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ABSTRACT

Stochastic vortex fields are found in laser speckle, in scintillated beams propagating through a turbulent atmo-
sphere, in images of holograms produced by Iterative Fourier Transform methods and in the beams produced
by certain diffractive optical elements, to name but a few. Apart from the vortex fields found in laser speckle,
the properties and dynamics of stochastic vortex fields are largely unexplored. Stochastic vortex fields with
non-equilibrium initial conditions exhibit a surprisingly rich phenomenology in their subsequent evolution dur-
ing free-space propagation. Currently there does not exist a general theory that can predict this behavior and
only limited progress has thus far been made in its understanding. Curves of the evolution of optical vortex
distributions during free-space propagation that are obtained from numerical simulations, will be presented. A
variety of different stochastic vortex fields are used as input to these simulations, including vortex fields that
are homogeneous in their vortex distributions, as well as inhomogeneous vortex fields where, for example, the
topological charge densities vary sinusoidally along one or two dimensions. Some aspects of the dynamics of
stochastic vortex fields have been uncovered with the aid of these numerical simulations. For example, the
numerical results demonstrate that stochastic vortex fields contain both diffusion and drift motions that are
driven by local and global variations in amplitude and phase. The mechanisms for these will be explained. The
results also provide evidence that global variations in amplitude and phase are caused by variations in the vortex
distributions, giving rise to feedback mechanisms and nonlinear behavior.

Keywords: Infinitesimal propagation equation, entangle photons, atmospheric turbulence, orbital angular mo-
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1. INTRODUCTION

The properties of optical vortices! (i.e. phase singularities found in optical fields) have been studies extensively.?
As topological defects they carry integer topological charge and obey topological conservation laws. The topolog-
ical charge can to some extent be associated with the orbital angular momentum in the beam.?® Various aspects
of optical vortices, such as their trajectories® ' and morphology!% 2922 have also been studied. However, these
studies largely dealt with a small number (one or two) vortices in deterministic beams.

There are fewer studies of large collections of vortices. Some work on vortex arrays do exist.?* 26 In these
studies the high degree of symmetry allows one to obtain full analytical solutions. When such a symmetry does
not exist the problem becomes akin to a many-body problem. For such problems it is more useful to employ
statistical methods. In such cases one would consider vortex fields rather than individual vortices.

Previous statistical investigations of vortex fields are restricted to the investigation of vortices in fully devel-
oped speckle fields, also called random optical fields.?” 32 These include investigations of the distribution of the
optical vortex parameters®® and the topology of the vortex trajectories.?? Statistical optics®* has been used as
a fruitful approach for analytic investigations into the properties of random vortex fields.2”:3!

Here we want to propose a new field of investigation, which we’ll refer to as stochastic singular optics.
This does not only include the statistical work on the vortex distributions in random optical fields, but also
artificially generated vortex distributions. Such quasi-random vortex distributions can be produced with phase-
only diffractive optical elements or by arranging speckle beams to be combined such that they interfere with each




other in particlar ways. One can also consider scintillated beams propagating through a turbulent atmosphere as
an example of such stochastic vortex fields because they are not in equilibrium and are often not homogeneous.

There is a large variety of different initial conditions that one can impose on the vortex distributions. Usually
the initial conditions represent an instability that decays to zero during propagation. The trancient behaviour
that one observes during this decay process reveals the dynamics of the vortex distributions. The various initial
conditions lead to a rich variety of such observations. Here we present a collection of these observations and
present some initial attempts to explain them. In Section 2 a theoretical framework for this work is provided.
The scenarios that are considered fall into three categories, which are presented in turn: homogeneous vortex
fields in Section 3, inhomogeneous vortex fields with one-dimensional variations in Section 4, and inhomogeneous
vortex fields with two-dimensional variations in Section 5. A summary is provided in Section 6.

