Belief Change

Richard Booth Thomas Meyer
University of Luxembourg Meraka Institute, CSIR and
Luxembourg School of Computer Science
richard.booth@uni.lu University of Kwazulu-Natal
South Africa

tommie.meyer@meraka.org.za

Abstract

In this paper we present a brief overviewlagic-based belief changa research area concerned with the question
of how a rational agent ought to change its mind in the faceeef, possibly conflicting, information. Our intention
is to provide the reader with a basic introduction to the wawke in this area over the past 30 years. In doing so we
hope to sketch the main historical results, provide appatppointers to further references, and discuss somerturre
developments. We trust that this will spur on the intereséadler to learn more about the topic, and perhaps to join
us in the further development of this exciting field of resbar

1 Introduction

Consider the situation in which an agent has just encouhitard: let's call it Tweety. Part of the agent’s beliefs
about the world is that birds fly. Being a logical agent, itréfere believes that Tweety flies. On closer inspection,
though, the agent learns that Tweety is an ostrich. Sincadbat also believes that ostriches don't fly, it is now faced
with a dilemma: Can Tweety fly, or can't it?

The simple scenario above aptly illustrates the centraictop this paper—that a rational intelligent agent is
sometimes forced to adjust its current beliefs in some gpate fashion when confronted with new information. The
investigation of the reasoning patterns involved in sucis& ts known as the study belief change

The approach to the problem of belief change that we discuggs paper is logic-based. Both the beliefs of an
agent and new information presented to it will be represkinte logic language. For the most part, research in this
area has focused on an underlying logic that contains clgsiopositional logic, and with a monotonic consequence
relation associated with it (but see Section 8). Howevemvasshall soon see, logic on its own is not enough to
obtain unique answers to such problems. The primary eatyesal principle we shall use to guide us is known as the
Principle of Minimal Change The idea is simple and intuitive. Information is hard to eohy and if an agent has
gone to the trouble of incorporating a piece of informatistoiits set of beliefs, it has presumably done so for a good
reason. It should therefore give up any beliefs it has onilyiff forced to do so. That is, any changes to its current
stock of beliefs should be minimal.

Traditionally, approaches to belief change have followed of two trajectories, with the fierences centred
around the question of whether beliefs should be represdmelaef basegarbitrary sets of sentences) or logically
closedtheories The AGM approach to belief change [1, 24] (hamed after iigioators Alchourrén, Gardenfors and
Makinson), perhaps the most influential voice within thigfief research, is based on the assumption that beliefs need
to be represented as theories. The idea here is that we arested in belief change on throwledge levednd that
the particular syntactic formulation that we choose forespnting the beliefs of an agent is largely irrelevant. I@n t
other hand, the case made for the use of belief bases, whgihated with the work of Sven Ove Hansson [28], is
that the sentences chosen to represent the beliefs of ahagesomehow more basic than those that merely follow
logically from these basic sentences. Although these twavagzhes startfdwith different, seemingly conflicting
basic assumptions, we shall see that they actually have muw@mmon. In fact, one of the assumptions underlying
both approaches is the necessity of introducing extrazldgiructure to the representation of beliefs in order taiob
unigue results to specific problems in belief change.



Our intention in this paper is to provide the reader with d@dagroduction to the work done in the area of belief
change over the past 30 years. In doing so we hope to sketatatinehistorical results, provide appropriate pointers to
further references, and discuss some current developn@intsurse, it is impossible to present a truly comprehensiv
account of a research area in a paper such as this and ouegiren matters will invariably be subjective, to some
extent. The reader is urged to keep this in mind when goirautyin the paper.

On to more concrete matters, then. We commence with a discusfthe formal preliminaries needed to digest the
rest of the paper in Section 2. This is followed in Sectiona® 4 by accounts of the two basic operators investigated
in belief changebelief contractionandbelief revision In Section 5 we take a closer look at the semantic methods
for constructing belief change operators before we useaihyisoach to considéterated belief revisionn Section 6.
Section 7 discusses the links between belief change andeheoinonmonotonic reasoning, while Section 8 takes a
brief look at recent developments in belief change. Finaty conclude in Section 9.

2 Preliminaries

First the logical framework. We start with a quite abstraonfulation (, Cn), where we just have a sktwhose
elements are theentencesogether with a consequence oper&orwhich takes sets of sentendd<C L to sets of
sentence€n(B) which intuitively represents all the sentences whicheariailedby B. Cnis assumed to be a compact
Tarskianconsequence operator (after Alfred Tarski), i.e., it §atsthe following four properties for aB, By, B, C L:

e BC Cn(B) (Reflexivity)
e B; C B, impliesCn(B;) € Cn(By) (Monotony)
e Cn(Cn(B)) = Cn(B) (Idempotence)
e If € Cn(B) theng € Cn(B’) for some finiteB’ € B (Compactness)

We call any arbitrary seB C L abelief basebut if B = Cn(B), i.e., B is closedunderCn, then we callB a theory.
Following the tradition of the AGM approach, we will uerather tharB to denote theoriesr € L is a tautologyff
a € Cn(@). FromCnwe can define a notion abnsistencyA setB of sentences i€n-consistentfi Cn(B) # L. We
will just say consistent if the consequence operator is ¢tean the context.

Definition 1. An abstract deduction systeima pair {,Cn) as above.

This logical setup, although very general, is surprisirghgady rich enough to explore many interesting issues
in belief change. However, traditionally researchersliding AGM) have worked within more specific background
logical systems. In particular the machinery of propositidogic is usually taken as minimum. We may tdke Lp,
consisting of all sentences built up from some set of prdjposil variables using the connectivesh, v, —, <. The
classical propositional consequence operator is denagteging. We call asupraclassical deduction systeanpair
(Lp, Cn) where in addition to the four properties mentioned ab@reis assumed to satisfy

e Cny(B) € Cn(B) (Supraclassicality)
o pcCn(BU {4)}) iff (6 — ¢) € Cn(B) (Deduction)

For supraclassical deduction systems we hRAve{a} is consistentft —a ¢ Cn(B). In particulara is consistentft
-a ¢ Cn(0).

2.1 The problem formalised

We are now ready to state formally the problem of belief rievis

Assume some fixed abstract deduction systenC() as background. Then given an initial belief base
B C L and some new information represented as a sentereé, find a new belief basB « @ which
includese and is consistent.

