
Investigation of a local spatial spectrum of Bessel light beams 
 

Vladimir N. Belyi, Nikolai S. Kazak, Nikolai A. Khilo, Andrew Forbes, Piotr I. Ropot 

B.I. Stepanov Institute of Physics, NASB, 68, Nezavisimosti ave., 220072 Minsk, Belarus 
CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa 

School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa 
 

 
Abstract 
In this paper we consider the angular spectrum of an apertured Bessel beam when the aperture is circular and shifted laterally 
with respect to the optical axis.  Since the perturbation of the resulting angular spectrum is due to a spatially localized Bessel 
field, we refer to such an angular spectrum as the local spatial spectrum. We show that the local spatial spectrum of the Bessel 
beam may differ considerably from the angular spectrum of an unapertured Bessel beam, and find that the ring-shaped angular 
spectrum is converted into two arcs whose width in the azimuthal direction monotonically decreases as the shift of the circular 
aperture increases. This phenomenon is predicted theoretically and confirmed experimentally. 
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1 Introduction 

 
An important feature of light beams is the structure of their spatial (or angular) spectrum. For example, knowledge of the 
angular spectrum of the field allows for propagation through linear and non-linear optical systems since the angular spectrum 
is nothing more than a weighting of plane waves.     
 It is clear that any aperturing of an optical beam will influence its angular spectrum. The most known effect of 
aperture limitation is the broadening of the spectrum due to the onset of higher spatial frequencies to describe hard edges, and a 
concomitant increase in oscillations of the light intensity after propagation.  Similar arguments lead to the space bandwidth 
product, and the well known properties of Gaussian beam propagation, e.g., small beams, or aperture beams, have larger 
divergence and hence larger far field patterns, and vice versa.  In the case of Bessel beams, its angular spectrum has the well-
known ring-shaped profile, and as with the case of Gaussian beams, when the beam is apertured the ring width is broadened. A 
more nontrivial and interesting question arises: how does the angular spectrum change if the beam is bounded by a non-

centered circular aperture? Since the angular spectrum arises due to a spatially localized part of the Bessel beam, we refer to 
this as the local spatial spectrum.  This question has a straightforward relation to the so-called plane-wave representation of 
Bessel beams. According to this representation, the Bessel beam consists of a set of plane waves, wave vectors of which lie on 
the surface of a cone. This model was proposed by Durnin [1] to obtain a Bessel beam, and was implemented by placing a 
narrow circular diaphragm in the front focal plane of lens and illuminated by plane wave (Fig. 1). 
 
In the back focal plane σ of lens L the annular field has a radius R ≈ γF where γ is the cone angle of the Bessel beam. A 
superposition of plane waves in such a scheme is generated by imaginary point sources distributed within the circular 
diaphragm. When the diaphragm is placed outside the lens focus, the Bessel beam can be described as a superposition of lens-
produced images of spherical waves formed by some effective circular source in the object plane of the lens [2]. In the axicon- 
based scheme of the Bessel beam production the appearance of a superposition of plane waves arises when analyzing the 
diffraction integral by the stationary phase method. At last, within the framework of rigorous solutions of Helmholtz equation, 
the Bessel beam can be presented as the superposition of two conical beams described by the zeroth- and first- order Hankel 
functions corresponding to convergent and divergent cylindrical waves [3]. It is essential to note that the above discussed 
models of Bessel beam lead to the ring-shaped angular spectrum. The aforesaid remarks concern the entire spectrum, i.e. the 
spectrum obtained for the beam as a whole. The entire spectrum appears experimentally in special non-localized physical 
processes such as the vector interaction in second harmonic generation and parametric frequency conversion [4, 5]. But the 
majority of linear and non-linear optical processes with Bessel beams are spatially localized, and consequently their behavior 
depends on the local spatial spectrum.  Thus the challenge is to determine whether the ring-shaped angular spectrum persists 
when the limiting aperture is displaced from the center of the Bessel beam.  This problem will be investigated for Bessel beams 
generated by conventional optical schemes, both experimentally and theoretically. 
 
