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Abstract

In this paper we present a brief overview oflogic-based belief change, a research area concerned with the question
of how a rational agent ought to change its mind in the face of new, possibly conflicting, information. Our intention
is to provide the reader with a basic introduction to the workdone in this area over the past 30 years. In doing so we
hope to sketch the main historical results, provide appropriate pointers to further references, and discuss some current
developments. We trust that this will spur on the interestedreader to learn more about the topic, and perhaps to join
us in the further development of this exciting field of research.

1 Introduction

Consider the situation in which an agent has just encountered a bird: let’s call it Tweety. Part of the agent’s beliefs
about the world is that birds fly. Being a logical agent, it therefore believes that Tweety flies. On closer inspection,
though, the agent learns that Tweety is an ostrich. Since theagent also believes that ostriches don’t fly, it is now faced
with a dilemma: Can Tweety fly, or can’t it?

The simple scenario above aptly illustrates the central topic of this paper—that a rational intelligent agent is
sometimes forced to adjust its current beliefs in some appropriate fashion when confronted with new information. The
investigation of the reasoning patterns involved in such a task is known as the study ofbelief change.

The approach to the problem of belief change that we discuss in this paper is logic-based. Both the beliefs of an
agent and new information presented to it will be represented in a logic language. For the most part, research in this
area has focused on an underlying logic that contains classical propositional logic, and with a monotonic consequence
relation associated with it (but see Section 8). However, aswe shall soon see, logic on its own is not enough to
obtain unique answers to such problems. The primary extra-logical principle we shall use to guide us is known as the
Principle of Minimal Change. The idea is simple and intuitive. Information is hard to come by and if an agent has
gone to the trouble of incorporating a piece of information into its set of beliefs, it has presumably done so for a good
reason. It should therefore give up any beliefs it has only ifit is forced to do so. That is, any changes to its current
stock of beliefs should be minimal.

Traditionally, approaches to belief change have followed one of two trajectories, with the differences centred
around the question of whether beliefs should be represent as belief bases(arbitrary sets of sentences) or logically
closedtheories. The AGM approach to belief change [1, 24] (named after its originators Alchourrón, Gärdenfors and
Makinson), perhaps the most influential voice within this field of research, is based on the assumption that beliefs need
to be represented as theories. The idea here is that we are interested in belief change on theknowledge leveland that
the particular syntactic formulation that we choose for representing the beliefs of an agent is largely irrelevant. On the
other hand, the case made for the use of belief bases, which originated with the work of Sven Ove Hansson [28], is
that the sentences chosen to represent the beliefs of an agent are somehow more basic than those that merely follow
logically from these basic sentences. Although these two approaches start off with different, seemingly conflicting
basic assumptions, we shall see that they actually have muchin common. In fact, one of the assumptions underlying
both approaches is the necessity of introducing extra-logical structure to the representation of beliefs in order to obtain
unique results to specific problems in belief change.
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Our intention in this paper is to provide the reader with a basic introduction to the work done in the area of belief
change over the past 30 years. In doing so we hope to sketch themain historical results, provide appropriate pointers to
further references, and discuss some current developments. Of course, it is impossible to present a truly comprehensive
account of a research area in a paper such as this and our perspective on matters will invariably be subjective, to some
extent. The reader is urged to keep this in mind when going through the paper.

On to more concrete matters, then. We commence with a discussion of the formal preliminaries needed to digest the
rest of the paper in Section 2. This is followed in Sections 3 and 4 by accounts of the two basic operators investigated
in belief change:belief contractionandbelief revision. In Section 5 we take a closer look at the semantic methods
for constructing belief change operators before we use thisapproach to consideriterated belief revisionin Section 6.
Section 7 discusses the links between belief change and the area of nonmonotonic reasoning, while Section 8 takes a
brief look at recent developments in belief change. Finally, we conclude in Section 9.

2 Preliminaries

First the logical framework. We start with a quite abstract formulation (L,Cn), where we just have a setL whose
elements are thesentences, together with a consequence operatorCn which takes sets of sentencesB ⊆ L to sets of
sentencesCn(B) which intuitively represents all the sentences which areentailedby B. Cn is assumed to be a compact
Tarskianconsequence operator (after Alfred Tarski), i.e., it satisfies the following four properties for allB, B1, B2 ⊆ L:

• B ⊆ Cn(B) (Reflexivity)
• B1 ⊆ B2 impliesCn(B1) ⊆ Cn(B2) (Monotony)
• Cn(Cn(B)) = Cn(B) (Idempotence)
• If φ ∈ Cn(B) thenφ ∈ Cn(B′) for some finiteB′ ⊆ B (Compactness)

We call any arbitrary setB ⊆ L a belief base, but if B = Cn(B), i.e., B is closedunderCn, then we callB a theory.
Following the tradition of the AGM approach, we will useK rather thanB to denote theories.α ∈ L is a tautology iff
α ∈ Cn(∅). FromCn we can define a notion ofconsistency. A setB of sentences isCn-consistent iff Cn(B) , L. We
will just say consistent if the consequence operator is clear from the context.

Definition 1. An abstract deduction systemis a pair (L,Cn) as above.

This logical setup, although very general, is surprisinglyalready rich enough to explore many interesting issues
in belief change. However, traditionally researchers (including AGM) have worked within more specific background
logical systems. In particular the machinery of propositional logic is usually taken as minimum. We may takeL = LP,
consisting of all sentences built up from some set of propositional variables using the connectives¬,∧,∨,→,↔. The
classical propositional consequence operator is denoted by Cn0. We call asupraclassical deduction systema pair
(LP,Cn) where in addition to the four properties mentioned above,Cn is assumed to satisfy

• Cn0(B) ⊆ Cn(B) (Supraclassicality)
• φ ∈ Cn(B∪ {θ}) iff (θ → φ) ∈ Cn(B) (Deduction)

For supraclassical deduction systems we haveB ∪ {α} is consistent iff ¬α < Cn(B). In particularα is consistent iff
¬α < Cn(∅).

2.1 The problem formalised

We are now ready to state formally the problem of belief revision:

Assume some fixed abstract deduction system (L,Cn) as background. Then given an initial belief base
B ⊆ L and some new information represented as a sentenceα ∈ L, find a new belief baseB ∗ α which
includesα and is consistent.

The requirement thatB ∗ α be consistent is crucial here. Without it we might as well just addα set-theoretically toB
and stop there. But ifB∪ {α} is inconsistent then entailment is trivialised, since by definition of inconsistency thenall
sentences are entailed byB∪ {α}, rendering it useless. So how should we approach this problem?
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One influential idea, which comes from Isaac Levi [41] is to decompose the operation into two main steps. First,
B is altered if necessary so as to “make room” for, i.e., becomeconsistent with, the incoming sentenceα. This is
achieved by makingB deductively weaker. This is known ascontraction. Here we should adhere to the principle of
minimal change, according to which this weakening should bemade as “small” as possible. (See [54] for a discussion
of this principle.) In the second, trivial step, the new formula is then simply joined on to the result (this is known as
expansion). Clearly the difficult step is the first one. So in order to answer the problem of revision we first need to
address the problem of contraction. We turn to this in the next section.

