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Abstract: A fully-coupled partitioned fluid-structure interaction (FSI) scheme is devel-
oped for sub- and transonic aeroelastic structures undergoing non-linear displacements.
The Euler equations, written in an Arbitrary Lagrangian Eulerian (ALE) coordinate
frame, describe the fluid domain while the structure is represented by a quadratic modal
reduced order model (ROM). A Runge-Kutta dual-timestepping method is employed for
the fluid solver, and three upwind schemes are considered viz. AUSM+ -up, HLLC and
Roe schemes. The HLLC implementation is found to offer the superior balance between
efficiency and robustness. The developed FSI technology is applied to modelling non-
linear flutter, and the quadratic ROM demonstrated to offer dramatic improvements in
accuracy over the more conventional linear method.

1 INTRODUCTION

Present day aeroelastic modelling is mature with regards to linear flutter phenomena at
subsonic flow speeds [1]. There is still, though, progress required to effect efficient FSI
modelling in the transonic flow regime, particularly where a combination of shocks in the
fluid domain and non-linear structural response are present. This has led to the growing
research into non-linear Computational Aeroelastics [2–15].

Non-linear weakly coupled aeroelastic calculations, such as staggered timestepping meth-
ods, may be prone to inaccurate or divergent solutions [16–19]. As a result we employ
a strongly coupled partitioned method where coupling is effected via non-linear itera-
tions [19–22]. The fluid domain is resolved by using detailed Computational Fluid Dy-
namic (CFD) and the structure domain via a non-linear ROM.

To account for the transonic shocks, the fluid is described via the compressible Euler
equations written in an ALE reference frame [23–27]. We use a vertex-centred edge-based
finite volume method for spacial discretisation and three upwind schemes are compared
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viz. AUSM+ -up scheme [28], HLLC scheme [29] and Roe scheme [30]. The MUSCL
scheme [31] with van Albada limiter [32] is employed throughout. A fourth order Runge-
Kutta dual-time-stepping parallel solution method is employed.

The structure is represented via a quadratic modal ROM [33–35]. This is of particular
interest due to its ability to describe non-linear motion from linear modal data. It is
also readily applicable to three-dimensional systems. The fluid and solid domains are
strongly coupled numerically, where information is passed between the detailed CFD and
structural ROM at each sub-iteration.

The developed FSI technology is implemented into the multi-physics code Elemental fol-
lowed by a verification and validation exercise. The ALE capability is first assessed via
modelling of the forced oscillation of a NACA0012 airfoil under transonic flow. The three
upwinding schemes are compared via a grid convergence study. Next, the two-dimensional
flutter-response of a pitch/plunge airfoil is considered at sub- to transonic flow speeds.
We assess the improvement in accuracy of the quadratic modal ROM over the traditional
linear modal ROM by comparison to an analytical ROM.

2 GOVERNING EQUATIONS

2.1 Fluid Equations

The fluid dynamics is described via non-dimensional inviscid Euler equations written in
an ALE coordinate frame as:

∂

∂t

∫

V(t)

UdV +

∫

S(t)

FjnjdS = 0 (1)

where V(t) denotes an arbitrary moving volume, with surface S(t) and outward pointing
normal vector n, which is translating at velocity v and
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
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
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

(2)

In the above equation set, xj is a fixed Eulerian cartesian reference frame axis, wj = uj−vj

is the velocity relative to the moving reference frame, uj is the fluid velocity, ρ is the
density, p is the pressure and E is the specific total energy of the fluid as:

E =
p

(γ − 1) ρ
+
ujuj

2
(3)

Non-dimensional quantities are related to their dimensional counterparts (denoted by ∗)
as:

t = t∗U∗
∞

L∗ xi =
x∗

i

L∗ ui =
u∗

i

U∗
∞

ρ = ρ∗

ρ∗∞

p = p∗

(ρ∗∞U∗2
∞ )

T = T ∗

(U∗2
∞ /Cp)

E = E∗

U∗2
∞

(4)
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where ∞ denotes free-stream, t is time, L is the characteristic length, T is the character-
istic temperature and Cp denotes the specific heat at constant pressure.

The governing equations are closed via the ideal gas law as:

ρ =
p

T

γ

γ − 1
(5)

while the non-dimensional acoustic velocity is given by

c =

√

γp

ρ
(6)

which results in c = c∗/U∗
∞.