2.   Fourier transformation of annular field 
 
2.1.   Theoretical results 
An optical scheme, which is intended for studying the local spatial spectrum of Bessel beams, is shown in Fig. 2 [6]. An 
annular diaphragm D of radius Rin is used to generate a Bessel field in neighboring of back focal plane of lens L1. The 

Figure 1. Optical Fourier 
transformation of Bessel beam. 
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amplitude distribution of this field in the transverse plane is written as )(1 ra
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One can see that Eq. (1) has the form of a two-dimensional Fourier transform. The function );( σra
r

 will be referred to as the 

amplitude of the local spatial spectrum, with an intensity given by 
2
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It is clear from Fig. 2 that the amplitude )( 11 ra
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 is the Fourier transform of an input field 
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where )( 2r
rτ  is the transmission function of circular diaphragm D.  

 

 
It follows from Eqs. (1) and (2) that 
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On substituting Eq. (4) into Eq. (3), we obtain the following expression for output field: 
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This equation allows one to calculate the local spatial spectrum of the aperture Bessel beam (in this case generated using an 

annular diaphragm). If the diaphragm has a narrow enough width, the transmission function )(0 ρτ  can be approximated as a 

delta function: )()(0 inin RR −ρδ=ρτ , where Rin is the diaphragm radius. This allows Eq, (5) to be simplified to yield: 
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2.2 Experiment and numerical calculations 
 
 A ring diaphragm of diameter D = 12 mm and ring width 80 µm was produced by photolithography. The diaphragm 
was placed in the front focal plane of the lens L1 of focal length F1 = 50 cm. The perturbing diaphragm (S) consisted of a 
circular aperture of radius r0 = 185 µm (Fig. 2) placed at normal incidence to the field.  A second inverse Fourier transforming 
Lens L2 of focal length F2 = 20 сm was used to produce the desired local spatial spectrum, the intensity of which was measured 
on a standard CCD camera. 
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Figure 2. Optical scheme for measuring local spatial spectrum of Bessel beam 
generated when using annular diaphragm D. Here L1,2 are Fourier transforming lenses, 
S is the screen with a circular hole of radius ra shifted in the position ),( 000 ϕ= rr

r
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Figure 3. Fragment of Bessel beam produced in back focal plane of lens 
L1. For estimating the typical scale of Bessel beam , the dark strip width 
is shown to be 80 µm. 

 
Fig. 4 shows the results of measuring the spatial spectrum obtained at various positions of the circular diaphragm relative to the 
optical axis. 
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Figure 4. Characteristic changes of the local spatial spectrum of a Bessel beam caused by the off-axis shift of the 
circular diaphragm. The shift value is equal to r0 = (30 m) µm where m is the number under the figure. 

 
Figure 4 shows the change in the local spatial spectrum of the Bessel beam due to an off-axis shift of the circular opening. 
Namely, the initial ring- full spectrum is transformed into a pair of arcs whose angular size reduces gradually.  The 
corresponding theoretical predictions for the same conditions (using Eq. (6)) are shown in Fig. 5.  It is clear that there is very 
good qualitative comparison. 
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Figure 5. Theoretically investigated intensity distribution of the local spatial spectrum of the Bessel beam. The shift value is 
the same as in Fig. 4. 

 
These results, as presented in Figs. 4 and 5, show that, as a rule, the local spatial spectrum of a Bessel beam is not an annular 
ring. The exception takes place when the center of the circular aperture is situated on the axis of the beam, or when the shift is 
so small that central lobe of the beam lies inside the opening.  Consequently, annular form of the angular spectrum is realized 
only in a relatively narrow near-axial region of the beam.  Outside this region, the angular spectrum of the perturbed beam 
takes the shape of a pair of arcs whose azimuthal orientation is determined by the orientation of the diaphragm relative to the 
beam axis.  Superpositions of such azimuthally orientated local spatial spectra return the well-known annular pattern. 
 These results allow one to correct the so-called plane wave interpretation of Bessel beams. The matter concerns the 
representation of Bessel beams as composed of an array of plane waves whose wave vectors lay on the cone surface (see, for 
example, [1]). It is obvious that such an interpretation is not correct as applied to an arbitrary beam area except for its central 
region. In off-axis regions of the Bessel beam the wave vectors of plane waves fill only a part of the circular cone. At a 
sufficiently large shift from the beam axis the spatial spectrum profile approaches a double-spike one (see last frames of Figs. 4, 
5), which corresponds to the approximation of two plane waves. 
 More detailed information about such fields can be obtained from appropriate 1D- sections of two- dimensional 
intensity profiles. Fig. 6 shows how the intensity of an arc-type field varies with the azimuth angle ϕ. Note that these graphs 
correspond to the maximal value of intensity in radial direction. 
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Figure 6. Intensity of arc-type field as a function of azimuthal 
angle. Notations A0, A5, etc. correspond to images 0, 5, etc. in 
Figs. 4 and 5. The relative units are chosen in such a way 
that the maximum intensity for non-shifted diaphragm is 
equal to unit. 

