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Abstract—Mine vehicles are a leading cause of mining fa-
talities. A reliable anti-collision system is needed to prevent
vehicle-personnel collisions. The proposed collision detection
system uses the fusion of a three-dimensional (3D) sensor and
thermal infrared camera for human detection and tracking. In
addition to a thermal camera, a distance sensor will provide
depth information and allow the calculation of the vehicle and
pedestrian velocities. The results of subsystem tests show that
a simple temperature range is sufficient for segmentation and
a neural network shows the best classification results in terms
of speed and accuracy. Results of initial tests performed on two
different 3D sensors show a significant disadvantage to the use
of time of flight cameras in a mine environment.

Index Terms—mining, obstacle detection, human tracking,
segmentation, thermal imaging, classification

I. INTRODUCTION

Transportation machinery is responsible for a large portion
of mine deaths in South Africa. After rock falls, vehicles
are the second leading cause of mining fatalities. A reliable
system for detecting people near mining vehicles is needed to
prevent collisions between vehicles and personnel. The South
African mining industry has committed itself to reducing the
vast majority of serious of mine accidents and striving for
zero fatalities by 2013 [1]. Given that the number of mining
fatalities for 2010 was over one hundred, zero fatalities by
2013 is going to require significant improvements in mine
safety systems.

The pedestrian detection system described in this paper
is intended to assist mine vehicle operators by detecting a
possible collision with a pedestrian and alerting the operator.

There are a number of existing of proximity warning
systems for mining vehicles, using a number of detection
technologies such as ultrasonic, laser, radar, global positioning
systems (GPS), radio-frequency identification (RFID) tags,
cameras or some combination of these [2–5].

Radar-based proximity detection is used for surface mining
equipment as an aid drivers of dump trucks to detect people
and small vehicles behind the truck. The system is fairly
effective for surface mining equipment with only occasional
false alarms [5]. The close proximity of tunnel walls in an
underground mine makes the use of radar problematic owing
to frequent false alarms [3].

GPS proximity detection has been proposed for surface
mining operations. Each vehicle and worker broadcasts its
position to nearby vehicles. A display in the vehicle shows
the position of nearby people, vehicles and stationary objects
and alarms if they are within a predetermined range [5]. The
reliance on GPS signals precludes its use in a GPS-deprived
underground environment.

RFID tags are popular for collision avoidance systems
owing to their very low false alarm rates. RFID tag-based
systems operating at various frequencies are used for a number
of collision avoidance systems. The Becker NCS Collision
Avoidance System and the Dynamic Anti Collision System
(DACS600) use RFID tags operating in the 400 MHz fre-
quency range while the HazardAvert Proximity Detection
System and the Nautilus International Buddy system use low
frequency magnetic fields [2, 4]. These RFID systems all
operate on the same basic principle; each miner has an RFID
tag (usually active) embedded in their cap-lamp. A transmitter
mounted on the vehicle determines whether the tag is within
a certain range of the vehicle and alarms or stops the vehicle
if so. Some of the systems such as the HazardAvert system
provide multiple zones, which provides a discrete distance
measure. None of the systems provide the exact location of
the personnel, merely how close they are.

A machine vision based pedestrian tracking system can
address some of the shortcomings of current systems. Vision
provides a way of detecting people and determining exactly
where they are in relation to a vehicle. Machine vision has
been investigated as a method for detecting people who are
dangerously close to vehicles [5]. Thermal infrared (IR) imag-
ing provides the advantages of vision based detection without
the problems of sensitivity to illumination and obscuring dust.
The illumination for thermal images is radiated by people and
the long wavelength (7-14 µm) allows it to penetrate dust and
smoke [6].