3 Belief contraction

Note that for the purposes of revision we just need to makeB consistent withα. In the case where the background
deduction system is supraclassical this is the same as ensuring ¬α < Cn(B). But in general (for instance if negation
is not available in the language) these two things will be different. So in general there are two kinds of contraction
operator: the first isinconsistency-basedand the second isentailment-based.1 We will focus on entailment-based
contraction here. We denote the result of contractingB so that it no longer entails a given sentenceα by B−α. We will
first deal with the case whereB is an arbitrary belief base. Later we will look at the specialcase where it is a theory.

3.1 Partial meet base contraction

One of the best-known approaches to contraction ispartial meet contraction[1, 31]. Here the idea is to calculate
contraction in three steps:

1. Focus for the first step on those subsets ofB which do not entailα and which aremaximalwith this property.
We denote this set byB⊥α.

2. Then, a certain number of the elements of this set are somehow selected as the “best” or “most preferred” by
means of a selection functionγ: γ(B⊥α) ⊆ B⊥α.

3. Finally, the intersection of these best elements is taken:
⋂

γ(B⊥α)

Let’s formalise all this, starting with the setB⊥α in step 1.

Definition 2. Let B ⊆ L andα ∈ L. ThenB⊥ α is the set of subsetsX ⊆ L such thatX ∈ B⊥ α iff (i). X ⊆ B, (ii).
α < Cn(X), (iii). For all X′ ⊆ B, if X ⊂ X′ thenα ∈ Cn(X′). We callB⊥α the set ofα-remainders of B

If α is a tautology thenB⊥α = ∅, but this is the only case for whichB⊥α = ∅. This is a result of the following
fact, the proof of which requiresMonotony andCompactnessof Cnas well as Zorn’s Lemma.

Fact 3 ([2]). If α < Cn(Y) and Y⊆ B then there exists X∈ B⊥α such that Y⊆ X.

In other words, every non-α-implying subset ofB may be extended to a maximal non-α-implying subset ofB.
Next comes the definition of selection function.

Definition 4. Let B ⊆ L. A selection function for Bis a functionγ such that for allα ∈ L, (i) if B⊥ α , ∅ then
∅ , γ(B⊥α) ⊆ B⊥α, and(ii) if B⊥α = ∅ thenγ(B⊥α) = {B}.

Finally we can use a selection function forB to define a contraction operator−γ for B:

B−γ α =
⋂

γ(B⊥α).

Definition 5. If − can be defined via some selection functionγ for B as above then− is apartial meet base contraction
operator (forB).

Two special cases of partial meet contraction deserve mention. If the selection function picks a single element of
B⊥α, it is called amaxichoice contraction. If it picks the whole ofB⊥α, it is called afull meet contraction. Observe
that full meet contraction is unique, whereas there are manydifferent maxichoice contractions: one for each element
of B⊥α.

Partial meet base contraction may be characterised as follows.

1See also Section 8.
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Theorem 6([30]). − is a partial meet base contraction operator for B iff it satisfies the following properties:

• If α < Cn(∅) thenα < Cn(B− α) (Success)

• B− α ⊆ B (Inclusion)

• If β ∈ B \ B− α then there exists B′ such that B− α ⊆ B′ ⊆ B,α < Cn(B′) andα ∈ Cn(B′ ∪ {β}) (Relevance)

• If for all B′ ⊆ B we haveα ∈ Cn(B′) iff β ∈ Cn(B′) then B− α = B− β (Uniformity)

The above properties may be explained as follows.Successsays the sentence to be removedis actually removed,
i.e., is no longer a consequence of the base2 andInclusion states that no new beliefs may be added in the course of
removingα.3 Relevanceseeks to avoid unnecessary loss of information. It says thata sentenceβ should be given
up only if it contributes to the fact thatB, and notB − α, entailsα. Uniformity states that if two sentences are
indistinguishable from the viewpoint ofB, in that every subset ofB which implies one also implies the other, then the
results of contracting by them should be the same. As was noted in [34], the only properties ofCn which are actually
used in the proof of Theorem 6 areMonotony andCompactness.

The following two reasonable properties can be shown to follow from those in Theorem 6 (see [28]), and thus are
satisfied by any partial meet base contraction operator.

• If α < Cn(B) thenB− α = B (Vacuity)

• If Cn(α) = Cn(β) thenB− α = B− β (Preservation)

Vacuity says that ifα is not entailed byB to begin with, then nothing needs to be changed. It can be shown to be
a consequence ofRelevanceand Inclusion. Preservation says that if two sentences are equivalent under logical
consequence then contracting by them should give the same results. It can be shown to follow fromUniformity , while
in the special case whenB is a theory, it is actually equivalent toUniformity in the presence ofVacuity.

3.2 Partial meet theory contraction

The preceding construction works equally well whenB is taken to be a theoryK. But in this case, since the input to
contraction is a theory, we should expect the output to be a theory too. This is ensured because in this case the elements
of K ⊥ α are themselves theories, and the intersection of any familyof theories is again a theory. When applied to a
theoryK we will refer to the above construction aspartial meet theory contraction.

In this case we obtain a different representation theorem, which was one of the main results of AGM.4

Theorem 7 ( [1]). Assume we work with a supraclassical deduction system(LP,Cn), and let K be a theory. Then−
is a partial meet theory contraction operator for K iff it satisfiesSuccess, Inclusion, Vacuity, Preservation and the
following properties:

• K − α = Cn(K − α) (Closure)
• K ⊆ Cn((K − α) ∪ {α}) (Recovery)

Note that this result requires the assumption of a supraclassical deduction system as background. It may not hold
for general abstract deduction systems (see [20] for discussion on this).

The postulates listed in the above theorem are collectivelyknown as thebasic AGM contraction postulates. Clo-
sure says that the result of theory contraction is another theory, while Recoverysays that if one removesα and then
simply adds it again (and then closes under logical consequence) then one should get back all the initial beliefsK.
Recoveryhas been by far the most controversial of the AGM contractionpostulates, with many authors calling it into
question (see [28, pp. 72-74]). It should be noted that this postulate is specific to thetheoryversion of partial meet
contraction, i.e., it does not hold in general for partial meet basecontraction, whereB is allowed to be an arbitrary
base. For supraclassical deduction systems, in the presence of Closure, Inclusion andVacuity it is equivalent to
Relevance[21].