The requirement tha = a be consistent is crucial here. Without it we might as welt pddae set-theoretically t@3
and stop there. But B U {«a} is inconsistent then entailment is trivialised, since bijrd&éon of inconsistency theall
sentences are entailed ByJ {a}, rendering it useless. So how should we approach this proble



One influential idea, which comes from Isaac Levi [41] is te@®pose the operation into two main steps. First,
B is altered if necessary so as to “make room” for, i.e., becoaoresistent with, the incoming sentenee This is
achieved by makin@ deductively weaker. This is known asntraction Here we should adhere to the principle of
minimal change, according to which this weakening shoulthbde as “small” as possible. (See [54] for a discussion
of this principle.) In the second, trivial step, the new faitmis then simply joined on to the result (this is known as
expansiol Clearly the dificult step is the first one. So in order to answer the problenewkion we first need to
address the problem of contraction. We turn to this in the sestion.

3 Belief contraction

Note that for the purposes of revision we just need to nBkensistent withr. In the case where the background
deduction system is supraclassical this is the same asiegsur ¢ Cn(B). But in general (for instance if negation
is not available in the language) these two things will iféedént. So in general there are two kinds of contraction
operator: the first isnconsistency-baseaind the second ientailment-based We will focus on entailment-based
contraction here. We denote the result of contradBrsg that it no longer entails a given sentendgy B—a. We will

first deal with the case whekgis an arbitrary belief base. Later we will look at the specade where it is a theory.

3.1 Partial meet base contraction

One of the best-known approaches to contractiopaigial meet contractiorfl, 31]. Here the idea is to calculate
contraction in three steps:

1. Focus for the first step on those subsetB @fhich do not entaikv and which arenaximalwith this property.
We denote this set b L «.

2. Then, a certain number of the elements of this set are somsélected as the “best” or “most preferred” by
means of a selection functign y(BLa) € BLa.

3. Finally, the intersection of these best elements is takep(B L @)
Let’s formalise all this, starting with the sBtL« in step 1.

Definition 2. LetB C L anda € L. ThenB L « is the set of subsets C L such thatX € B L « iff (i). X € B, (ii).
a ¢ Cn(X), (iii). ForallX’ ¢ B, if X c X’ thena € Cn(X’). We callB_L a the set ofx-remainders of B

If @ is atautology theB L @ = 0, but this is the only case for whidB L a = 0. This is a result of the following
fact, the proof of which requirdglonotony andCompactnessof Cnas well as Zorn’s Lemma.

Fact 3([2]). If @ ¢ Cn(Y) and Y C B then there exists X B_L a such that YC X.

In other words, every non-implying subset ofB may be extended to a maximal narimplying subset ofB.
Next comes the definition of selection function.

Definition 4. Let B € L. A selection function for Bs a functiony such that for alle € L, (i) if B_L @ # 0 then
0+ y(BLa) < BLa, and(ii) if BLa =0 theny(BLa) = {B}.

Finally we can use a selection function #Bito define a contraction operatey for B:

B—ya= ﬂy(BLa).

Definition 5. If — can be defined via some selection functidior B as above ther is apartial meet base contraction
operator (forB).

Two special cases of partial meet contraction deserve orentfi the selection function picks a single element of
B_Le, itis called amaxichoice contractionlf it picks the whole ofB_L«, it is called afull meet contractionObserve
that full meet contraction is unique, whereas there are ndéfigrent maxichoice contractions: one for each element
of BLa.

Partial meet base contraction may be characterised asvillo

1See also Section 8.



Theorem 6([30]). — is a partial meet base contraction operator for fBit satisfies the following properties:

o If a ¢ Cn(0) thena ¢ Cn(B - «) (Success)
e B-aocCB (Inclusion)
o If B B\ B- athen there exists’Bsuch that B-a C B’ C B, ¢ Cn(B’) ande € Cn(B’ U {B8}) (Relevance)
e Ifforall B’ c B we haver € Cn(B) iff 8 € Cn(B’) thenB—-a =B-p (Uniformity)

The above properties may be explained as folloBisccessays the sentence to be removedctually removed,
i.e., is no longer a consequence of the Bas®l Inclusion states that no new beliefs may be added in the course of
removinge.® Relevanceseeks to avoid unnecessary loss of information. It saysalsantencg should be given
up only if it contributes to the fact tha, and notB — «, entailsa. Uniformity states that if two sentences are
indistinguishable from the viewpoint &, in that every subset d@ which implies one also implies the other, then the
results of contracting by them should be the same. As waslio{g@4], the only properties d€nwhich are actually
used in the proof of Theorem 6 akonotony andCompactness

The following two reasonable properties can be shown tofoffom those in Theorem 6 (see [28]), and thus are
satisfied by any partial meet base contraction operator.

e If a ¢ Cn(B)thenB—a =B (Vacuity)
e If Cn(a) =Cn(B) thenB—a=B-p (Preservation)

Vacuity says that ife is not entailed byB to begin with, then nothing needs to be changed. It can be showe

a consequence dRelevanceand Inclusion. Preservation says that if two sentences are equivalent under logical
consequence then contracting by them should give the sauksiet can be shown to follow frotdniformity , while

in the special case wheis a theory, it is actually equivalent téniformity in the presence d¥acuity.

3.2 Partial meet theory contraction

The preceding construction works equally well wHhgis taken to be a theon. But in this case, since the input to
contraction is a theory, we should expect the output to bearftoo. This is ensured because in this case the elements
of K L a are themselves theories, and the intersection of any fashillgeories is again a theory. When applied to a
theoryK we will refer to the above construction partial meet theory contractian

In this case we obtain afiierent representation theorem, which was one of the maittsesfuUAGM.*

Theorem 7 ([1]). Assume we work with a supraclassical deduction systentCn), and let K be a theory. Then
is a partial meet theory contraction operator for }ff it satisfiesSuccess, Inclusion, Vacuity, Preservation and the
following properties:

e K—a=CnK-a) (Closure)
o KCCn((K—-a)Uia}) (Recovery)

Note that this result requires the assumption of a suprsiciEleduction system as background. It may not hold
for general abstract deduction systems (see [20] for désocn®n this).

The postulates listed in the above theorem are collectiebyvn as thébasic AGM contraction postulate€lo-
sure says that the result of theory contraction is another theunyjle Recoverysays that if one removesand then
simply adds it again (and then closes under logical consem)dghen one should get back all the initial belikfs
Recoveryhas been by far the most controversial of the AGM contragiimstulates, with many authors calling it into
guestion (see [28, pp. 72-74]). It should be noted that thigtidate is specific to thiheoryversion of partial meet
contraction, i.e., it does not hold in general for partialetigasecontraction, wherd is allowed to be an arbitrary
base. For supraclassical deduction systems, in the presdr@osure, Inclusion andVacuity it is equivalent to
Relevance21].