The IR spectrum can be divided into four main regions.
The main regions are near-infrared, short-wavelength, mid-
wavelength and long-wavelength IR [7]. Near-infrared (0.7 to
1.4 µm) is commonly used for light-based distance sensors
such as laser scanners and Time Of Flight (TOF) cameras.
Near-infrared illumination is also often used for night-vision



surveillance since it can be detected using the same imaging
sensor used for visible light. Short-wavelength IR is used for
various process monitoring and inspection tasks such as hot
furnace monitoring [8]. Mid-wavelength IR can be used for
gas spectroscopy [7]. Long-wavelength IR (or thermal IR) is
the region of interest for this paper and is used for thermal
imaging.

In Section II of this paper the basic architecture of the
proposed pedestrian detection system and the major sub-
systems is described. The results of tests to evaluate the
segmentation and classification algorithms and the distance
sensors are presented in Section III. Finally the results are
discussed and conclusions are drawn.

II. SYSTEM ARCHITECTURE

The detection system first extracts regions of interest
(ROIs); these are regions that have a temperature that would
possibly allow them to be human. The ROIs are then classified
as being human or background objects. A distance sensor pro-
vides the three-dimensional (3D) position of the person for the
tracking system. The tracking system provides the trajectory
of the people in the camera’s field of view. A sensor head
consisting of a FLIR A300 thermal camera, a SwissRanger
SR4000 TOF camera and an Xbox Kinect was used for data
gathering. The background excluding pedestrians is assumed
to be stationary and is used to determine the trajectory of
the vehicle. The vehicle trajectory will be estimated using the
established iterative closest point surface matching algorithm.
Using the trajectory of the vehicle and the pedestrians the
system calculates whether a collision will occur.

A. Thermal Image Segmentation

The system first extracts Regions Of Interest (ROIs) that
could be human which are then classified. The thermometric
image provided by the A300 allows segmentation of the image
based on an empirically determined temperature threshold. As
discussed in Section III-A the temperature based segmentation
outperforms more complex algorithms on the indoor data.

Virgin rock temperatures of deep South African gold mines
are in the region of 60 ◦C however ventilation and other
cooling brings the temperature within working areas down to
below 30 ◦C to allow work to be done [9]. Work conducted
to model the heat flow from advancing stopes shows that the
rock surface temperature can be assumed to be equal to the
ventilation air wet-bulb temperature (Twb) [10]. Significant
work has been performed to design ventilation systems to
ensure the air Twb remains below 28 ◦C (heat stress manage-
ment programmes are required for Twb > 27.5 ◦C ) [11, 12].
Therefore, it is assumed that the rock temperature within the
mine tunnels will be below 28 ◦C .

B. Classification

There are a number of methods used to classify humans in
thermal images. To the authors’ knowledge, there has not been
a quantitative comparison of methods for human classification
in thermal imaging. In the absence of a clear choice, it was

decided to compare three different classification modalities.
The three classification methods are: 1) an appearance-based
classifier using a template match. 2) A feature-based classifier
which uses a number of features extracted from the image
which are classified using a Parzen classifier and 3) a neural
network classifier. Each of these are discussed in turn below.

1) Template classifier: Template-based classification has
been used for human detection in thermal images from moving
vehicles [13, 14] Nanda and Davis [13] use a probabilistic
template created from training images while Bertozzi et al.
[14] use a greyscale morphological template. It was decided
to use a method similar to Bertozzi et al.’s except to use a
template created from training images. The images of humans
in the training data are rescaled to form a M ×N image (in
this case 30×12). A template is created by taking the mean of
the scaled images. The candidate regions are rescaled to the
same dimensions as the template and the two are compared
using an absolute difference distance measure, ie.

Difference =

M∑
i=1

N∑
j=1

abs(Tij − Iij) (1)

Where:
T is the template image.
I is the image to be classified.

If the difference between the image and the template is less
than a threshold value then the candidate image is classified
as human.