2But see [19] for a discussion on why this is not always desirable.
3See [6] for an argument against this postulate.
4Note that, historically, partial meet theory contraction actually pre-dates the more general version for arbitrary bases given above.
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3.3 The supplementary postulates

In partial meet contraction, when selecting the remainder sets viaγ, what we have is an instance of achoice situation.
We have a number of alternatives up for selection, namelyB⊥α, and some of them are singled out as being in some
sense more preferred. So we make some crossover into the realm of rational choice. How can this choice be made?
We can assume it is made on the basis of a binary preference relation⊑ over the set of all possible remainder sets for
B, i.e., the set{X | X ∈ B⊥α for someα ∈ L}. For any two possible remainder setsX,Y, we writeX ⊑ Y to mean that
Y is at least as preferred asX, and use⊏ to denote the strict part of⊑, i.e.,X ⊏ Y iff bothX ⊑ Y andY @ X. Then⊑
can be used as the basis for a selection functionγ⊑ by setting

γ⊑(B⊥α) = {X ∈ B⊥α | Y ⊑ X for all Y ∈ B⊥α}.

That is,γ⊑(B⊥ α) consists of those elements ofB⊥ α which are at least as preferred asall other elements ofB⊥ α.
If a selection functionγ for B is generated from some relation⊑ in this way then we sayγ is a relational selection
function, and a partial meet contraction operator−γ which can be generated from some relational selection function γ
will be called arelational partial meet contractionoperator.

By putting some mild constraints on the relation⊑, we can constrain the behaviour of the resulting relationalpartial
meet contraction operator in interesting ways. Consider the following two properties:

• X ⊑ Y andY ⊑ Z impliesX ⊑ Z (Transitivity)
• If X ⊂ Y thenX ⊏ Y (Maximising)

The first property is a standard requirement for a relation ofpreference. The second is motivated by minimal change
considerations: when contractingB it is always preferable to retain as much ofB as possible, so a given subsetY
of B should always be strictly more preferred to any of its strictsubsets. Ifγ is generated from some⊑ satisfying
Transitivity then we say−γ is a transitively relationalpartial meet contraction operator, while if it generated from
some⊑ satisfying, in addition,Maximising then−γ is atransitively, maximisingly relationalpartial meet contraction.
Note that, ifB is a theory, then these two collapse into the same thing, in the sense that−γ is transitively relational iff
it is transitively, maximisingly relational [27].

We obtain the following results, both of which assume we workin a supraclassical deduction system:

Theorem 8 ([31]). Assume a supraclassical deduction system as background. Let B be a belief base and suppose−
is a transitively, maximisingly relational partial meet base contraction operator for B. Then− satisfies the following
property:

• (B− α) ∩ (B− β) ⊆ B− (α ∧ β) (Conjunctive Overlap)

For the case of relational partial meettheorycontraction we can say more:

Theorem 9([1]). Assume a supraclassical deduction system as background. Let K be a theory and− an operator for
K. Then− is a transitively relational partial meet theory contraction operator for K iff it satisfies all the basic AGM
contraction postulates (see Theorem 7) plusConjunctive Overlap and the following property:

• If α < K − (α ∧ β) then K− (α ∧ β) ⊆ K − α (Conjunctive Inclusion)

The postulatesConjunctive Overlap andConjunctive Inclusion are known as theAGM supplementary contrac-
tion postulates. They go a step beyond the basic postulates, in that they relate the results of contracting by conjunctions
α∧ β with the result of contracting by the individual conjuncts.We refer the interested reader to [1, 28] for discussion
on these postulates.

3.4 Kernel contraction

The partial meet approach to contraction focusses onmaximalsubsets ofB which do not imply the sentenceα to be
removed. Another approach is instead to single out theminimal subsets whichdo entailα, and then to make sure
at least one sentence is removed from each. This is the idea behind Hansson’s operation ofkernel contraction[32],
which is a generalisation of thesafe contractionof Alchourrón and Makinson [3].

Definition 10. Let B be a belief base andα ∈ L. ThenB y α is the set of setsX such that(i). X ⊆ B, (ii). α ∈ Cn(X),
(iii). If X′ ⊂ X thenα < Cn(X′). We call the elements ofBy α theα-kernels of B.
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To removeα, it is necessary and sufficient to remove at least one sentence from everyα-kernel. To this end, we
assume the existence of an function which makes an “incision” into every such set, returning the sentences which must
be discarded.

Definition 11. σ is anincision function for Bif (i). σ(By α) ⊆
⋃

By α, and(ii). X ∈ By α impliesσ (By α) ∩ X , ∅.

Every incision functionσ then yields a contraction operator by settingB−σ α = B \ σ (By α).

Definition 12. Let − be an operator forB. If − equals−σ for some incision functionσ for B then it is called akernel
base contraction operator(for B).

Kernel base contraction may be characterised in the following way:

Theorem 13([32]). − is a kernel base contraction operator for B iff it satisfiesSuccess, Inclusion, Uniformity and
the following property:

• If β ∈ B \ B− α then there exists B′ such that B′ ⊆ B,α < Cn(B′) andα ∈ Cn(B′ ∪ {β}) (Core retainment)

As with Theorem 6, it was noted in [34] that the only properties required to prove this result areMonotony and
Compactness. Note thatCore retainment is weaker thanRelevanceand so we see that every partial meet base
contraction operator is a kernel base contraction operator. The converse, however, does not hold, i.e., there exist kernel
base contraction operators which are not partial meet base contraction operators (see [28, p91]) for a counterexample,
and [18] for more on the relation between partial meet and kernel base contraction).

The above discussion was about kernelbasecontraction. It is also possible to employ the constructionin the case
whenB is a theory except, sinceK −σ α is not guaranteed to be a theory (even whenK is), it is necessary to add a
post-processing step of closing underCn. That is, a kernel theory contraction operator forK is any operator of the form
K ≈σ α = Cn(K −σ α), whereσ is an incision function forK and−σ is defined fromσ as for kernel base contraction.
However, in this case (at least for supraclassical deduction systems), the distinction between kernel theory contraction
and partial meet theory contraction disappears, in that every kernel theory contraction operator is a partial meet theory
contraction operator, and vice versa [32].

4 Belief Revision

As stated earlier, once we have a contraction operation for abelief baseB, we can use it to define a revision operator
via the Levi Identity. The Levi Identity comes in two flavours, according to whether we want the result of revision to be
a theory or not. In the former case we takeB∗α = (B−¬α)∪{α}, in the latter case we takeK ∗α = Cn((K−¬α)∪{α}).
We call the former the non-closing Levi Identity, and the latter the closing Levi Identity. Whenever we talk of the Levi
Identity in connection with an arbitrary belief baseB we shall implicitly assume it is the non-closing version we are
using, while if we use it in connection with a theoryK, we shall assume the closing version.5 Throughout this section
we shall assume, for simplicity, that we work in a supraclassical deduction system.

First we deal with arbitrary belief bases, where the result is not expected to be logically closed.

Definition 14. Let B be a belief base. If∗ can be defined from some partial meet base contraction operator for B using
the (non-closing) Levi Identity then it is apartial meet base revisionoperator forB.