2But see [19] for a discussion on why this is not always defirab
3See [6] for an argument against this postulate.
4Note that, historically, partial meet theory contractiaually pre-dates the more general version for arbitragebaiven above.



3.3 The supplementary postulates

In partial meet contraction, when selecting the remaindergay, what we have is an instance o€hoice situation.
We have a number of alternatives up for selection, narBelyr, and some of them are singled out as being in some
sense more preferred. So we make some crossover into the oéedtional choice. How can this choice be made?
We can assume it is made on the basis of a binary prefererat®ret over the set of all possible remainder sets for
B, i.e., the sefX | X € B_La for somea € L}. For any two possible remainder sétsY, we write X C Y to mean that

Y is at least as preferred &s and use- to denote the strict part @f, i.e., X C Y iff bothX C Y andY Z X. Thenc

can be used as the basis for a selection fungtioby setting

ve(BLa)={XeBLa|YC XforallY e BLa}.

That is,yc(B L @) consists of those elements BfL o which are at least as preferredalksother elements 0B L a.
If a selection functiory for B is generated from some relatignin this way then we say is arelational selection
function, and a partial meet contraction operatpwhich can be generated from some relational selection ifmmet
will be called arelational partial meet contractionperator.

By putting some mild constraints on the relatibywe can constrain the behaviour of the resulting relatipastial
meet contraction operator in interesting ways. Considefdlowing two properties:

e XCYandYC ZimpliesXc Z (Transitivity)
e If XcYthenXCY (Maximising)

The first property is a standard requirement for a relatiopreference. The second is motivated by minimal change
considerations: when contractimit is always preferable to retain as much®fas possible, so a given subsét
of B should always be strictly more preferred to any of its stigbsets. Ify is generated from sonte satisfying
Transitivity then we say-, is atransitively relationalpartial meet contraction operator, while if it generatestir
somecC satisfying, in additionMaximising then—, is atransitively, maximisingly relationgdartial meet contraction.
Note that, ifB is a theory, then these two collapse into the same thing giséimse that, is transitively relationalff
it is transitively, maximisingly relational [27].

We obtain the following results, both of which assume we wor& supraclassical deduction system:

Theorem 8([31]). Assume a supraclassical deduction system as background® he a belief base and suppose
is a transitively, maximisingly relational partial meetdmcontraction operator for B. Thensatisfies the following
property:

e (B-a)N(B-B) < B-(aArp) (Conjunctive Overlap)

For the case of relational partial mekeorycontraction we can say more:

Theorem 9([1]). Assume a supraclassical deduction system as backgrouhH. he a theory and an operator for
K. Then- is a transitively relational partial meet theory contraati operator for K jf it satisfies all the basic AGM
contraction postulates (see Theorem 7) plasjunctive Overlap and the following property:

o lfa¢g K-—(anp)thenK- (e AB)CK-a (Conjunctive Inclusion)

The postulate€onjunctive Overlap andConjunctive Inclusion are known as th&GM supplementary contrac-
tion postulatesThey go a step beyond the basic postulates, in that the thkaresults of contracting by conjunctions
a A B with the result of contracting by the individual conjundf¥e refer the interested reader to [1, 28] for discussion
on these postulates.

3.4 Kernel contraction

The partial meet approach to contraction focussesmarimalsubsets oB which do not imply the sentenceto be
removed. Another approach is instead to single outntirdmal subsets whicldo entail @, and then to make sure
at least one sentence is removed from each. This is the ideéadHansson’s operation é&krnel contractior{32],
which is a generalisation of treafe contractiorf Alchourrén and Makinson [3].

Definition 10. Let B be a belief base ande L. ThenB 1 « is the set of setX such tha(i). X ¢ B, (ii). @ € Cn(X),
(ii). If X’ c Xthena ¢ Cn(X’). We call the elements @& L a thea-kernels of B.



To removen, it is necessary and flicient to remove at least one sentence from evwekgrnel. To this end, we
assume the existence of an function which makes an “incigidm every such set, returning the sentences which must
be discarded.

Definition 11. o is anincision function for Bf (i). o(B L @) C U B 1 a, and(ii). X € B 1L e implieso (B 1L a) N X # 0.
Every incision functiorr then yields a contraction operator by settBg, o = B\ o (B L a).

Definition 12. Let — be an operator foB. If — equals—,- for some incision functiowr for B then it is called &ernel
base contraction operatdfor B).

Kernel base contraction may be characterised in the foligwiay:

Theorem 13([32]). — is a kernel base contraction operator for Bit satisfiesSuccess, I nclusion, Uniformity and
the following property:

e If 3 € B\ B— athen there exists’Buch that BC B, ¢ Cn(B’) anda € Cn(B’ U {38}) (Core retainment)

As with Theorem 6, it was noted in [34] that the only propextiequired to prove this result akéonotony and
Compactness Note thatCore retainment is weaker tharRelevanceand so we see that every partial meet base
contraction operator is a kernel base contraction operéka converse, however, does not hold, i.e., there exisgker
base contraction operators which are not partial meet lbageaction operators (see [28, p91]) for a counterexample,
and [18] for more on the relation between partial meet andéddyase contraction).

The above discussion was about kerpasecontraction. It is also possible to employ the constructiotihe case
whenB is a theory except, sindé —, « is not guaranteed to be a theory (even wheis), it is necessary to add a
post-processing step of closing un@ar. Thatis, a kernel theory contraction operatorois any operator of the form
K =, @ = Cn(K —, @), whereo is an incision function foK and—, is defined fronu- as for kernel base contraction.
However, in this case (at least for supraclassical dedustistems), the distinction between kernel theory coribract
and partial meet theory contraction disappears, in thaydwrnel theory contraction operator is a partial meetitheo
contraction operator, and vice versa [32].

4 Belief Revision

As stated earlier, once we have a contraction operation li@lief baseB, we can use it to define a revision operator
via the Levi Identity. The Levi Identity comes in two flavouagcording to whether we want the result of revision to be
atheory or not. In the former case we tdkea = (B——a) U{a}, in the latter case we takkéxa = Cn((K ——a) U{a}).
We call the former the non-closing Levi ldentity, and thedathe closing Levi Identity. Whenever we talk of the Levi
Identity in connection with an arbitrary belief baBave shall implicitly assume it is the non-closing version we a
using, while if we use it in connection with a thedfy we shall assume the closing versifihroughout this section
we shall assume, for simplicity, that we work in a supradétadsleduction system.