2. FRAMEWORK

One can represent the vortices in stochastic vortex fields either in terms of the number densities, n,(x,y, z) and
nn(z,y,2), of positive and negative vortices, respectively, or in terms of the combined vortex density V (z,vy, 2)
and the topological charge density D(z,y,z). The two different ways to represent the vortices are related by

V(m,y,z) = np(mayvz)+nn(x7yaz) (1)
D(a:,y,z) = np(a:,y,z)—nn(x,y,z). (2)

The number densities give the local expectation value for the quantity (such as the number of vortices) per unit
area on any plane perpendicular to the direction of propagation (z-coordinate). On a given plane the number
density varies as a function of the transverse coordinates x and y, and this function also varies from plane to
plane as a function of z. The positive, negative and combined vortex densities are non-negative functions. On
the other hand, the topological charge density can be positive or negative. It is important to note that the
optical fields contain more information than is represented in terms of these vortex densities. Therefore, one can
expect that the evolution of the vortex densities would be governed by more than just the interactions of the
vortex densities on themselves and each other.

There is a limitation on how large the local topological charge density in a particular region can be. The net
topological charge T inside a convex area with circumference C must be less than the number of times that the
wavelength A fits into the circumference T' < C/\, otherwise the bulk of the light on the circumference would
be evanescent and not propagating. This limitation imposes a strong condition on homogeneous vortex fields.
In the homogenous case the number densities are all independent of the transverse coodinates. The limitation
implies that the positive and negative vortex densities must be equal [n,(z) = n,(z)] and by implication that
the topological charge density in the homogeneous case is always zero [D(z) = 0].

The random vortex field found in a speckle field represents a special homogeneous case, because it remains
unchanged during propagation — independent of z. One can say that such a field represents a state of equilibrium.
Most non-equilibrium cases eventually evolve toward this equilibrium state. The properties of the equilibrium
state therefore play an important role in all stochastic vortex fields.

One can divide the different cases of non-equilibrium initial conditions into different groups. First one
distinguishes between homogeneous and inhomogenous initial conditions. For the inhomogeneous cases one can
further divide them into one-dimensional variations and two-dimensional variations. Each of these are now
discussed in turn.

3. HOMOGENEOUS FIELDS

A speckle field (which represents a homogenous vortex field in equilibrium) can be expressed as the product of
a real-valued amplitude function, a continuous phase factor and a singular phase factor, which contains all the
phase singularities that are associated with the optical vortices. These three functions are related to each other
and are in constant interaction during propagation. By perturbing any one of these functions one destroys the
equilibrium and thereby sets up a non-equilibrium homogeneous vortex field.>> The perturbed field will evolve
toward equilibrium again during subsequent propagation.



This is not the only example of a non-equilibrium homogeneous case. Another example, is where a plane
wave undergoes scintillation. In this case the initial optical field contains no vortices, but if the scintillation is
strong enough vortices do eventually appear. This is an important case, associated with the propagation of light
through a random medium.

Here we only consider the case of a phase-corrected speckle field, where the continuous phase is removed,
leaving only the amplitude and the phase singularities in the initial optical field.?¢ The free-space propagation
of this non-equilibrium homogeneous field has been simulated numerically to determine the evolution of the
vortex density over logarithmic distances. The propagation was simulated with a Fourier optics based numerical
implementation of scalar diffraction theory.37:38

The input speckle field, which lies in a plane perpendicular to the propagation direction, is a sampled complex-
valued function consisting of 512 x 512 samples and it has periodic boundary conditions to avoid edge effects
and aliasing. For each step the total number of vortices that are located inside the 512 x 512 sample window is
determined as a function of the logarithmic propagation distance. The simulation was repeated several times for
different initial speckle fields. The results were averaged and the standard deviations were computed for every
point along the propagation distance. The wavelength and the coherence length of the optical field were chosen
to ensure that the field is well within the paraxial limit.
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Figure 1. Normalized optical vortex density for a phase corrected speckle field, shown as a function of (a) linear normalized
propagation distance, as well as (b) logarithmic normalized propagation distance. The diamonds represent numerical data,
averaged over more than a hundred different simulations. The error bars represent standard deviations. The solid curve
is a fitted curve through these data points.

The normalized vortex density is shown in Fig. 1 as a function of propagation distance. It reveals an
unexpected behavior. After the continuous phase has been removed at z = 0, the vortex density drops drastically
to a minimum value of about 70% of the initial vortex density. The vortex density then rises again at a rate that
is about an order of magnitude slower than the rate at which it dropped. It eventually reaches an equilibrium
value of about 87% of the initial vortex density.