2) Parzen classifier: The second method tested is a Parzen
classifier, using some simple statistical features. The features
used with the Parzen classifier are the mean, standard de-
viation, aspect ratio, the entropy and fill ratio (the ratio of
foreground pixels to the total) of the images. Fehlman and
Hinders [15] use 15 features and a committee of classifiers
for the classification of non-heat generating objects in thermal
images. To reduce the computational requirements, a smaller
number of features was chosen to test the Parzen classifier.
A Parzen classifier is a statistical classifier that uses a Parzen
density estimate. The Parzen density estimate estimates the
conditional probability of getting a given feature vector (D)
given the image is of class j (Oj) [15], ie:

P (D|Oj) =
1

Njhd

Nj∑
q=1

H

(
D −Dqj

h

)
(2)

Where:
h is the length of one side of a d dimensional hypercube
d is the dimensionality of the feature space.
Dqj is the qth training feature of class j.
Nj is the number of feature vectors belonging to class j.

H is the Parzen window function:

H (u) =

{
1 |up| ≤ 1

2 p = 1, ..., d

0 otherwise
(3)



Where:
|up| is the magnitude of the pth component of u.

The Parzen classifier uses Bayes’ theorem and the Parzen
density estimation in Equation 2 to determine the probability
that the image belongs to a certain class given the observed
feature vector. The posterior probability given by the Parzen
classifier is

P (Oj |D) =
P (D|Oj)P (Oj)

P (D)
(4)

=

 1

Njhd

Nj∑
q=1

H

(
D −Dqj

h

) P (Oj)

P (D)
(5)

Where:
P (Oj) is the prior probability of getting an object of class j.
P (D) is called the evidence and normalises the posterior
probabilities so that they sum to one.

Normally a decision is made based purely on the posterior
probability: an image is classified as human if the probability
that it is human is greater than the probability that it is not. For
this work an offset is added which allows the adjustment of
the sensitivity and false positive rates. An offset, in the range
of -1 to 1 exclusive, is added to the probability of not being
human. A negative offset will increase the probability that an
image is classified as a human, i.e. it will result in an increased
number of true positives but also increase the number of false
positives. A positive offset has the opposite effect, biasing the
classifier towards returning fewer false positives.

3) Neural network classifier: The third classifier investi-
gated is a neural network classifier. Neural networks have
been used for a wide variety of computer vision applications,
including: vision-based vehicle driving [16], face detection
[17] and pedestrian detection [18].

The network chosen for evaluation is a single hidden layer
perceptron with a sigmoidal activation function. The network
has 80 input nodes, 12 hidden nodes and a single output. The
network is trained three times using back propagation and the
weights giving the smallest error out of the three runs are
saved.

The input images from the segmentation algorithm are
resampled to produce 20× 48 pixel images. The high dimen-
sionality of the input is reduced using a principal component
analysis. Using the magnitude of the eigenvalues, it can be
shown that the first 80 components capture the majority of the
significant information about the images. For classification, the
rescaled input image is projected onto the lower dimensional
space using the 80 chosen components. The 80 resulting
features are then classified by a network with 80 input nodes.
Initial tests showed that a network with 12 hidden nodes gave
good results.

C. Distance Sensors

In order to predict the trajectory of the people identified by
the classification step correctly, the distance from the camera

to the people needs to be determined. There are a number of
ways of determining the distance to objects of interest. Some
of the common ways of determining distances are: structure
from motion, depth from focus or defocus, stereo vision, scene
geometry and fusion of the thermal camera with a separate
3D camera. It was decided that a 3D camera is necessary
in addition to the thermal camera owing to limitations of
using a single camera for depth estimation. Monocular depth
estimation methods such as depth from focus require a number
of images to determine distance and are too slow for collision
avoidance. The high cost of thermal cameras does not make
stereo IR a viable option so fusion of the thermal and distance
images is required

There are a number of possible depth sensors that could be
used, such as TOF cameras, laser scanners or structured light
cameras. For this work a TOF camera and structured light
camera have been used.

TOF cameras measure the phase shift of light returning
from a scene to calculate the distance to each point. Unlike a
laser scanner which scans a single beam across a scene a TOF
camera has an array of receiving elements and measures the
distance to all points simultaneously. Commercial TOF cam-
eras use a modulated near-infrared light source and measure
the phase shift between the transmitted and received light [19].
The maximum unambiguous distance (Dunamb) to a target
would be:

Dunamb = c/2f (6)
Dunamb = λ/2 (7)

Where:
f is the modulation frequency.
λ is the modulation wavelength.
c is the speed of light.