First we deal with arbitrary belief bases, where the resutiot expected to be logically closed.

Definition 14. Let B be a belief base. i can be defined from some partial meet base contraction a@péoaB using
the (non-closing) Levi Identity then it is@artial meet base revisiooperator forB.

Partial meet base revision may be characterised as follows:

Theorem 15([31]). *is an operation of partial meet base revision forfBiti satisfies the following properties:

e veBxa (Success)

e If a is consistent then B« is consistent (Consistency)

e BxaCBU{a} (Inclusion)

e If 8 € B\ B« a then there exists’'Buch that B« C B’ C BU {a}, B’ is consistent and BJ {«} is inconsistent.
(Relevance)

5The Levi Identity breaks revision hyinto two steps: contraction (byae) and expansion (by), in that order. Another possibiity is to reverse
this order and do the expansion (fyfirst, followed by the contraction (bya). This possibility is explored in [31].



o If, for all B’ C B, we have BU {a} is consistentff B’ U {8} is consistent, then B (B« a) = BN (B * B)
(Uniformity)

SuccessandConsistencyare taken as fundamental requirements Bereclusion places an upper-bound on the
result of revision. It says the result should not contain seytence not included B, apart from the new information
a. RelevanceandUniformity are similar to their namesakes in the list of base contragt@stulates.

Let us move on to theory revision.

Definition 16. Let K be a theory. I can be defined from some partial meet theory contractioredpeiorK via the
(closing) Levi Identity, then is apartial meet theory revisionperator forK.

The following result is the AGM characterisation of partia¢et theory revision.

Theorem 17([1]). = is a partial meet theory revision operator for a theory it satisfiesSuccess, Consistency and
the following basic AGM postulates for theory revision:

e Kxa=Cn(K *a) (Closure)
e KxaCCn(KU {a}) (Inclusion)
e If K U{a}is consistentthen ka = Cn(K U {a}) (Vacuity)
o IfCn(e) =Cn(B) then K« a = K« (Preservation)

Furthermore, is a transitively relational partial meet theory revisioperator (i.e, is defined via the Levi Identity
from some transitively relational partial meet contractioperator) jf it satisfies, in addition, the following two
supplementary AGM revision postulates:

o Kx(anpB)CCn((K=*a)Ui{p)) (Subexpansion)
o If (K« a) U {B} is consistent then CitK = o) U {8}) C K = (@ A B) (Superexpansion)

Observe that, for the remainder of this paper we will tAk&M revisionto mean transitively relational partial meet
revision.

It is also possible to use the Levi Identity to define revisitom kernel contraction, leading kernel revision
operators. Axiomatic characterisations are given in [384H we refer the reader to that paper for details.

Finally in this section, while the Levi Identity deals witlol to define revision in terms of contraction, it is also
possible to go the other way and define contraction in termevi$ion by using thélarper Identity[35]:

B—a=Bn(Bx*-a).

The Levi and Harper identities can be thought of as inverseath other. They ensure a very tight connection between
contraction and revision.

5 On the semantic side

The previous sections have been developed against the hoacktjof some given, fixed abstract (sometimes supra-
classical) deduction systerh,(Cn), which represents the background logic we work in. Thesgesys can be said to
be syntactical in the sense that they simply declare (€@ig) which sentences are entailed by which sentences. There
is, of course, usually another side to logic which is seenanticakide. It is the semantics of a logic which tells us
what are the objects, @ossible worldsor modelswhich the sentences inare actuallytalking about In this section
we investigate belief change from a more semantical viemtp@ihe ideas behind this approach originate in a famous
paper by Adam Grove [25]. For this and the next section we raakenber of simplifying assumptiond) we assume
that we are working in a supraclassical deduction systenn), (ii) we furthermore assunis is generated by only
finitely many propositional atoms, aifiif) we will focus only ontheoryrevision and contraction.

What are the models in a supraclassical deduction systen&w@m to define them is as the setroximally
consistent theories ofsl

we {M C Lp | M is aCn-consistent theory and for ron-consistent theot’ c L do we haveM c M’}.

6Although Successs not beyond controversy, since one can certainly imagtoations in which new information is not accepted. See 28,
for studies of revision operators which don't satisfy it.



GivenM € ‘W andB C Lp, we sayM is a model of Bff B C M. Then the set of models & is denoted by B].

The setW defines a consequence relation,y by setting, for anyB € Lp, Cny(B) = (N[B], i.e., a sentence is
entailed byB iff it is contained in all models d8. Then‘W provides a semantics which is sound and complete with
respect tol(p, Cn), in the sense that, for aly C Lp, the identityCny(B) = Cn(B) holds.

Now suppose we have a thedkyrepresenting our initial beliefs. This corresponds to tekelh that the actual
“true” world is one of the worlds inK]. It turns out that performing transitively relational gat meet theory contrac-
tion onK is equivalent to choosing, on the basis of sawtal preorderover the setW, some countermodels of (i,e,
models of the negation of) the sentence to be contractechdaidg them toK]. To be more precise, let be a total
preordef, ortpofor short, overiW. ForM, M, € ‘W, M; < M, may be informally read ag\; is at least as plausible
(as a candidate to be the real world)Ms’. Given any subset C ‘W, we denote by mig(T) the minimal elements
of T under<, i.e,, min(T) = {te T |t<t forallt’ € T}. We assume is anchored or[K], i.e., [K] = min.(‘W).
Then we may use to define a contraction operator fifras follows:

{K if @ € Cn(0)
K-—ca= . .
KN ming ([-a]) otherwise.
In other words, the models of the new theory are obtainedkiggahe minimal models of« and adding them to the
models ofK.

Theorem 18([25]). Let K be a theory. Then is a transitively relational partial meet theory contraati operator for
K iff — equals—< for some tpo ovefd’ which is anchored ofK].

This is not the only way we could use a plausibility order tdirtea contraction operator. Rott and Pagnucco
introduced and axiomatically characterised the operatfaevere withdrawa]56].

< K if o € C(0)
=
N{M e W |M < M forsomeM’ € min.([-a])} otherwise.