Partial meet base revision may be characterised as follows:

Theorem 15([31]). ∗ is an operation of partial meet base revision for B iff it satisfies the following properties:

• α ∈ B ∗ α (Success)
• If α is consistent then B∗ α is consistent (Consistency)

• B ∗ α ⊆ B∪ {α} (Inclusion)

• If β ∈ B \ B∗ α then there exists B′ such that B∗ α ⊆ B′ ⊆ B∪ {α}, B′ is consistent and B′ ∪ {α} is inconsistent.
(Relevance)

5The Levi Identity breaks revision byα into two steps: contraction (by¬α) and expansion (byα), in that order. Another possibiity is to reverse
this order and do the expansion (byα) first, followed by the contraction (by¬α). This possibility is explored in [31].
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• If, for all B′ ⊆ B, we have B′ ∪ {α} is consistent iff B′ ∪ {β} is consistent, then B∩ (B ∗ α) = B ∩ (B ∗ β)
(Uniformity)

SuccessandConsistencyare taken as fundamental requirements here.6 Inclusion places an upper-bound on the
result of revision. It says the result should not contain anysentence not included inB, apart from the new information
α. RelevanceandUniformity are similar to their namesakes in the list of base contraction postulates.

Let us move on to theory revision.

Definition 16. Let K be a theory. If∗ can be defined from some partial meet theory contraction operator forK via the
(closing) Levi Identity, then∗ is apartial meet theory revisionoperator forK.

The following result is the AGM characterisation of partialmeet theory revision.

Theorem 17([1]). ∗ is a partial meet theory revision operator for a theory K iff it satisfiesSuccess, Consistency and
the following basic AGM postulates for theory revision:

• K ∗ α = Cn(K ∗ α) (Closure)
• K ∗ α ⊆ Cn(K ∪ {α}) (Inclusion)
• If K ∪ {α} is consistent then K∗ α = Cn(K ∪ {α}) (Vacuity)
• If Cn(α) = Cn(β) then K∗ α = K ∗ β (Preservation)

Furthermore,∗ is a transitively relational partial meet theory revision operator (i.e, is defined via the Levi Identity
from some transitively relational partial meet contraction operator) iff it satisfies, in addition, the following two
supplementary AGM revision postulates:

• K ∗ (α ∧ β) ⊆ Cn((K ∗ α) ∪ {β}) (Subexpansion)
• If (K ∗ α) ∪ {β} is consistent then Cn((K ∗ α) ∪ {β}) ⊆ K ∗ (α ∧ β) (Superexpansion)

Observe that, for the remainder of this paper we will takeAGM revisionto mean transitively relational partial meet
revision.

It is also possible to use the Levi Identity to define revisionfrom kernel contraction, leading tokernel revision
operators. Axiomatic characterisations are given in [34],and we refer the reader to that paper for details.

Finally in this section, while the Levi Identity deals with how to define revision in terms of contraction, it is also
possible to go the other way and define contraction in terms ofrevision by using theHarper Identity[35]:

B− α = B∩ (B ∗ ¬α).

The Levi and Harper identities can be thought of as inverses to each other. They ensure a very tight connection between
contraction and revision.

5 On the semantic side

The previous sections have been developed against the background of some given, fixed abstract (sometimes supra-
classical) deduction system (L,Cn), which represents the background logic we work in. These systems can be said to
besyntactical, in the sense that they simply declare (viaCn) which sentences are entailed by which sentences. There
is, of course, usually another side to logic which is thesemanticalside. It is the semantics of a logic which tells us
what are the objects, orpossible worlds, or modelswhich the sentences inL are actuallytalking about. In this section
we investigate belief change from a more semantical viewpoint. The ideas behind this approach originate in a famous
paper by Adam Grove [25]. For this and the next section we makea number of simplifying assumptions:(i) we assume
that we are working in a supraclassical deduction system (LP,Cn), (ii) we furthermore assumeLP is generated by only
finitely many propositional atoms, and(iii) we will focus only ontheoryrevision and contraction.

What are the models in a supraclassical deduction system? One way to define them is as the set ofmaximally
consistent theories of LP.

W
def
=
{

M ⊆ LP | M is aCn-consistent theory and for noCn-consistent theoryM′ ⊆ L do we haveM ⊂ M′
}

.

6AlthoughSuccessis not beyond controversy, since one can certainly imagine situations in which new information is not accepted. See [33,29]
for studies of revision operators which don’t satisfy it.
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GivenM ∈ W andB ⊆ LP, we sayM is a model of Biff B ⊆ M. Then the set of models ofB is denoted by [B].
The setW defines a consequence relationCnW by setting, for anyB ⊆ LP, CnW(B) =

⋂

[B], i.e., a sentence is
entailed byB iff it is contained in all models ofB. ThenW provides a semantics which is sound and complete with
respect to (LP,Cn), in the sense that, for anyB ⊆ LP, the identityCnW(B) = Cn(B) holds.

Now suppose we have a theoryK representing our initial beliefs. This corresponds to the belief that the actual
“true” world is one of the worlds in [K]. It turns out that performing transitively relational partial meet theory contrac-
tion onK is equivalent to choosing, on the basis of sometotal preorderover the setW, some countermodels of (i,e,
models of the negation of) the sentence to be contracted, andadding them to [K]. To be more precise, let≤ be a total
preorder7, or tpo for short, overW. ForM1,M2 ∈ W, M1 ≤ M2 may be informally read as “M1 is at least as plausible
(as a candidate to be the real world) asM2”. Given any subsetT ⊆ W, we denote by min≤(T) the minimal elements
of T under≤, i.e., min≤(T) = {t ∈ T | t ≤ t′ for all t′ ∈ T}. We assume≤ is anchored on[K], i.e., [K] = min≤(W).
Then we may use≤ to define a contraction operator forK as follows:

K −≤ α =















K if α ∈ Cn(∅)

K ∩
⋂

min≤ ([¬α]) otherwise.

In other words, the models of the new theory are obtained by taking the minimal models of¬α and adding them to the
models ofK.

Theorem 18([25]). Let K be a theory. Then− is a transitively relational partial meet theory contraction operator for
K iff − equals−≤ for some tpo overW which is anchored on[K].

This is not the only way we could use a plausibility order to define a contraction operator. Rott and Pagnucco
introduced and axiomatically characterised the operationof severe withdrawal[56].

K − α =















K if α ∈ Cn(∅)
⋂

{M ∈ W | M ≤ M′ for someM′ ∈ min≤([¬α])} otherwise.

Here, the models of the new belief set are obtained by takingall models which are at least as plausible as the≤-
minimal¬α-models. This operation was independently proposed, usinga different construction, by Isaac Levi under
the namemild contraction[42]. Unlike partial meet theory contraction, severe withdrawal does not satisfyRecovery.
Yet another possibility was explored by Meyer et al. [43].Systematic withdrawalis just like severe withdrawal except
we add to [K] not only the most plausible¬α-models, but all models which arestrictly more plausible than them.