The shape of the vortex density curve is surprising in that it does not reveal a simple exponential decay
process, which can be described by a first order differential equation. Instead, the observed process follows a
curve that cannot be produced by a single first order differential equation, because the slope of the function is
not directly related to that function value. The curve therefore requires a second order differential equation or
a set of coupled first order differential equations, such as,
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from which a second order differential equation can be derived by eliminating N(z). The solution ¢ this set of
differential equations with an appropriate choice of fi(z) and f2(z) can be made to fit the curve in Fig. 1 very
well. The question is, what is the unknown field N(z)? This unknown field cannot be the topological charge
density, because the latter is identically zero in this case. The unknown field would therefore have to be derived
from the additional degrees of freedom that is present in the optical field, but not represented in terms of the
vortex densities.

4. INHOMOGENEOUS FIELDS WITH ONE-DIMENSIONAL VARIATION

An inhomogeneous stochastic vortex field can be produced in a brute force manner by using a diffractive optical
element or a spatial light modulator that inprints a phase pattern with several inhomogeneously distributed
phase singularities on an illuminating plane wave. The initial amplitude of such a beam would be uniform and
the optical vortices thus produced would be point vortices. The implied vortex profile function® would have an
effect on the subsequent evolution of the beam and the vortex density.
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Figure 2. Setup to produce inhomogeneous initial vortex distribution. Consists of two Mach-Zehnder interferometers that
are used to produce interference patterns in speckle fields with different speckle sizes, which are then combined to give a
sinosoidal variation in the vortex density.

A more elegant way to generate an inhomogeneous initial vortex distribution is with the aid of the setup
shown in Fig. 2. The input is a speckle field, which is divided by a 50/50 beam splitter. Each of the two resulting
beams is then spatially filtered (only the circular apertures are shown) to produce speckles of different sizes in
the two beams. The beams are sent through Mach-Zehnder interferometers to produce sinusoidal interference
patterns. They are then recombined in such a way that the dark bands in the interference pattern of the one
beam overlaps with the bright bands of the other beam’s interference pattern. Because the vortex densities in
the two beams are different, the resulting combined beam will have a sinusoidally varying vortex density, with a
constant average intensity.

The propagation of such a stochastic vortex field has been simulated numerically. The resulting evolution of
the vortex density is shown by the discrete points in Fig. 3 as a function of logarithmic propagation distance
for three Fourier coefficients: the constant background level, the fundamental spatial frequency and the first
harmonic. The constant background level, which represents the overall vortex density, remains more or less
constant apart from some trancient variations. The fundamental spatial frequency component gives the amplitude
of the sinusoidal variations in the initial vortex density. These sinusoidal variations die out during propagation as
expected, but the curve contains some curious oscillations, co-located with the trancients in the background. The
first harmonic start out being zero, since the interference does not initially have higher harmonic components.
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Figure 3. The evolution of an inhomogeneous optical vortex density, shown in terms of three Fourier coefficients of
the optical vortex density function: the constant background level, the fundamental spatial frequency and the first
harmonic. These results were obtained from the average over several simulations with the error bars indicating the
standard deviations.

Yet, during propagation, the first harmonic displays some variations that are again co-located with those in
the other two components. The presence of the variations in the first harmonic gives a clear indication of a
non-linearity in the dynamics.
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Figure 4. The evolution of an inhomogeneous topological charge density, shown in terms of the Fourier coefficients for the
fundamental spatial frequency. The discrete points were obtained from the average over several simulations with the error
bars indicating the standard deviations. The solid lines are analytical predictions based on statistical optical calculations.

Because the initial vortex density is produced through the interference and incoherent combination of speckle
beams, one can assume Gaussian statistics and therefore employ statistical optical methods to compute the
expected behavior of the vortex density. The results of these calculations® are given by the solid curves in Fig. 3.
Apart from a slight offset in the magnitude of the larger densities, these analytic curves precisely follow the
numerical curves. The offset (~ 4%) can be understood as an indication of the less than 100% efficiency of the
vortex extraction process that is used in the numerical simulations. The statistical optics calculations and the




numerical simulations are therefore in good agreement with each other.

