes grounded. The
elastic modulus of copper was setfiz110 GPa and a Poisson’s ratiowf= 0.33 was used.
The required material properties used for the piezoetentaterial in both numerical models
were as follows:

s =123 x 1072 m?N;  sb, = —4.05 x 1072 m?/IN; sk = 32.7e x 1072 m?/N;

ds = —123 x 1072 m/V; €k, = 635 x 8.85 x 107 2F/m.

As in [2], the extent of the first electrode is frgm= 0 to p;, the second ring of four electrodes
is fromp = p; to py, and the third fronp = p, to 1. The electrodes were positioned where they
would be expected to best excite the third Zernike polyngma p; = 0.27 andp, = 0.72.
These points are found in [2].

Figure 4 depicts the displacements computed using the twterioal models (Figures 4(a)
and 4(qg)) together with the measured displacements (Fifidh¢. Also plotted in Figures 4(b)

and 4(e) are the displacements fitted to the finite elemenegperimental results respectively,
using the extracted Zernike polynomial coefficients. Thenfiterrors are also depicted in
Figures 4(c) and 4(f) for the Comsol Multiphysics and expernmal results respectively.

Figure 4 demonstrates that the results of both numericabis@ohd the experimental result are
gualitatively similar in shape. The values of the maximuspticements are also very similar,
with the experimental displacements slightly higher tHanresults of the two numerical mod-
els. This suggests that attention should be paid to the rabpeoperties in future works. The
figure also demonstrates that the fitting procedure wasabyrienplemented.

In order to quantitatively compare the predicted and meabuesults, the coefficients of the
Zernike polynomials computed using the proposed Rayleigh-Riethod are compared to
those extracted from the Comsol Multiphysics model and tipeemental measurements. Fig-
ure 5 depicts the results for the axisymmetric case whereahte electrode (electrode 1 in
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Figure 6: Comparison of extracted and computed Zernike polynomessilting from application of
a driving voltage of 20 V applied to electrode 4 (see Figurev8h all other electrodes
grounded.

Figure 3) is driven with 20 V and all other electrodes are gomd. Figure 5(a) depicts the
coefficient of the first thirteen non-rigid body Zernike pobdmial coefficients, i.eas to a5
corresponding taZ; to Z;5). In Figure 5(b), the coefficients are sorted and the terektrg
non-rigid body coefficients are plotted.

From Figure 5(b) it is clear that only the axisymmetric Z&mpolynomials are excited, with
Z4, Z19, Zoy, Zao and Zg, all being axisymmetric modes. As expected, the magnitudeef
coefficients decays from low orders of Zernike polynomialfigher orders. Good agreement
between the two numerical models is achieved. The extractefficients also agree well with
axisymmetric models previously developed by the authdts [2

In order to further verify the implementation, the coeffidi® extracted from the previously
studied non-axisymmetric case depicted in Figure 4 aretdatively compared in Figure 6.
In particular, Figure 6 depicts the results for the nonyaxishetric case where electrode 4 in
Figure 3 is driven with 20 V all other electrodes are ground®dce again, Figure 6(a) depicts
the coefficient of the first thirteen non-rigid body Zernikaly;momial coefficients and Figure
6(b) the coefficients of the ten largest non-rigid body coadfits. Once again, excellent agree-
ment between the numerical results is achieved, as well a3 ggreement with experimental
results.

6 Conclusion and Planned Future Work

In this paper, a previously proposed axisymmetric Rayld&gla-model was extended to ac-
count for non-axisymmetric displacements. The method gseg produces a small model
(stiffness matrix dimension equal to the number of polyradmused) that predicts the defor-
mations of the unimorph-type deformable mirror with renadole accuracy. This method also
provides insight into the operation of the device and canseel in future to optimize the design
in an elegant manner since the parameters of the design algieally available. Excellent
agreement between the proposed Rayleigh-Ritz model and thedCbtultiphysics model was
achieved. The conventional Comsol Multiphysics model, hav@aturally requires signifi-
cantly more computational effort. The results from the isBrl Rayleigh-Ritz model would



therefore provide a good starting point for more detailetiefialement modelling.

Future work planned for this effort will focus on the praeficonstruction of a more refined
deformable mirror. In order to used such a mirror in a lagegcgication on the initial flatness
of the mirror are extremely tight (usually in the order of20, in the case of the CQOlaser
considered hera = 10.6 xm). Currently facilities in South Africa do not exist to maaafure

a thin copper mirror to these specifications. In order to@aahthis flatness, it will be attempted
to spin-coat PDMS onto the copper mirror to achieve an olyiflat surface. Since PDMS is
not reflective, a gold coating will be deposited to achievedhsired reflectivity. Work in this
direction has already been started and good reflectivity fite gold coating has been achieved
at low laser power density.
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