K − α =















K if α ∈ Cn(∅)

K ∩
⋂

{M ∈ W | M < M′ for someM′ ∈ min≤(¬α)} ∩
⋂

min≤([¬α]) otherwise.

What about defining revision from a plausibility order≤? We may just apply the Levi Identity to each of the three
families of contraction operator above. It turns out we get the same revision operator in each case, viz.

K ∗≤ α =















L if ¬α ∈ Cn(∅)
⋂

min≤ ([α]) otherwise

In other words the models of the new theory which results fromrevising byα are exactly≤-minimalα-models.

Theorem 19([25]). Let K be a theory. Then∗ is a transitively relational partial meet theory revision operator for K
iff ∗ equals∗≤ for some tpo overW which is anchored on[K].

In the theory case, we have that the AGM postulates are equivalent to total preorders over the set of models. There
is a third way of characterising AGM theory contraction, namely as an ordering of entrenchment among the sentences
of the language [47, 48]. The best-known version of such entrenchment orderings is theepistemic entrenchment
orderingsput forward by Gärdenfors and Makinson [24, 22]. We do not these in details here, but rather refer the
interested reader to the references provided.

7A binary relation≤ over a setS is a total preorderiff it is (i) reflexive, i.e.,s ≤ s for all s ∈ S, (ii) transitive, and(iii) connected, i.e., either
s≤ t or t ≤ s for all s, t ∈ S.
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6 Iterated theory revision as revising tpos

Everything in the preceding sections has been about “one-shot” belief change. There is an initial theory, there is some
new input and then there is a new theory. However, in realistic settings, a rational agent does not simply “shut down”
after incorporating this input, but must be ready to receivethenext input, followed by further inputs after that. That
is to say, belief change is an iterative process, and any theory of belief change worthy of the name should be able to
account for this. The question is, then, does the theory sketched in the previous sections adequately handle iterated
changes? The answer, as researchers began to realise in the mid 1990s, is “no”.

What does the theory described until now have to say about iterated belief change? Notice that the extra structure
required to carry out revision, be it incision functions, selection functions, or total preorders over models is always
definedrelative to the theory which is being changed. Thus, for example, when using the tpo construction, there is a
fixed total preorder≤K associated to each different theoryK. So, to revise a theoryK by a sentenceφ, we can use the
total preorder≤K associated toK to compute the resultK ∗ φ. If we then want to further revise this new theory byψ,
then we use the tpo≤K∗φ associated to it to compute(K ∗ φ) ∗ ψ. There are three, interrelated problems with this:

1. There need be hardly any relation between the successive tpos≤K and≤K∗φ, where intuitively we might expect
some.

2. Some intuitively plausible properties of iterated revision may be violated (see below).

3. This method totally disregards the role that “revision history” may play in determining results of belief change.

What researchers realised in the mid 1990s is that, to address these shortcomings, the theory of belief change should
be widened so that it deals not only with change on the level oftheories, but that it should address change in the very
structure used to change those theories. A contraction or revision operator should tell us not only what the new theory
should be, but should also provide us with a new selection function/incision function/tpo over models which is then the
target for the next input. In fact most the best-known approaches to iterated change deal with tpos rather than the other
ways of modelling the extra-structure. Furthermore the focus in this area tends to be more on revision than contraction
(but see [15, 13, 14, 50, 36]) so in the following we focus on iterated theory revision as a problem of revising tpos.

6.1 Revising total preorders

So givenK and a total preorder≤ associated toK, the result of revision should be a new theoryK ∗ φ together with
a new associated tpo≤K∗φ. However we can simplify a bit, since the tpo associated to any theory contains enough
information to recapture the theory anyway (since [K] = min≤(W)). So, our new revision problem may be formulated
as follows:

Given an initial tpo≤ overW, and revision inputα, determine a new tpo≤∗α overW.

The theory should extend the foregoing theory of single-step revision , which means the new belief setK(≤∗α) should
be derived from the initial tpo andα using the partial meet revision recipe from Theorem 19. Thismeans that the new
lowest level min≤∗α (W) in the new tpo is determined already - it is equal to min≤ ([α]). But what about the rest of the
ordering? The most obvious thing to do, if we want to be motivated by the principle of minimal change, is to simply
leave the rest of the ordering untouched, and sure enough, this was one of the first proposals for tpo revision. Boutilier
called itNatural Revision[11, 12], though the idea dates back to [61]. Formally it is defined as follows:

M1 ≤
∗B
α M2 iff















either M1 ∈ min≤ ([α])

or M1 < min≤ ([α]) andM1 ≤ M2.

The problem with natural revision is that it makestoo fewchanges. This was recognised by Darwiche and Pearl, who
proposed four postulates for regulating tpo revision [16]:

(CR1) If M1,M2 ∈ [α] thenM1 ≤
∗
α M2 iff M1 ≤ M2

(CR2) If M1,M2 ∈ [¬α] thenM1 ≤
∗
α M2 iff M1 ≤ M2

(CR3) If M1 ∈ [α] andM2 ∈ [¬α] andM1 ≤ M2 thenM1 ≤
∗
α M2

(CR4) If M1 ∈ [α] andM2 ∈ [¬α] andM1 < M2 thenM1 <
∗
α M2
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(CR1) and(CR2) say that, when revising≤ byα, the relative ordering of models within [α], respectively within [¬α],
should remain unchanged.(CR3) and(CR4) say that if a givenα-model was judged to be at least as (respectively
strictly more) plausible as a given¬α-model before revising byα, then that relation should be preserved after the
revision. Essentially revising byα should not cause any degradation in plausibility of anyα-model with respect to the
¬α-models.

As noted by Darwiche and Pearl themselves, the above postulates do not rule out natural revision as a sensible
approach to tpo revision, because∗B satisfies all these postulates. However∗B does not satisfy the following strength-
ening of(CR3) and(CR4), which was suggested independently in [7, 38]:

(CR5) If M1 ∈ [α] andM2 ∈ [¬α] andM1 ≤ M2 thenM1 <
∗
α M2

(CR5) forces there to be astrict increase in plausibility of theα-models in relation to the¬α-models which were not
deemed more plausible to begin with.

The above postulates can be repackaged as postulates constraining the theory following a double revision:

(C1) If α ∈ Cn(β) thenK
(

(

≤∗α
)∗
β

)

= K
(

≤∗
β

)

(C2) If ¬α ∈ Cn(β) thenK
(

(

≤∗α
)∗
β

)

= K
(

≤∗
β

)

(C3) If α ∈ K
(

≤∗
β

)

thenα ∈ K
(

(

≤∗α
)∗
β

)

(C4) If ¬α < K
(

≤∗
β

)

then¬α < K
(

(

≤∗α
)∗
β

)

(C5) If ¬α < K
(

≤∗
β

)

thenα ∈ K
(

(

≤∗α
)∗
β

)

(C1) says if two inputs arrive, the second entailing the first, then the first can be ignored when calculating the resulting
theory.(C2) says if two contradictory inputs arrive, then the effect of the first are cancelled out.(C3) and(C4) say that
if α would be believed, resp. not rejected, after receivingβ alone, then this should not change ifβ were to be preceded
by an inputα. Finally (C5) postulates a condition under which belief in an inputα is guaranteed to survive the arrival
of a subsequent inputβ.