One can also investigate the behaviour of an initially inhomogeneous topological charge density, using a setup
similar to the one shown in Fig. 2. The only differences are that one keeps the size of the speckles in the two
beams the same, and when the two beams are recombined one introduces a tilt along the direction parallel to the
interference fringes. This will cause a relative tilt in the wavefront for adjacent bands, which in turn will result
in optical vortices with predominantly the same topological charge along the overlapping regions. The result is
a sinusoidally varying topological charge density.

The evolution of such a topologically charged density, as determined through numerical simulations, is shown
in Fig. 4. Only the Fourier coefficient for the fundamental spatial frequency is shown. The overall topological
charge density and the Fourier coefficient for the harmonics are zero. Similar result are obtined for the brute
force case where the one-dimensional inhomogenouse topological charge density is introduced with the aid of
direct phase modulation. It was found that for this case the rate of decay is proportional to the square of the
spatial frequency.*® This behavior is therefore governed by a simple diffusion equation,

9.D(x,2) — k(2)V?D(z,2) =0 (5)

where the diffusion coefficient depends linearly on the propagation distance, x(z) = koz. Such a diffusion is
caused by the random motions of the vortices during propagation.

5. INHOMOGENEOUS FIELDS WITH TWO-DIMENSIONAL VARIATION

When the initial inhomogeneous vortex density and/or topological charge density have variations in two dimen-
sions one finds that more mechanisms come into play during the propagation of the vortex field. In addition to
the diffusion mechanism mentioned in the previous section one now also finds drift mechanisms. The evidence
for that lies in the non-linear behaviour of the topological charge density, because these drift mechanisms imply
a non-linear behaviour.
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Figure 5. The evolution of an inhomogeneous topological charge density, shown in terms of thee Fourier coefficients for
the small, large and mixed frequency components of the topological charge density function. These results were obtained
from the average over several simulations with the error bars indicating the standard deviations.

One can produce an initial vortex field with a two-dimensional topological charge density variations using
direct phase modulation. The subsequent propagation of this initial vortex field has been simulated numerical.
In Fig. 5 we show the evolution of three Fourier components for such a case. In this case the initial topological
charge density is given by the product of two cosine functions, cos(ax) cos(by), where z and y are the transverse
coordinates along orthogonal directions and a and b represent the angular spatial frequencies, such that a # b.
The three curves in Fig. 5 represent the Fourier coefficients for cos(ax), cos(by) and cos(ax + by), which are



respectively the small, large and mixed frequency components. The small frequency component decays in a way
very similar to the one-dimensional case. The large frequency component decays faster, as one would expect,
but it is driven negative before it finally decays to zero. The mixed component, which is not initially present,
grows from zero to reach a peak and then decays again to zero — a clear indication of nonlinear dynamics.
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Figure 6. Phase drift mechanism: An to inhomogeneous vortex field (a) contains regions of tilted phase, which gives rise
to a lateral drift (b) in the wavefront.

The nonlinear behaviour is produced by a drift mechanism. Such a mechanism can be produced by the phase
variation that is imposed by the inhomogeneous vortex distribution as shown in Fig. 6(a). The phase variation
between regions of opposite topological charge would on average have a tilted wavefront, which would cause the
wave in that region to drift sideways during propagation. If the topological charge density has a one-dimensional
variation the lateral drift would be along a homogeneous direction with now change to the overall distribution
function. On the other hand, if the topological charge density has a two-dimensional variation the lateral drift
can cause a change in the shape of the overall distribution function, which implies a nonlinear mechanism.

6. SUMMARY

Numerical results obtained from simulations of the evolution of initial stochastic vortex fields are shown, together
with some analytical results. The cases that are considered include homogeneous non-equilibrium stochastic vor-
tex fields, one-dimensional inhomogeneous stochastic vortex fields and two-dimensional inhomogeneous stochastic
vortex fields. We find that some cases (such as the one-dimensional inhomogeneous cases) give results that can
be described by linear diffusion processes, while other cases (such as two-dimensional inhomogeneous cases) also
required non-linear drift mechansisms in the field. If the initial optical field obeys Gaussian statistics one can
use a statistical optics approach to compute analytical curves for the evolution of the vortex distributions. We
also find that a non-equilibrium homogeneous initial vortex field does not give a simple decay process to restore
equilibrium. More complicated dynamics are involved, which requires deeper investigations.
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