Here, the models of the new belief set are obtained by tatiihghodels which are at least as plausible asthe
minimal ~@-models. This operation was independently proposed, wsitifierent construction, by Isaac Levi under
the namenmild contraction42]. Unlike partial meet theory contraction, severe withdlal does not satisfiRecovery.
Yet another possibility was explored by Meyer et al. [43ystematic withdrawas just like severe withdrawal except
we add to K] not only the most plausiblea-models, but all models which astrictly more plausible than them.
K K if @ € Cn(0)
—q=
KNN{MeW|M < M for someM’ € min.(-a)} N (minc([-a]) otherwise.

What about defining revision from a plausibility orde? We may just apply the Levi Identity to each of the three
families of contraction operator above. It turns out we etdame revision operator in each case, viz.

K*<a’

L it ~a € C(0)
“|Nminc ([e]) otherwise

In other words the models of the new theory which results fremsing by are exactly<-minimal a-models.

Theorem 19([25]). Let K be a theory. Thexnis a transitively relational partial meet theory revisioperator for K
iff = equals«. for some tpo oved which is anchored ofK].

In the theory case, we have that the AGM postulates are dguiva total preorders over the set of models. There
is a third way of characterising AGM theory contraction, rdyras an ordering of entrenchment among the sentences
of the language [47, 48]. The best-known version of sucheactiment orderings is thepistemic entrenchment
orderingsput forward by Gardenfors and Makinson [24, 22]. We do nos¢him details here, but rather refer the
interested reader to the references provided.

A binary relation< over a seS is atotal preorderiff it is (i) reflexive, i.e.,s < sfor all s € S, (ii) transitive, andjii) connected, i.e., either
s<tort<sforallstesS.



6 Iterated theory revision as revising tpos

Everything in the preceding sections has been about “oo#-Bhlief change. There is an initial theory, there is some
new input and then there is a new theory. However, in realigtitings, a rational agent does not simply “shut down”
after incorporating this input, but must be ready to recétimextinput, followed by further inputs after that. That
is to say, belief change is an iterative process, and anyytedelief change worthy of the name should be able to
account for this. The question is, then, does the theoryhketin the previous sections adequately handle iterated
changes? The answer, as researchers began to realise iidth@9@s, is “no”.

What does the theory described until now have to say abaaté® belief change? Notice that the extra structure
required to carry out revision, be it incision functionslesion functions, or total preorders over models is always
definedrelative to the theory which is being changekhus, for example, when using the tpo construction, theee i
fixed total preordekk associated to eachftBrent theorK. So, to revise a theor§ by a sentence, we can use the
total preordeky associated t& to compute the resuK = ¢. If we then want to further revise this new theory iy
then we use the tpgk., associated to it to compuf& = ¢) = . There are three, interrelated problems with this:

1. There need be hardly any relation between the successisgk and<.,, where intuitively we might expect
some.

2. Some intuitively plausible properties of iterated revismay be violated (see below).
3. This method totally disregards the role that “revisiostdiy” may play in determining results of belief change.

What researchers realised in the mid 1990s is that, to asltiiese shortcomings, the theory of belief change should
be widened so that it deals not only with change on the leviiedries, but that it should address change in the very
structure used to change those theories. A contractiorvimioa operator should tell us not only what the new theory
should be, but should also provide us with a new selectioatforyincision functioritpo over models which is then the
target for the next input. In fact most the best-known appinea to iterated change deal with tpos rather than the other
ways of modelling the extra-structure. Furthermore thei$dn this area tends to be more on revision than contraction
(but see [15, 13, 14, 50, 36]) so in the following we focus endted theory revision as a problem of revising tpos.

6.1 Revising total preorders

So givenK and a total preordes associated td&<, the result of revision should be a new thedry ¢ together with

a new associated tpek.s. However we can simplify a bit, since the tpo associated tothaory contains enough
information to recapture the theory anyway (sinkg £ min<(‘W)). So, our new revision problem may be formulated
as follows:

Given an initial tpo< overW, and revision inpu&, determine a new tpg;, overWw.

The theory should extend the foregoing theory of single-stgision , which means the new belief #d) should
be derived from the initial tpo and using the partial meet revision recipe from Theorem 19. Teans that the new
lowest level min: (‘W) in the new tpo is determined already - it is equal to a{fle]). But what about the rest of the
ordering? The most obvious thing to do, if we want to be magigidy the principle of minimal change, is to simply
leave the rest of the ordering untouched, and sure enoughyaéls one of the first proposals for tpo revision. Boutilier
called itNatural Revisiorj11, 12], though the idea dates back to [61]. Formally it ifirted as follows:

either M, € min ([a])

M1 SZB M, iff .
or Mi ¢ minc ([@]) andM; < M.

The problem with natural revision is that it makes fewchanges. This was recognised by Darwiche and Pearl, who
proposed four postulates for regulating tpo revision [16]:

(CRl) If M1, M, € [a] thenMy < My iff M1 < M
(CR2) If M1, M3 € [—a] thenM; < My iff M1 < My

(CR3) If M1 € [a] andM; € [-a] andM1 < My thenM; <}, M>
(CR4) If M; € [a] and M, e [—a] and M; < M, thean <; M-



(CR1)and(CR2) say that, when revising by «, the relative ordering of models within], respectively within fa],
should remain unchangedCR3) and (CR4) say that if a givere-model was judged to be at least as (respectively
strictly more) plausible as a giverw-model before revising by, then that relation should be preserved after the
revision. Essentially revising hy should not cause any degradation in plausibility of anypodel with respect to the
—-a-models.

As noted by Darwiche and Pearl themselves, the above ptetuda not rule out natural revision as a sensible
approach to tpo revision, becausgesatisfies all these postulates. Howewgdoes not satisfy the following strength-
ening of (CR3) and(CR4), which was suggested independently in [7, 38]:

(CR5) If M; € [e] andM; € [-a] andM; < My thenM; <}, M,

(CR5) forces there to be strict increase in plausibility of the-models in relation to thexw-models which were not
deemed more plausible to begin with.