Any distance less than Dunamb is calculated by measuring
the ratio of the phase shift (φ) to a full cycle and multiplying
it by the maximum distance.

d = (φ/2π)Dunamb (8)
d = (λ/4π)φ (9)

One of the problems with TOF cameras is caused by the phase
shift ambiguity. A phase shift of slightly over 2π would be
measured as a shift of just greater than zero and according to
Equation 9 the calculated distance would be close to zero.

Structured light sensors project a known pattern onto a
surface and record the pattern using a camera a certain distance
from the projector. The projected pattern can be a series of
lines, a grid of lines or matrix or dots. Fig. 1 shows the
principle used to calculate the distance by triangulation. It
can be shown using similarity of triangles that the x and z
coordinates of the target are:

x = bu/(fcotα− u) (10)

and
z = bf/(fcotα− u) (11)
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Fig. 1. Schematic showing the principle of structured light triangulation
(Adapted from Siegwart and Nourbakhsh [20])

III. RESULTS

This section describes the results of subsystem testing using
preliminary indoor data. A dataset was taken in a corridor
environment using a FLIR A300 thermal camera. The thermal
images from the A300 camera were segmented to extract ROIs
that could possibly be humans. The ROIs were classified by
hand to provide ground truth data. The regions were classified
as containing a single standing person, multiple overlapping
people, a partial image of a person or as not containing a
person. The classification resulted in a training set containing
sub-images of 332 people, 55 groups of people, 126 sub-
images of partially occluded people and 1287 sub-images not
containing any people. This ground truth data was used for
the training and verification of the classification algorithms.

The SR4000 TOF camera and a Microsoft Xbox Kinect
structured light 3D sensor have been tested in a working mine
and the results are discussed.

A. Segmentation

Fig. 2 shows an image from the A300. Ideally the ROIs
should only be the two people in the image. It is shown
in Fig. 2 that a simple temperature threshold ROI extraction
performs better than two more complex algorithms.

The first ROI extraction algorithm uses a combination of in-
tensity and edge information. The algorithm extracted regions
with a certain intensity surrounded by strong edges. The addi-
tion of edge information reduced the number of noise regions,
however it was found that objects in the thermal images are
invariably surrounded by edges that are incomplete. A robust
integration was used that could highlight regions surrounded
by incomplete edges but it is computationally intensive and
does not improve the segmentation results significantly. As
people get closer to the camera additional edges are detected
across their bodies due to, for example, clothing. This causes

(a) (b)

(c) (d)

Fig. 2. Results of segmentation tests: (a) is the input image; (b) shows
the result of edge and intensity segmentation; (c) is the result using Otsu’s
method; and, (d) is the result using temperature threshold-based segmentation

the addition of edge information to degrade the segmentation
performance at shorter ranges.

A histogram-based segmentation algorithm, using Otsu’s
threshold selection method [21], was also tested for segmen-
tation. Otsu’s method is commonly used for grayscale image
thresholding. Otsu’s method assumes a bimodal distribution of
intensities and attempts to optimally divide the distribution into
two. Otsu’s threshold selection does not work on the thermal
images. This is because the temperature distribution is uni-
modal due to the uniformity of the background temperature.

It was found that a simple temperature threshold-based
segmentation performed better than the two above mentioned
thresholding algorithms. The temperature threshold extracts
regions that have a temperature of between 26.8 ◦C and
37 ◦C and then performs a morphological opening, on the
binary image created, to remove small noise regions. The ROIs
extracted using the temperature threshold are shown in Fig. 2.

