TOXIC ENVIRONMENTS & TOXIC BODIES

Mercury in the South African Environment

Mamopeli Matooane Rietha Oosthuizen

Date 29 November 2010

Introduction

- Mercury in South African Environment
- Mercury human health risk
- Summary
- Way Forward

Toxic Environments - Mercury

- Mercury, also known as quick silver, is ubiquitous in the environment
- Uses
 - Medical: medicines, thermometers, dental amalgam, etc.
 - Manufacturing industry: batteries, gold mining, chlorine production, cement production, etc.
 - Personal care products: make up, e.g. mascara, skin lighteners, anti-aging products, etc.

Toxic Environments - Mercury

Sources

- Natural degassing of the earth
- Fossil fuel combustion process e.g. coal based electricity generation
- Biomass burning
- Industrial discharges and wastes, e.g. medical waste streams
- Incineration & crematories

Hg is found in all environmental compartments

air, water, soil/sediment, and biota

Inorganic and organic mercury

Elemental Hg

Divalent Hg

Methylmercury

- Emissions
 - Coal combustion
 - 82.6 tonnes Hg p.a. → Stationery sources (2000)
 - 50.4 tonnes Hg p.a. → Coal fired power plants
 - Per capita emissions → 1.24 g Hg per person⁻¹ y⁻¹ R⁻¹
 - 9.8 tonnes Hg p.a. → Coal fired power plants (2004)
 - Per capita emissions → 0.24 g Hg per person⁻¹ y⁻¹ R⁻¹
 - Gold mining
 - Gold extraction & refining processes → 706 tonnes p.a. → 193 Hg kg yr⁻¹
 - Decline gold production \rightarrow 204.9 tonnes p.a. (2009) \rightarrow lower emissions
 - No estimates for artisanal gold mining

- Air concentrations
 - Cape Point Global Atmospheric Watch Station
 - Total gaseous mercury (TGM)
 - 1.2 1.4 ng/m³ (1995 -1999)
 - Gaseous elemental mercury (GEM)
 - below detection limit (0.05 ng/m³) 5.88 ng/m³ (2007-2008)
 - TGM: 1.5 ng/m³- biomass burning episode in the Cape Peninsula

- Coal fired power plants
 - $Hg^0 \to 0.25 \text{ ng/m}^3$; $Hg^2 \to 0.19 \text{ ng/m}^3$; $Hg^P \to 0.04 \text{ ng/m}^3$

- Surface Water
 - Rivers: Eerste/Kuils, Silvermine, Liesbeeck, Black (Western Cape) and Steenkoolspruit (Mpumalanga)
 - MeHg \rightarrow 0.1 0.9 ng/L
 - Water Management Areas: Inkomati, Olifants and Upper Vaal
 - T-Hg > global average (5 ng/L) in 38% of samples
 - MeHg → below detection limit (0.02 ng/L) to 2.73 ng/L
- Concentrations below SA target value 1 μg/L

Freshwater Fish		Marine Fish	
WMA	THg (µg/g)	Site	THg (µg/g)
Inkomati	0.065 - 0.425	Durban Harbour	0.040 - 0.252
Upper Vaal	0.010 - 0.034	False Bay	0.036 - 0.402
uMvoti/ uMzimkhulu	0.014 – 0.038	West Coast	0.021 – 0.405

Human Health Risks – Hg poisoning

Place	Year	Cases
Minamata	1953-60	1 000
Nigata	1964-65	646
Guatemala	1963-65	45
Ghana	1967	144
Pakistan	1969	100
Iraq	1956	100
Iraq	1960	1 002
Iraq	1971	40 000

Mercury – Health Effects

- Blindness deafness
- Cerebral Palsy seizures
- Abnormal reflexes and muscle tone
- Retarded/delayed motor development
- Visual and auditory deficits
- Impaired mental development

Human Health Risks

- Dose-response
- Risk = Hazard * Exposure
- Individual susceptibility
- Scenario development
 - Scenario 1: 1 fish meal every day of the week
 - Scenario 3: 1 fish meal per week
 - Fish meal 227 g/day
 - _ Adult: >18 yrs
 - _ Child: 10 yrs

Mercury Health Risks – Freshwater Fish

Health risks from air and water were negligible

WMA	Species	Hazard Quotient	
		Adult	Child
Berg	Silverfish, Catfish; Yellowfish	1.44 – 2.34	1.27 – 13.67
		(0.03 - 0.35)	(1.20 - 1.95)
Upper Vaal	Yellow fish	0.16 - 0.53	0.89 - 2.98
	Banded Tilapia	(0.01 - 0.10)	(0.13 - 0.43)
Inkomati	Largemouth bass	6.68	37.40
		(0.95)	(5.33)
uMvoti/	Banded tilapia;	1.15 - 4.44	1.47 – 24.87
Umzimkhulu	Yellowfish	(0.04 - 0.63)	(0.21 - 0.92)
	Red breast tilapia		

Mercury Health Risks – Marine Fish

Sites	Species	HQ Adult	Child
Durban	Red roman	1.21 – 7.59	3.58 – 21.26
	Mullet	(0.58 - 1.13)	(0.50 - 5.04)
False bay	Red roman	3.50 – 12.12	9.79 - 33.92
	Yellowtail	(1.56 - 5.40)	(1.45 - 5.04)
Kalk Bay	Hottentot seabream	1.42 - 1.87	3.97 - 5.23
	Blueskin seabream	(0.63 - 0.83)	(0.59 - 0.78)
West Coast	Kob, Red panga;	3.16 – 12.21	3.95 – 15.23
	Silversfish, White stumpnose	(1.41 – 5.44)	(1.55 - 5.08)

Mercury Health Risks

- Artisanal gold mining community's Hg exposure
 - T-Hg below the target value for South Africa (1 μg/L)
 - T-Hg in fish was 0.34 μg/g
 - 20% of respondents used coal for cooking
 - 57.1% of the urine sample levels were at or above the guideline of 5 µg/g creatinine
 - 21% of the blood sample levels were at or above the guideline of 10 $\mu g/L$
 - The maximum levels detected in the urine and blood were above the occupational Biological Exposure Index (BEI) for South Africa which is 35 μg/g creatinine for urine and 15 μg/L for blood.

Human Health Risks

- Hg and Selenium (Se)
- Hg exposure and potential to cause adverse effects is mediated by selenium. Therefore, there may be cases where Hg exposure is elevated but the impacts are minimal.
- Suggests that Hg risk assessments need to account for Se antagonistic role in the developing Hg associated adverse effects

Summary

- Hg emissions increasing globally
 - South Africa is a significant contributor to total global Hg emissions
 - Source contributions from other sources not clearly known
- Ambient air and surface water concentrations very low. Exposure from these media unlikely to pose a health risk to the exposed.
- Fish tissue concentration indicate bioaccumulation and biomagnification predatory fish – exposure potentially high for sensitive consumers – adverse effects more likely.
- South Africa has vulnerability issues which enhance people's susceptibility to environmental exposures.

Way Forward

- A better understanding of other source emissions, e.g. biomass burning, cement production, etc.
- Improved monitoring systems for sensitive ecosystems, e.g. wetlands, to establish trends
- A better understanding of concentrations in fish species and other food types.
- A better understanding of South African fish consumption patterns
- Characterisation of adverse health impacts particularly for people with high fish consumption levels

Thank you