Theorem 20([7, 16, 38]). Let ∗ be a tpo revision operator such that always K(≤∗α) =
⋂

min≤([α]). Then, for each
i = 1, 2, 3, 4, 5, ∗ satisfies(CRi) iff it satisfies(Ci).

A few concrete tpo revision operators have been proposed which satisfy all of the above postulates. For example
in lexicographic revision[49, 61] the new tpo following inputα is determined by placingall α-models strictly below
all ¬α-models while leaving the relative ordering within the sets[α] and [¬α] unchanged. This is a most radical form
of tpo revision, where the new informationα is given total priority over the initial ordering≤. At the opposite end
of the spectrum isrestrained revision[7], in which the strict part of the initial ordering is preserved (apart from the
minimalα-models, which become strictly more plausible than all the other models), withα-models being promoted
only ahead of the¬α-models which were on the same plausibility “level” (see also [55]).

7 Belief revision and nonmonotonic reasoning

In this section we discuss the connections between belief revision and the work done in the nonmonotonic reasoning
community. A logic is said to benonmonotonicif its associated entailment relation|∼ need not satisfy the following
monotonicity property: ifA|∼β then A ∪ {α} |∼β. With |∼ seen as a relation of plausible consequence, there are
many examples to show that monotonicity is an undesirable property. Perhaps the one most deeply entrenched in
the nonmonotonic reasoning literature is the Tweety example (the example we used in the introduction). Given that
Tweety is a bird, it seems plausible to infer that Tweety can fly. But given the additional evidence that Tweety is an
ostrich, we should abandon our conclusion about Tweety’s flying capabilities.

While there are many approaches to nonmonotonic reasoning (see e.g., [53, 46]), we consider here the influential
framework proposed by Kraus, Lehmann, and Magidor [40] and show that it has a strong connection with AGM belief
revision. Formally, Kraus et al. take|∼ to be a binary relation on sentences of a propositional logicwhereα |∼β is to
be read as “β follows plausibly fromα”. For example, if we represent the information that Tweety is a bird by the
atomb, and that Tweety can fly by the atomf , the statementb|∼ f is to be read as “from the fact that Tweety is a bird
it follows plausibly that Tweety can fly”. Kraus et al. define|∼ as arational consequence relationiff it satisfies the
properties Ref, LLE, RW, And, Or, CM, and RM given below.
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(Ref) α |∼α (Reflexivity)
(LLE) If Cn(α) = Cn(β) andα |∼γ thenβ |∼γ (Left Logical Equivalence)
(RW) If γ ∈ Cn(β) andα |∼β thenα |∼γ (Right Weakening)
(And) If α |∼β andα |∼γ thenα |∼β ∧ γ

(Or) If α |∼γ andβ |∼γ thenα ∨ β |∼γ

(CM) If α |∼β andα |∼γ thenα ∧ β |∼γ (Cautious Monotonicity)
(RM) If α |∼γ then eitherα ∧ β |∼γ or α |∼¬β (Rational Monotonicity)

We do not discuss these properties in detail here. Instead, the interested reader is referred to the paper of Kraus et al.
[40]. To make the connection with AGM belief revision, we need to go one step further. Gärdenfors and Makinson
[23] define|∼ as anexpectation based consequence relationiff it is a rational consequence relation which also satisfies
the property CP given below.

(CP) If α |∼⊥ thenα is Cn-inconsistent (Consistency Preservation)

(where⊥ is any truth-functional contradiction, e.g.,p ∧ ¬p). The underlying intuition provided by Gärdenfors and
Makinson is that the reasoning of an agent is guided by itsexpectations. Every expectation based consequence relation
|∼ is based on a set of expectationsE, playing a role that is analogous to that of a belief setK in theory change.
Intuitively, E is the “current” set of expectations of the agent, and the plausible consequences of a sentenceα are
those sentencesβ for whichα |∼β holds. The set of expectationsE is not explicitly mentioned in the definition of an
expectation based consequence relation|∼, but a suitableE can be recovered from|∼ as follows:E = {α | ⊤|∼α}. That
is, E is taken as the set of plausible consequences of a tautology.

This places us in a position to define a method for translatingbetween belief revision and expectation based
consequence relations. Given a consequence relation|∼ , we take the set of expectationsE associated with|∼ as the
theoryK to be revised, and we defineK ∗ α as{β | α |∼β}. Conversely, given a theoryK and a revision operator∗, we
define a nonmonotonic consequence relation|∼ as follows:α |∼β iff β ∈ K ∗ α. The main result, linking belief revision
to nonmonotonic reasoning is the following theorem by Gärdenfors and Makinson [23] proving that these definitions
allow us to show that AGM revision and expectation based nonmonotonic consequence coincide:

Theorem 21. Let |∼ be an expectation based consequence relation and let E= {β | ⊤|∼β}. Then E= Cn(E) (i.e.
E is a theory). Furthermore, the revision operator∗ for E, defined in terms of|∼ as follows: E∗ α = {β | α |∼β}, is
an AGM revision operator. Conversely, consider a theory K, and let∗ be an AGM revision operator for K. Then the
consequence relation|∼ defined as follows:α |∼β iff β ∈ K ∗ α, is an expectation based consequence relation.

8 Current developments: belief change for other logics

From the work discussed so far it is clear that belief change has come a long way in the past 30 years. However, a look
back at the work done over this period reveals an interestingtendency. Although the original aims were phrased in
terms of a broad class of logic—all those with Tarskian consequence relation and satisfyingCompactness—most of
the work done in the area is actually based on the assumption of an underlyingpropositional logic, whether finitely or
infinitely generated. In this section we consider a departure from this trend, and discuss recent developments in belief
change expressed in two logics other than full propositional logic: propositional Horn logicanddescription logics.

8.1 Propositional Horn contraction

One of the main reasons for considering belief change for Horn logic is that it has found extensive use in artificial
intelligence and database theory, in areas where belief change is an issue to consider, such as logic programming, truth
maintenance systems, and deductive databases. Delgrande [17] was the first to point this out and to investigate the
contraction of theories for propositional Horn logic.