B. Classification

For testing the classifiers only a binary classification was
considered, whether the region contains a single person or not.
The 1800 manually classified regions are randomly divided
into training and evaluation data sets, each of approximately
the same size (a random division with equal chance of being
in each set). Each classifier is trained and then run three times,
the first time it is run using the data from the evaluation data.
The two subsequent tests are run using a new randomly chosen
dataset. Each classifier is evaluated in terms of classification
accuracy and speed.

The classification rates are for the classifiers run in MAT-
LAB R2010b on a 2.8 GHz Pentium 4 PC. The number of
classifications per second for each classifier is averaged over
the three tests and the results are shown in Table I.



TABLE I
COMPARISON OF CLASSIFIER SPEEDS. (RUNNING IN MATLAB R2010B)

Classifier Speed (classifications/s)
Template 4830
Parzen 552
Neural Network 1227
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Fig. 3. The Receiver Operating Characteristics for a) the Template classifier,
b) Parzen classifier and c) Neural Network

Fig. 3 shows typical Receiver Operating Characteristic
(ROC) curves for each of the classifiers.

The performance of the template classifier is significantly
poorer than the other two and does not warrant further con-
sideration despite its speed.

The neural network achieves very similar classification per-
formance to the Parzen classifier. The main difference between
the two is that the Parzen classifier achieves a maximum true
positive rate of 98% while the neural network can detect 100%
of the targets (albeit with a high false positive rate). The reason
the Parzen does not reach 100% true positive is the finite extent
of the Parzen window. So if all the features fall just outside the
window, the classifier will return a zero probability of being
human.

The classifier is required to detect people without missing
any, ie. the true positive rate needs to be as close to 100%
as possible. The effect of false positives is less severe, simply
adding to the number of objects that need to be tracked.

The neural network classifier achieves slightly better detec-
tion performance and significantly faster classification than the
Parzen and is therefore the classifier chosen for development
as part of the human detection system.

C. Distance Sensors

Testing of the two 3D sensors underground has shown a
significant disadvantage of using TOF camera technology in
a harsh underground environment. The drilling of blast holes
in a mine gives off a fine water spray; coupled with high
humidity this causes a mist in active areas of the mine. The

Fig. 4. Time of flight camera amplitude image through mist

Distance: 1.004 m

Distance: 0.7552 m

Fig. 5. Time of flight camera distance image through mist

TOF camera’s amplitude image, in Fig. 4, shows the water
mist near the base of the support in the centre of the image.
The distance image, shown in Fig. 5, shows a significant jump
in measured distances near the base of the support due to the
mist there.

The reason for the poor performance of the TOF camera
is that the camera is receiving a reflection off the object
of interest as well as multiple reflections off the intervening
water droplets. The reflection off the mist causes the received
phase shift to be less than the true value and therefore the
measured distance is shortened. It is expected that dust, which
will be more of a problem in the tunnels where the pedestrian
detection system will operate, will have a similar effect to the
mist.

The TOF camera was also found to suffer from significant
motion blurring due to the fact that a single range image
is measured using four phase measurements. Decreasing the
integration time will reduce the blurring but will decrease the
accuracy and range of the camera.

The structured light Kinect sensor seems unaffected by the
mist but without a known ground truth distance the effect of



the mist on the accuracy of the Kinect is not known.

IV. CONCLUSION

The current state of the development of a pedestrian detec-
tion system for underground mine vehicles is described in this
paper. Some current pedestrian detection systems are listed
and their limitations described. The system architecture and
major subsystems are outlined. It is shown that as a result
of the thermometric nature of the IR images, a temperature
range based segmentation is superior to other more complex
segmentation methods. It is shown that a neural network clas-
sifier outperforms a template classifier and a Parzen classifier.
An evaluation of two distance sensors shows that a TOF
cameras suffer from motion blurring and inaccuracies due
to obscuring mist. Future work involves the acquisition of a
large underground dataset from a moving platform to test the
velocity estimation methods. Further work is also required to
verify whether the effect of dust on the TOF camera is similar
to the effect of the mist. Work is also required to determine
the quantitative effect of dust on the accuracy of the time of
flight and structured light 3D sensors.
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