In order to obtain a unique solution to the ALE Euler equations, appropriate boundary
conditions must be specified. For the purpose of this work slip conditions are prescribed
on the airfoil surface as:

u · n = v · n (7)

where n and denotes the boundary outward pointing normal unit vector. Characteristic
boundary conditions [36] are applied at outer boundaries.

2.2 Solid Equations

For the purpose of this work the aeroelastic structural model is governed by a two degree-
of-freedom pitch and plunge system. The equations of motion are

mḧ+ Sαα̈ +Khh = −L

Sαḧ+ Iαα̈ +Kαα = Mea

(8)

where

m : mass of the airfoil per unit span
Sα : static imbalance
Iα : sectional moment of inertia of the airfoil
Kh : plunging spring coefficient
Kα pitching spring coefficient
h : vertical displacement (positive down)
α : angle-of-attack
L : sectional lift per unit span
Mea : sectional moment about the elastic centre (positive nose up).

and ¨ quantities relate to second-derivatives with respect to time.
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3 FLUID DISCRETISATION AND SOLUTION PROCEDURE

3.1 Spacial Discretisation

We discretise the fluid domain via a vertex-centred edge-based finite volume algorithm
[37,38]. It was selected as the method allows natural generic mesh applicability, second-
order accuracy without odd-even decoupling, and computational efficiency which is greater
than element based approaches.

Sm

Smn1

Smn2

Υmn

m

n

Vm

Figure 1: Schematic diagram of the construction of the median dual-mesh on hybrid grids. Here, Υmn

depicts the edge connecting nodes m and n.

The discrete form of the surface integral in Equation (1), computed for the volume Vm(t)
surrounding the node m, is written as:

∫

Sm(t)

FjnjdS ≈
∑

Υmn∩Vm(t)

Fj
mnC

j
mn (9)

where •mn quantities denote edge-face values and the volume bounding surface is repre-
sented in a discrete manner via edge coefficient Cmn. The latter for a given internal edge
Υmn connecting nodes m and n, is defined as a function of time as

Cmn(t) = nmn1Smn1
(t) + nmn2Smn2

(t) = nmnSmn(t) (10)

where Smn1
is a bounding surface-segment intersecting the edge (Figure 1) and the normal

unit vectors are similarly a function of time. For the purpose of calculating the edge-face
values, 3 schemes are considered and compared viz. AUSM+ –up, HLLC and Roe schemes.
In all cases, 2nd order MUSCL with van Albada limiter [32] is employed.

3.1.1 Roe Scheme

The ALE Roe flux is defined as [39, 40]:

Fj
mn = 1

2

[

Fj(Um) + Fj(Un)
]

− 1
2

4
∑

i=1

|λ̂j
i |α̂

j
iK̂

j

i (11)
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whereˆare the Roe averaged values, K̂ is the eigenvector and λ̂ is the eigenvalues of the
Jacobian matrix respectively. The wave speed is denoted by α̂.

3.1.2 HLLC Scheme

The HLLC flux [41] is calculated as:

Fj
mn =























Fj
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n) ∀ S∗ ≤ 0 ≤ Sn

Fj
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(12)

where

Fj(U∗) =













S∗(ρu1)
∗ + p∗δ1j

S∗(ρu2)
∗ + p∗δ2j

S∗ρ∗

S∗(ρE)∗ + (S∗ + vj)p
∗]













(13)

and the ∗ quantities are related to the middle wave speed.

Um

U∗
m U∗

n

Un

Sm S∗ Snt

0
x

Figure 2: Diagram showing the HLLC Riemann Solver and how the wave speeds Sm, S∗ and Sn separate
the different regions.

The wave speed S∗, Sm and Sn as shown in Figure 2 are defined as

S∗ =
ρnwn(Sn − wn) − ρmwm(Sm − wm) + pm − pn

ρn(Sn − wn) − ρm(Sm − wm)
(14)

and

Sm = min[wm − cm, (û− v) · n− ĉ]; Sn = max[wn + cn, (û− v) · n + ĉ] (15)

where û and ĉ are the Roe averages for the velocity vector and the acoustic velocity
respectively, which are a function of the left and right nodes.
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3.1.3 AUSM+ -up Scheme

The numerical flux of the AUSM+ -up scheme [28] between nodes n and m is defined as
follows:

Fj
mn = ṁmn

~ψmn + pmnj
(16)

where

~ψmn =

{

~ψm if ṁmn > 0
~ψn otherwise

; pmn =






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
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

u1

u2

1

H
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
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