A Horn clauseis a sentence of the formp1∧ p2∧ . . .∧ pn → pn+1 wheren ≥ 0, and where thepi sare propositional
atoms or one of⊥ or ⊤. A Horn sentenceis a conjunction of Horn clauses. AHorn setis a set of Horn sentences.
Given a propositional languageLP, the Horn languageLH generated fromLP is simply the Horn sentences occurring
in LP. The Horn logic obtained fromLH has the same semantics as the propositional logic obtained from LP, but just
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restricted to Horn sentences. AHorn theoryis a Horn set closed under logical consequence, but containing only Horn
sentences. We denote Horn consequence byCnH(.).

Delgrande’s main contributions were threefold. Firstly, he showed that the move to Horn logic leads to two
different types of contraction which coincide in the full propositional case. Given a Horn theoryH, theentailment-
basedcontraction, ore-contraction, of a sentenceα should result in a new Horn beliefH−eα of whichα is not a logical
consequence:H −e α 2 α. On the other hand, theinconsistency-basedcontraction, ori-contraction, of a sentenceα
should result in a new Horn beliefH −i α which is such that addingα to it does not result in an inconsistency:
H −i α ∪ {α} 2 ⊥. In full propositional logic, a way to expressi-contraction in terms ofe-contraction would be to
require thatH −e¬α ∪ {α} 2 ⊥. This cannot be expressed in Horn logic, though, because it is not possible to express
the negation of the Horn sentenceα (see also Section 3). Below we consider onlye-contraction. Similar results have
been obtained fori-contraction as well.

Delgrande’s second contribution was to show thate-contraction for Horn theories should not satisfy the controver-
sial Recoverypostulate. As an example of the failure ofRecoveryfor e-contraction, takeH = CnH({p→ r}) and let
α = p∧ q→ r. Then any reasonable version ofe-contraction will yieldH −e α = CnH(∅). SoCnH(H −e α ∪ {α}) =
CnH({p∧ q→ r}) and thereforeH * CnH(H ∪ {α}).

Delgrande’s third contribution was to base the construction of Horn contraction operators on partial meet contrac-
tion. The definitions of remainder sets, selection functions, and partial meet contraction, as well as maxichoice and
full meet contraction all carry over directly toe-contraction and we will not repeat them here. We refer to these as
e-remainder sets (denoted byH⊥eα), e-selection functions, partial meete-contraction, maxichoicee-contraction and
full meete-contraction respectively. As in the full propositional case, it is easy to verify that alle-remainder sets are
also Horn theories, and that all partial meete-contractions (and therefore the maxichoicee-contractions, as well as full
meete-contraction) produce Horn theories.

In two subsequent papers, Booth et al. [9, 10] extended Delgrande’s work in a number of interesting ways.
They show that while Delgrande’s partial meet constructions are all appropriate choices fore-contraction in Horn
logic, they do not constituteall the appropriate forms ofe-contraction. For example, letH = CnH({p→ q, q→ r}).
It can be verified that, for thee-contraction ofp → r, maxichoice yields eitherH1

mc = CnH({p→ q}) or H2
mc =

CnH({q→ r, p∧ r → q}), that full meet yieldsH fm = CnH({p∧ r → q}), and that these are the only three partial meet
e-contractions. Now consider the Horn theoryH′ = CnH({p∧ q→ r, p∧ r → q}). It is clear thatH fm ⊆ H′ ⊆ H2

mc.
But observe thatH′ is not a partial meete-contraction. Booth et al. argue thatH′ ought to be regarded as an appropriate
candidate fore-contraction and, more generally, thateveryHorn theory between full meet and some maxichoicee-
contraction ought to be seen as an appropriate candidate fore-contraction.

Definition 22. For Horn theoriesH andH′, H′ ∈ H ↓eα iff there is someH′′ ∈ H⊥eα s.t. (
⋂

H⊥eα) ⊆ H′ ⊆ H′′. We
refer to the elements ofH ↓eα as theinfra e-remainder setsof H wrt α.

Definition 23. Let H be a Horn theory. An infrae-selection function is a functionτ such that for everyα ∈ LH ,
τ(H ↓eα) = H wheneverH ↓eα = ∅, andτ(H ↓eα) ∈ H ↓eα otherwise. We use an infrae-selection functionτ to define
an infrae-contraction asH −τ α = τ(H ↓eα).

Booth et al. show that infrae-contraction is captured precisely by the AGM postulates for theory contraction, except
thatRecoveryis replaced by theCore retainment postulate we encountered earlier in the context of defining kernel
contraction in Section 3.4.

Theorem 24([10]). Every infra e-contraction satisfiesClosure, Inclusion, Success, Extensionality, andCore re-
tainment. Conversely, every e-contraction which satisfiesClosure, Inclusion, Success, Extensionality, andCore
retainment is an infra e-contraction.

It is possible to define a version of kernel contraction for Horn logic, simply by closing under Horn consequence the
results obtained from kernel contraction for bases.

Definition 25. Given a Horn theoryH and an incision functionσ for H, thekernel e-contraction for His defined as
H ≈e

σ α = CnH(H −σ α), where−σ is the base kernel contraction forH obtained fromσ.

Booth et al. prove that kernele-contraction correspondsexactlyto infrae-contraction. From these results it seems that
the contraction of Horn theories exhibits a kind of “hybrid”behaviour, somewhere between classical base contraction
and classical theory contraction. As evidence for this, recall firstly that in the classical case, partial meet contraction
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and kernel contraction coincide for theories, but that kernel contraction is more general than partial meet contraction
when dealing with the contraction of bases. Furthermore, Horn e-contraction for theories does not satisfy theRe-
covery postulate, unlike classical contraction for theories, butsimilar to classical base contraction. And finally, the
set of postulates provided by Booth et al. to characterise infra e-contraction (and kernele-contraction) bears a close
resemblance to the postulates for characterising Horn contraction for bases in the classical case.

To summarise, these recent investigations into Horn contraction have highlighted the fact that a move away from
propositional logic as the underlying logic for belief change can yield interesting and unexpected results. Interestingly
enough, although the motivation for initiating research onHorn contraction was partially motivated by an interest in
Horn logic in its own right, another reason for doing so is that propositional Horn logic forms the backbone of a group
of description logics, the class of logics to which we turn to next.

8.2 Belief change for description logics

Description Logics (or DLs for short) are a well-known family of logics used for knowledge representation [5]. They
have become the formalism of choice for representing formalontologies [37]. DLs are decidable fragments of first-
order logic, mainly characterised by constructors that allow complex concepts (unary predicates) and roles (binary
predicates) to be built from atomic ones. We provide a brief description of two well-known DLs referred to asALC
andEL, and show how they relate to belief change.