The above postulates can be repackaged as postulatesagmingtthe theory following a double revision:
(C1) If @ e Cn(B) thenK ((<1);) = K (<)
(C2) If —a e Cn(p) thenK ((<3);) = K (<;)
(C3) If e K(<;) thena € K ((<2)5)
(C4) If ~a ¢ K (<) then-a ¢ K ((<5);)
(C5) If ~ar ¢ K (<) thena € K ((<5);)

(C1) says if two inputs arrive, the second entailing the firstntthe first can be ignored when calculating the resulting
theory.(C2) says if two contradictory inputs arrive, then théeet of the first are cancelled o€3) and(C4) say that

if @ would be believed, resp. not rejected, after receiydpne, then this should not changg@ifvere to be preceded
by an inputa. Finally (C5) postulates a condition under which belief in an inpu$ guaranteed to survive the arrival
of a subsequent inpyt

Theorem 20([7, 16, 38]) Let« be a tpo revision operator such that alway$$) = (\ min<([«]). Then, for each
i =1,2 34,5, « satisfieCRi) iff it satisfieqCi).

A few concrete tpo revision operators have been proposechwdaitisfy all of the above postulates. For example
in lexicographic revisiori49, 61] the new tpo following input is determined by placingll a-models strictly below
all ~a-models while leaving the relative ordering within the defland [-a] unchanged. This is a most radical form
of tpo revision, where the new informatianis given total priority over the initial ordering. At the opposite end
of the spectrum isestrained revisiorj7], in which the strict part of the initial ordering is presed (apart from the
minimal a-models, which become strictly more plausible than all ttteeomodels), withe-models being promoted
only ahead of thesa-models which were on the same plausibility “level” (se@dE5]).

7 Belief revision and honmonotonic reasoning

In this section we discuss the connections between beligfiom and the work done in the nonmonotonic reasoning
community. A logic is said to baonmonotonidf its associated entailment relation need not satisfy the following
monotonicity property: ifArB thenA U {a}B. With  seen as a relation of plausible consequence, there are
many examples to show that monotonicity is an undesiratipgity. Perhaps the one most deeply entrenched in
the nonmonotonic reasoning literature is the Tweety exar(the example we used in the introduction). Given that
Tweety is a bird, it seems plausible to infer that Tweety cganBlut given the additional evidence that Tweety is an
ostrich, we should abandon our conclusion about Tweetyisdglgapabilities.

While there are many approaches to nonmonotonic reasoséegd.g., [53, 46]), we consider here the influential
framework proposed by Kraus, Lehmann, and Magidor [40] &ashvghat it has a strong connection with AGM belief
revision. Formally, Kraus et al. take to be a binary relation on sentences of a propositional latjerea 3 is to
be read asg follows plausibly froma”. For example, if we represent the information that Tweaty ibird by the
atomb, and that Tweety can fly by the atofnthe statemertij~ f is to be read as “from the fact that Tweety is a bird
it follows plausibly that Tweety can fly”. Kraus et al. defiheas arational consequence relatidif it satisfies the
properties Ref, LLE, RW, And, Or, CM, and RM given below.
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(Ref) aha (Reflexivity)
(LLE) If Cn(e) = Cn(B) anda |~y thenBy (Left Logical Equivalence)
(RW) If y € Cn(B) anda B thenay (Right Weakening)
(And) If B andaly thenakB Ay

(Or) If aby andBhy thena v By
(CM) If B andaly thena A By (Cautious Monotonicity)
(RM) If apy then eitherw A B~y oraph—B (Rational Monotonicity)

We do not discuss these properties in detail here. Insteadnterested reader is referred to the paper of Kraus et al.
[40]. To make the connection with AGM belief revision, we dee go one step further. Gardenfors and Makinson

[23] definel~ as anexpectation based consequence relatibit is a rational consequence relation which also satisfies
the property CP given below.

(CP) If al~L thena is Crrinconsistent (Consistency Preservation)

(where_L is any truth-functional contradiction, e.gp,A —p). The underlying intuition provided by Géardenfors and
Makinson is that the reasoning of an agent is guided bgxitectationsEvery expectation based consequence relation
k is based on a set of expectatioBsplaying a role that is analogous to that of a belief Iseih theory change.
Intuitively, E is the “current” set of expectations of the agent, and thegitde consequences of a sentencare
those sentencegsfor which af~8 holds. The set of expectatiofisis not explicitly mentioned in the definition of an
expectation based consequence relatigiut a suitablde can be recovered frofs as follows:E = {a | Tha}. That

is, E is taken as the set of plausible consequences of a tautology.

This places us in a position to define a method for translabieigveen belief revision and expectation based
consequence relations. Given a consequence relatjome take the set of expectatioksassociated with~ as the
theoryK to be revised, and we defihex a as{B | a~B}. Conversely, given a theoly and a revision operatet we
define a nonmonotonic consequence relatioas follows:a g iff 8 € K « @. The main result, linking belief revision
to nonmonotonic reasoning is the following theorem by Géfolies and Makinson [23] proving that these definitions
allow us to show that AGM revision and expectation based rarotonic consequence coincide:

Theorem 21. Let i be an expectation based consequence relation and let{B | T~B}. Then E= Cn(E) (i.e.

E is a theory). Furthermore, the revision operatofor E, defined in terms of as follows: Ex a = {8 | a~B}, is
an AGM revision operator. Conversely, consider a theory Kd ket+ be an AGM revision operator for K. Then the
consequence relatiop defined as followse g8 iff B € K = a, is an expectation based consequence relation.

8 Current developments: belief change for other logics

From the work discussed so far it is clear that belief charagecome a long way in the past 30 years. However, a look
back at the work done over this period reveals an intereséindency. Although the original aims were phrased in
terms of a broad class of logic—all those with Tarskian cqas@ce relation and satisfyirf@pompactness—most of

the work done in the area is actually based on the assumgtamunderlyingoropositional logic whether finitely or
infinitely generated. In this section we consider a deparfiom this trend, and discuss recent developments in belief
change expressed in two logics other than full proposititmgac: propositional Horn logicanddescription logics

8.1 Propositional Horn contraction

One of the main reasons for considering belief change fonHtagic is that it has found extensive use in artificial
intelligence and database theory, in areas where beliefyghia an issue to consider, such as logic programming, truth
maintenance systems, and deductive databases. Delgraiflevds the first to point this out and to investigate the
contraction of theories for propositional Horn logic.

A Horn clausds a sentence of the forpy A p2 A... A pn — pPnez Wheren > 0, and where th@;sare propositional
atoms or one of. or T. A Horn sentencés a conjunction of Horn clauses. orn setis a set of Horn sentences.
Given a propositional language, the Horn languagey generated fronhp is simply the Horn sentences occurring
in Lp. The Horn logic obtained frorhy has the same semantics as the propositional logic obtaiaet.fs, but just
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restricted to Horn sentences.Horn theoryis a Horn set closed under logical consequence, but congparily Horn
sentences. We denote Horn consequendgrpy(.).