 
The uniform intensity distribution of the field corresponds to the non-shifted diaphragm. At a nonzero shift of the circular 
window there appears a large-scale double-peak modulation. The width of these peaks decreases with increasing the shift. It is 
interesting to point out that the origin of the small-scale modulation on the graphs is not yet clear. 
 
3. Local spatial spectrum of the Bessel function 
 
It is interesting to investigate the local spatial spectra of the Bessel function irrespective of how it is produced optically.  
Consider then the zero-order Bessel function )(0 ρqJ . When the diaphragm shift r0 < ra, (see Fig. 2), the spectral amplitude 
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Fig. 7 shows the intensity of the local spatial spectrum as a function of the azimuth angle at different shifts of the diaphragm. 
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Figure 7. Local spatial spectrum of Bessel function as a function of the azimuth angle. The relative units are chosen in 
such a way that the intensity at start point ϕ = 0 deg is equal to unit. Cone angle γ = 0.25 deg; ra = 200 µm; F = 0.5m; ϕ0 
= 90 deg; r0 = 10 µm (a), 50 µm (b), 100 µm (c), 190 µm (d).  

 
When the circular diaphragm is situated outside the beam axis, the spectrum is calculated to be 
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Fig. 8 illustrates the property of the local spectrum in this case. 
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Figure 8. Dependence of the intensity of the local spectrum of the Bessel function on the azimuthal angle at different values of shift 
r0 of annular aperture (а) and from its radius R (b). The relative units are assumed were the maximal intensity is equal to unite. 
 Cone angle is γ = 0.25 deg., F = 0.5m. 



 
It is seen that the local spatial spectra of the Bessel function has the arc-type structure similar to the  obtained in sect. 2.2. The 

maximal intensity occurs at 0ϕ=ϕ  and π+ϕ=ϕ 0  and the spectrum width decreases with increasing the aperture shift r0 

(Fig. 8a). The dependence of the spectrum width on the diaphragm radius ra is more complex (Fig. 8b). At small ra the 

spectrum is wide and narrows with increasing ra. This behavior is explained by the influence of diffraction at the edge of the 

circular aperture. As ra is increased further, so the spectrum is broadened and begins to deform. Such behavior takes place 
when the diaphragm edge approaches the centre of the beam (Fig. 9).  In the region of maximum intensity an oscillating 
behavior appears with two and more local maxima.  
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Figure 9. Spectrum transformation when the edge of the circular aperture is approached to the beam center. 

 
 From this we conclude that the local spatial spectrum of the Bessel function is not annular. The presence of two global 
maxima means that the light energy inside a Bessel beam propagates preferably in two directions. The azimuth angle of these 

directions, as it was pointed out above, is equal to 0ϕ=ϕ  and π+ϕ=ϕ 0 . When the value of r0 is increased, the two waves 

approach plane waves as their local spatial spectrum is converged into two points.  This can be explained by considering the 
circular aperture as passing two components of the underlying conical waves. One of these waves is convergent and the other 
divergent [3]. 
 