In the description logicALC [59], concept descriptions are built from concept names using the constructors
disjunction (C ⊔ D), conjunction (C ⊓ D), negation (¬C), existential restriction (∃R.C) and value restriction (∀R.C),
whereC,D stand for concepts andR for a role name. To define the semantics of concept descriptions, concepts are
interpreted as subsets of a domain of interest, and roles as binary relations over this domain. An interpretationI
consists of a non-empty set∆I (the domain ofI ) and a function·I (the interpretation functionof I ) which maps every
concept nameA to a subsetAI of ∆I , and every role nameR to a subsetRI of ∆I × ∆I . The interpretation function
is extended to arbitrary concept descriptions as follows. Let C,D be concept descriptions andR a role name, and
assume thatCI and DI are already defined. Then (¬C)I = ∆I \ CI , (C ⊔ D)I = CI ∪ DI , (C ⊓ D)I = CI ∩ DI ,
(∃R.C)I = {x | ∃y s.t. (x, y) ∈ RI andy ∈ CI }, and (∀R.C)I = {x | ∀y, (x, y) ∈ RI impliesy ∈ CI }. The distinguished
concept name⊤ is always interpreted as⊤I = ∆I . Similarly, the dinstinguished concept name⊥ is always interpreted
as⊥I = ∅. A DL Tboxcontains statements of the formC ⊑ D (inclusions) whereC andD are (possibly complex)
concept descriptions. Tboxes are used to represent the terminology part of ontologies in different application areas.
The semantics of Tbox statements is as follows: an interpretationI satisfies C⊑ D iff CI ⊆ DI . I is amodelof a Tbox
iff it satisfies every statement in it. A Tbox statementφ is a logical consequenceof a TboxT, written asT � φ, iff
every model ofT is a model ofφ.

A concept nameA is concept-satisfiablewrt to a TboxT iff there is a model, sayI , of T in which AI , ∅. This
turns out to be an important property for ontology construction—if some concept names areconcept-unsatisfiablewrt
a TboxT it is usually an indication of modelling errors made during the construction ofT. For example, Schlobach et
al. [58] show the following part of a Tbox for the DICE medicalterminology:

brain⊑ CentralNervousSystem

brain⊑ BodyPart

CentralNervousSystem⊑ NervousSystem

NervousSystem⊑ ¬BodyPart

According to this, a brain is a body part as well as a central nervous system, while the latter is a type of nervous system,
which, in turn, is not a body part. Formally, the conceptbrain is concept-unsatisfiable wrt the Tbox. Checking for
concept-satisfiability is closely related to checking for logical consequence. Indeed, for many DLs, includingALC,
checking for concept-satisfiablity can be reduced to checking for logical consequence. DL reasoners such as RACER
[26] and FaCT++ [62] are able to detect concept-unsatisfiability quite efficiently.

The link with belief change comes in with attempts to deal with concept-unsatisfiability in appropriate ways.
Ontology debugging[39, 58] is concerned with determining the cause of concept-unsatisfiability in a TboxT, while
ontology repair[57, 45] aims to modifyT in such a way that all concept names beome concept-satisfiable. It turns
out that the techniques used for ontology debugging are closely related to the special case of kernel contraction for
belief bases known as safe contraction, which was mentionedin Section 3. Recall that theα-kernels of a baseB are
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the minimal subsets ofB implying α. Similarly, techniques for ontology debugging identify the minimal subsets of a
TboxT with respect to which at least one concept name is concept-unsatisfiable.

In ontology debugging the TboxT isn’t modified automatically. Instead, the ontology engineer, when pre-
sented with the “kernels” of Tbox statements, is expected touse this information to modifyT manually in order
achieve concept-satisfiability. In contrast, the aim of ontology repair is to modifyT automatically to ensure concept-
satisfiability. This is achieved by removing exactly one element from each of the “kernels” of Tbox statements, an
approach that can be seen as safe contraction applied to concept-satisfiability. Ontology repair, in this sense, has more
in common with beliefbasecontraction than withtheorycontraction, since it is the Tbox statements occurring ex-
plicitly in the Tbox that are used to obtain the TBox “kernels”, and not statements in the theory obtained from the the
Tbox.

A different application of belief contraction, this time one thatis more closely related totheorycontraction, occurs
in ontologies represented in one of theEL family of DLs [4]. In EL itself, the basic member of this DL family,
concept descriptions are built up from concept names using just conjunction (C⊓D) and existential restriction (∃R.C).
As in ALC, Tbox statements have the formC ⊑ D, whereC andD are (possibly) complex concepts. The lack of
expressivity inEL is made up for by the efficiency of reasoning algorithms for it. In particular, the task ofcomputing
the subsumption hierarchyfor anEL Tbox T (determining whetherT � A ⊑ B for all concept namesA andB) has
polynomial complexity (in the size of the Tbox). Moreover, it turns out that a member of theEL family is sufficiently
expressive to represent a number of biomedical ontologies,including the widely used medical ontology SNOMED
[60].

As withALC, the application of belief change toEL is also related to the construction of ontologies. In this case,
however, it does not address concept-unsatisfiability. Indeed, sinceEL does not have negation, concept-unsatisfiability
can only occur if the bottom concept⊥ is used explicitly. Instead, it relates to a different method for testing the
quality of a constructed ontology: asking a domain expert toinspect and verify the computed subsumption hierarchy.
Correcting such errors involves the expert pointing out that certain subsumptions are missing from the subsumption
hierarchy, while others currently occurring in the subsumption hierarchy ought not to be there. A concrete example of
this involves the medical ontology SNOMED [60] which erroneously classified the conceptAmputation-of-Finger
as being subsumed by the conceptAmputation-of-Arm. Finding a solution to problems such as these is can be seen
as an instance oftheory contraction, in this case by the statementAmputation-of-Finger⊑ Amputation-of-Arm.
The scenario also illustrates why we are concerned with contraction of theories and not bases. In general, ontologies
are not constructed by writing down DL axioms, but rather using ontology editing tools such as SWOOP8 or Protégé9,
from which the axioms are generated automatically. Becauseof this, it is the theory obtained from a Tbox that is
important, not the axioms from which the theory is generated.

It is only recently that researchers have started to pay attention to theory contraction forEL [8]. Indeed, much
of the work relevant to this topic does not address theEL family of DLs directly at all. In particular, the work on
propositional Horn contraction is of importance in this context. Horn clauses correspond closely to subsumption
statements in DLs, since both Horn logic and theEL family lack full negation and disjunction. In this respect,there is
still much work to be done before a claim can be made that belief contraction forEL has been addressed properly.

Finally, in this section we have focused on recent work related to beliefcontractionfor descriptions logics, but it
must be pointed out that there has also been some recent work on beliefrevisionand related questions [44, 51, 52, 63].

9 Conclusion

In conclusion, we hope that this brief overview of belief change has convinced the reader that research in this area has
come a long way over the past 30 years, with the fundamentals of the topic now firmly in place. The main challenge
ahead is to build on the established fundamentals and extendthe work that has been done to new application areas. As
we have seen in Section 8, this is already taking place. And although much remains to be done in this regard with, for
example, different underlying logics raising interesting and unexpected questions, it seems clear that the existing body
of work provides an appropriate springboard for finding solutions to those new issues that are cropping up.

8http://code.google.com/p/swoop
9http://protege.stanford.edu
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