Delgrande’s main contributions were threefold. Firstlg, $howed that the move to Horn logic leads to two
different types of contraction which coincide in the full profiogal case. Given a Horn theoty, the entailment-
basedcontraction, oe-contraction, of a senteneeshould resultin a new Horn belief—c« of which« is not a logical
consequenced —. @ ¥ a. On the other hand, thaconsistency-basecbntraction, oli-contraction, of a sentence
should result in a new Horn belig¢d —; @ which is such that adding to it does not result in an inconsistency:
H—ia U {a} ¥ L. Infull propositional logic, a way to expressontraction in terms oé-contraction would be to
require thaH — —a U {a} # L. This cannot be expressed in Horn logic, though, becauseidtipossible to express
the negation of the Horn sentenedsee also Section 3). Below we consider oalgontraction. Similar results have
been obtained farcontraction as well.

Delgrande’s second contribution was to show #sabntraction for Horn theories should not satisfy the cowver-
sial Recoverypostulate. As an example of the failureRé&coveryfor e-contraction, takéd = Cng({p — r}) and let
a = pA Q- r. Then any reasonable versiona€ontraction will yieldH —c @ = Cny(0). SoCny(H —¢ a U {a}) =
Cng({p A g — r}) and therefordd ¢ Cny(H U {a}).

Delgrande’s third contribution was to base the constramabfoHorn contraction operators on partial meet contrac-
tion. The definitions of remainder sets, selection fundjand partial meet contraction, as well as maxichoice and
full meet contraction all carry over directly ®contraction and we will not repeat them here. We refer tcdhaes
e-remainder sets (denoted bi/L.a), e-selection functions, partial meetcontraction, maxichoice-contraction and
full meete-contraction respectively. As in the full propositionabkeait is easy to verify that a-remainder sets are
also Horn theories, and that all partial meatontractions (and therefore the maxichaesontractions, as well as full
meete-contraction) produce Horn theories.

In two subsequent papers, Booth et al. [9, 10] extended Betlg’'s work in a number of interesting ways.
They show that while Delgrande’s partial meet constructiare all appropriate choices fercontraction in Horn
logic, they do not constitutell the appropriate forms afcontraction. For example, Iét = Cny({p — q,q — r}).

It can be verified that, for the-contraction ofp — r, maxichoice yields eitheH}. = Cny({p — q}) or HZ, =
Cny({g—r,pAr — q}), that full meet yieldH:m = Cny({p A r — q}), and that these are the only three partial meet
e-contractions. Now consider the Horn thedty = Cny({pA g — 1, pAT — @}). Itis clear thatH¢, € H' € H2..

But observe thatl’ is not a partial meet-contraction. Booth et al. argue thdt ought to be regarded as an appropriate
candidate fore-contraction and, more generally, thateryHorn theory between full meet and some maxichace
contraction ought to be seen as an appropriate candidatecfmmtraction.

Definition 22. For Horn theorie$d andH’, H’ € H | iff there is somél” e Hica s.t. (NHLlea) € H C H”. We
refer to the elements df |« as thenfra e-remainder setef H wrt a.

Definition 23. Let H be a Horn theory. An infr@selection function is a function such that for everyr € Ly,
7(H le@) = H wheneveH |ca = 0, andr(H |ea@) € H |c otherwise. We use an infeselection functiorr to define
an infrae-contraction a#d —; @ = 7(H |e ).

Booth et al. show that infra-contraction is captured precisely by the AGM postulategtieory contraction, except
thatRecoveryis replaced by th€ore retainment postulate we encountered earlier in the context of definergéd
contraction in Section 3.4.

Theorem 24([10]). Every infra e-contraction satisfigSlosure, Inclusion, SuccessExtensionality, and Core re-
tainment. Conversely, every e-contraction which satisfidssure, Inclusion, SuccessExtensionality, and Core
retainment is an infra e-contraction.

It is possible to define a version of kernel contraction fortdimgic, simply by closing under Horn consequence the
results obtained from kernel contraction for bases.

Definition 25. Given a Horn theorH and an incision function- for H, thekernel e-contraction for Hs defined as
H ~% @ = Cny(H —, @), where—, is the base kernel contraction farobtained fromr-.

Booth et al. prove that kernelcontraction corresponesxactlyto infrae-contraction. From these results it seems that
the contraction of Horn theories exhibits a kind of “hybrliEhaviour, somewhere between classical base contraction
and classical theory contraction. As evidence for thisaltdstly that in the classical case, partial meet contearct
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and kernel contraction coincide for theories, but that &kcontraction is more general than partial meet contractio
when dealing with the contraction of bases. Furthermorentdecontraction for theories does not satisfy tRe-
covery postulate, unlike classical contraction for theories, diatilar to classical base contraction. And finally, the
set of postulates provided by Booth et al. to characteria acontraction (and kerned-contraction) bears a close
resemblance to the postulates for characterising Hornmactign for bases in the classical case.

To summarise, these recent investigations into Horn cotidrahave highlighted the fact that a move away from
propositional logic as the underlying logic for belief clggrcan yield interesting and unexpected results. Integigti
enough, although the motivation for initiating researchHmn contraction was partially motivated by an interest in
Horn logic in its own right, another reason for doing so ig fh@positional Horn logic forms the backbone of a group
of description logicsthe class of logics to which we turn to next.

8.2 Belief change for description logics

Description Logics (or DLs for short) are a well-known faynilf logics used for knowledge representation [5]. They
have become the formalism of choice for representing foon&blogies [37]. DLs are decidable fragments of first-
order logic, mainly characterised by constructors thaivalcomplex concepts (unary predicates) and roles (binary
predicates) to be built from atomic ones. We provide a bréfodiption of two well-known DLs referred to a8£C
and&L, and show how they relate to belief change.