4. Scheme based on axicon 
 
Analogical investigations of the local spatial spectra were conducted for Bessel beams produced by an axicon. A refractive 
axicon with a base angle of about 1.7 deg was illuminated by a Gaussian beam of waist radius w0 = 6 mm. The circular 
opening S (Fig. 2) with a radius of 185 µm was placed after the axicon at the distance of maximal diameter of the Bessel beam. 
The local spatial spectrum was generated using a Fourier transform lens with a focal length of F = 0.3 m.    
Here the transformation of the annular spectrum into an arc-type one was also observed when increasing the shift of the 
circular aperture (see Figs. 10, 11 and 12).  The difference here is that the appearance of asymmetry of the arc-type spectrum, 
which increases when the shift becomes larger.  
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Figure 10. Local spatial spectra of Bessel beam produced by the axicon. The transverse shift of the 
circular diaphragm equals the number under the figure multiplied by 30 µm. 
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Figure 11. The calculated intensity dependences on the azimuth angle of the local spectrum of an Bessel beam 
formed by the axicon. The case is illustrated where the beam axis is within the circular aperture. The 
parameters used: cone angle γ = 0.9 deg., focal distance of the lens F = 0.3m, aperture radius R = 185 mkm, 
half-width w = 6 mm. 
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Figure 12. The calculated azimuthal intensity dependences of local spatial spectrum of Bessel beam 
produced by axicon. The case where the position of the circular aperture is outside the beam axis. The 
parameters used: cone angle γ = 0.9 deg., focal distance of the lens F = 0.3 m, aperture radius R = 185 mkm, 
w0 = 6 mm. 

 
 The asymmetry of the spectrum can probably be explained by the fact that the beam produced by an axicon differs 
slightly from a Bessel function, and rather approximates a Bessel-Gaussian beam.  Mathematically this difference originates 
from an unequal contribution of two stationary points into the diffraction integral. That leads to some differences in amplitude 
of the convergent and divergent conical waves that compose the Bessel-Gaussian beam.  
 It is easy to obtain, by calculating the Freshnel diffraction integral using the stationary- phase method, that the field 
after the axicon is given by: 
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To numerically calculate the local spectrum, Eqs. (7) and (9) were used with the replacement of )( 00 γρkJ  into ),( za ρ  from 

Eq. (10). The results are shown in Figs. 11 and 12, where the direction of the shift of the circular aperture is ϕ0 = 90 deg. As is 
seen, for a near-axial position of the aperture (Fig. 11), when increasing of r0 there is a gradual transformation of the 
homogenous annular field into two arcs, as described earlier. At an off-axial position of the aperture, the azimuthal 
inhomogeneity of the spectrum is evident. Here the asymmetry of the intensity of two arcs is also observed. This asymmetry is 
seen to be more essential at the periphery of the Bessel beam (Fig. 12) than in its central area (Fig. 11). It corresponds exactly 
to the studied earlier field structure behind the axicon, namely, the contribution of the component containing the Bessel beam 
of the first order in Eq. 10 increases when the aperture moves off the beam axis. 
 
5 Conclusions 
 
We have shown that the angular spectrum of a Bessel beam apodized by a circular aperture depend considerably on the 
position of the aperture relative to the optical axis. If the shift is large enough then the central lobe of a beam lies outside the 
opening, and the shape of local spatial spectrum becomes arc-like, i.e., composed of two bright points rather than an annular 
ring.  The width of the arcs in the azimuthal direction decreases with increasing shift, and the orientation of the arcs rotates 
when rotating the aperture about the optical axis. This property of the local spatial spectrum is the intrinsic feature of Bessel 
functions irrespective of the method of the Bessel beam generation.  
 The arc-like structure of the local spatial spectrum is an important property of Bessel beams, and is necessary to be 
taken into account when interpreting experimental results obtained with Bessel beams. The simple example is the application 



of Bessel beams for profilometry of cylindrical surfaces [7, 8]. The shift of the tested cylindrical object with respect to the 
optical axis can lead to an azimuthal modulation of the optical field illuminating the cylinder surface. At rather large shifts a 
part of the cylindrical surface is not illuminated at all. The second example concerns the formation of a one-dimensional array 
of particles in Bessel beam based optical tweezers [9]. The efficiency of manipulation of microparticles here can essentially 
depend on the self-reconstruction of a field, screened by these particles [9]. From the local spatial spectrum of Bessel beams it 
follows that the conditions of recovery of the Bessel beam behind a particle will be changed when this particle has a non-zero 
transverse shift relative to the beam axis. 
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