In the description logicALC [59], concept descriptions are built from concept nameagusiie constructors
disjunction C u D), conjunction C r1 D), negation {C), existential restriction{R.C) and value restrictionfR.C),
whereC, D stand for concepts arid for a role name. To define the semantics of concept desanptaoncepts are
interpreted as subsets of a domain of interest, and rolesnasytrelations over this domain. An interpretatibn
consists of a non-empty sat (the domain ofl) and a function' (theinterpretation functiorof 1) which maps every
concept name to a subsef\' of A', and every role namB to a subseR' of A' x A'. The interpretation function
is extended to arbitrary concept descriptions as followst @, D be concept descriptions aftia role name, and
assume tha€' andD' are already defined. ThemC)' = A' \C', (CuD)' = Cc'uD',(CnD) = C'nD',
(ARC)' = {x| Ty st. (x,y) e R andy e C'}, and fRC)' = {x| Vy,(xy) € R impliesy € C'}. The distinguished
concept name is always interpreted as' = A'. Similarly, the dinstinguished concept namés always interpreted
asL' = 0. A DL Tboxcontains statements of the fo@C D (inclusion§ whereC andD are (possibly complex)
concept descriptions. Thoxes are used to represent thintdagy part of ontologies in dierent application areas.
The semantics of Thox statements is as follows: an inteapogt! satisfies Cc D iff C' ¢ D'. | is amodelof a Thox
iff it satisfies every statement in it. A Thox statemeris alogical consequencef a TboxT, written asT k ¢, iff
every model ofT is a model ofs.

A concept name\ is concept-satisfiablart to a ThoxT iff there is a model, sal, of T in which A' # 0. This
turns out to be an important property for ontology constaret-if some concept names azencept-unsatisfiablert
a TboxT it is usually an indication of modelling errors made durihg tonstruction of . For example, Schlobach et
al. [58] show the following part of a Thox for the DICE meditatminology:

brainC CentralNervousSystem

brainC BodyPart
CentralNervousSystem NervousSystem
NervousSystert -BodyPart

According to this, a brain is a body part as well as a centnaloes system, while the latter is a type of nervous system,
which, in turn, is not a body part. Formally, the concbin is concept-unsatisfiable wrt the Tbox. Checking for
concept-satisfiability is closely related to checking fogital consequence. Indeed, for many DLs, includigC,
checking for concept-satisfiablity can be reduced to clmerfar logical consequence. DL reasoners such as RACER
[26] and FaCTH+ [62] are able to detect concept-unsatisfiability quiteceently.

The link with belief change comes in with attempts to deahwibncept-unsatisfiability in appropriate ways.
Ontology debugginfB9, 58] is concerned with determining the cause of concesatisfiability in a TboxT, while
ontology repair[57, 45] aims to modifyT in such a way that all concept names beome concept-satesfittlrns
out that the techniques used for ontology debugging arelsiaslated to the special case of kernel contraction for
belief bases known as safe contraction, which was mention8dction 3. Recall that the-kernels of a bas® are
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the minimal subsets d@ implying . Similarly, techniques for ontology debugging identifg tininimal subsets of a
Tbhox T with respect to which at least one concept name is concegatisfiable.

In ontology debugging the ThoX isn't modified automatically. Instead, the ontology enginevhen pre-
sented with the “kernels” of Thox statements, is expecteds® this information to modiffifr manually in order
achieve concept-satisfiability. In contrast, the aim obtady repair is to modifyl automatically to ensure concept-
satisfiability. This is achieved by removing exactly onengdat from each of the “kernels” of Tbox statements, an
approach that can be seen as safe contraction applied teesatisfiability. Ontology repair, in this sense, hasenor
in common with beliefbasecontraction than wititheory contraction, since it is the Thox statements occurring ex-
plicitly in the Thox that are used to obtain the TBox “kerrieénd not statements in the theory obtained from the the
Tbox.

A different application of belief contraction, this time one tlsahore closely related tineorycontraction, occurs
in ontologies represented in one of tB& family of DLs [4]. In &L itself, the basic member of this DL family,
concept descriptions are built up from concept names usstgpnjunction€ D) and existential restrictiordR.C).

As in ALC, Thox statements have the fo@C D, whereC andD are (possibly) complex concepts. The lack of
expressivity inS.L is made up for by thef@ciency of reasoning algorithms for it. In particular, thekafcomputing
the subsumption hierarchfpr anEL Tbox T (determining whethef = A C B for all concept name# andB) has
polynomial complexity (in the size of the Tbox). Moreovetyirns out that a member of tl&L family is suficiently
expressive to represent a number of biomedical ontologiekjding the widely used medical ontology SNOMED
[60].

As with ALC, the application of belief change &L is also related to the construction of ontologies. In thiseca
however, it does not address concept-unsatisfiabilityedaddsince& L does not have negation, concept-unsatisfiability
can only occur if the bottom concept is used explicitly. Instead, it relates to afdrent method for testing the
quality of a constructed ontology: asking a domain expeitspect and verify the computed subsumption hierarchy.
Correcting such errors involves the expert pointing out teatain subsumptions are missing from the subsumption
hierarchy, while others currently occurring in the substiorphierarchy ought not to be there. A concrete example of
this involves the medical ontology SNOMED [60] which erronsly classified the conceptiputation-of-Finger
as being subsumed by the concgpputation-of-Arm. Finding a solution to problems such as these is can be seen
as an instance dheory contractionin this case by the statemeniputation-of-FingerC Amputation-of-Arm.

The scenario also illustrates why we are concerned withraotibn of theories and not bases. In general, ontologies
are not constructed by writing down DL axioms, but rathengsintology editing tools such as SWO®# Protégé,

from which the axioms are generated automatically. Becafiskis, it is the theory obtained from a Thox that is
important, not the axioms from which the theory is generated

It is only recently that researchers have started to paytidteto theory contraction foEL [8]. Indeed, much
of the work relevant to this topic does not addressélefamily of DLs directly at all. In particular, the work on
propositional Horn contraction is of importance in this . Horn clauses correspond closely to subsumption
statements in DLs, since both Horn logic and & family lack full negation and disjunction. In this respabiere is
still much work to be done before a claim can be made thatfigtraction for6 L has been addressed properly.

Finally, in this section we have focused on recent work esldab beliefcontractionfor descriptions logics, but it
must be pointed out that there has also been some recent wbkdiefrevisionand related questions [44, 51, 52, 63].

9 Conclusion

In conclusion, we hope that this brief overview of belief sha has convinced the reader that research in this area has
come a long way over the past 30 years, with the fundamentéte dopic now firmly in place. The main challenge
ahead is to build on the established fundamentals and e#ttendork that has been done to new application areas. As
we have seen in Section 8, this is already taking place. Athdadh much remains to be done in this regard with, for
example, dferent underlying logics raising interesting and unexpgkqteestions, it seems clear that the existing body
of work provides an appropriate springboard for finding 8ohs to those new issues that are cropping up.

8httpy/code.google.cofp/swoop
%httpy/protege.stanford.edu
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