(17)

and H = E + p/ρ. Further the mass flux is defined as:

ṁmn = cmnMmn

{

ρm if Mmn > 0
ρn otherwise

(18)

where cmn is the acoustic velocity at the interface and the Mach number at the interface
is given by

Mmn = M+(Mm) + M−(Mn) −Kp max(1 − σM
2
, 0)

pn − pm

0.5(ρm + ρn)c2mn

(19)

where M is the reference Mach number and M is the Mach number split function. The
pressure flux can be written as:

pmn = P+(Mm)pm + P−(Mn)pn −KuP
+(Mm)P−(Mn)(ρm + ρn)cmn(wn − wm) (20)

where P+ and P− are the pressure split function.

In the above equations 0 ≤ Kp ≤ 1, σ ≤ 1 and 0 ≤ Ku ≤ 1, for all the calculations in this
work we set Kp = 0.25, σ = 1 and Ku = 0.75.

3.2 Temporal Discretisation and Solution Procedure

Consider the following semi-discrete form for the fluid governing equation

dU

dt
= −

∫

S(t)

FjnjdS (21)

A dual-time-stepping procedure is employed for solution purposes as

∆U

∆tτ
V τ = −

∫

S(t)

FjnjdS

∣

∣

∣

∣

τ

+ SτV τ = R(Un+1) (22)

where the τ superscript denotes the previous (existing) solution or pseudo time-step and
∆tτ = tτ+1 − tτ . The source S is the real-time temporal term which is discretised via a
second order backward difference method and fourth-order Runge-Kutta is employed for
solution purposes.
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4 STRUCTURAL REDUCED ORDER MODEL

The aeroelastic governing Equation (8) may be cast into a non-dimensional ROM form
in a manner suitable for solution as

ṙ = [Ψ] r + {Φ} (23)

where the state vector r = {r1, r2}, with r1 = {h/b, α} and r2 = ṙ1. Here b is the airfoil
semi-chord. Further

Ψ =

[

0 [I]

− [M]−1 [K] 0

]

; Φ =

{

0

[M]−1 [Q]

}

(24)

where M, K and I respectively denote the modal mass, stiffness and identity matrices
given as

M =

[

1 xα

xα r2
α

]

; K =

[
(

ωh

ωα

)2

0

0 r2
α

]

(25)

where xα and r2
α denote structural parameters defined as Sα

mb
and Iα

mb2
respectively. Further,

ωh and ωα denote the uncoupled natural frequencies of plunge and pitch respectively. The
generalised force vector, Q, is calculated for the general case as

Qi =

nodes
∑

j

fj ·
dxj

dr1i

(26)

where xj and fj respectively denote displaced coordinate and aerodynamic force at node
j on the airfoil surface. The manner in which x is related to the state vector r determines
the type of ROM which results. In the 2D pitch-plunge case the following analytical
expression may be employed

[

x1

x2

]

=

{

cosα −sinα
sinα cosα

} [

x0
1 − xc

1

x0
2 − xc

2

]

+

[

xc
1

xc
2 − h

]

(27)

where x0
i is the position at rest (α = 0) and xc

i is the coordinate of the airfoil elastic
axis at rest. When considering extension to 3D, an analytical expression is typically not
known for the general case, and the norm is to employ an expression which is derived
from linear modal analysis viz.

xj = x0j

+

modes
∑

i

riû
j
i (28)
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where û is a normalised linear mode shape (eigen vector), which for the 2D pitch-plunge
case is û1 = (0,−b) and û2 = (x2 − xc

2, x
c
1 − x1). This results in the following generically

applicable linear expression for the generalised force vector:

Qi =
nodes
∑

j

fj · ûj
i (29)

In this work however, we propose to improve on the accuracy of the linear ROM via the
use of a so-called quadratic extension viz.

xj = x0j

+

modes
∑

i

riû
j
i +

modes
∑

i

modes
∑

k

rirkĝ
j
ik (30)

which results in no significant additional FSI computational cost. The resulting gener-
alised force expression reads

Qi =

nodes
∑

j

fj · ûj
i +

nodes
∑

j

modes
∑

k

2rkf
j · ĝj

ik (31)

where for the 2D pitch-plunge case

ĝ11 = (0, 0) ; ĝ12 = (0, 0) ; ĝ21 = (0, 0) ; ĝ22 =
(

x1c−x1

2
, x2c−x2

2

)

(32)

The above results in an initial value problem, for which the spatial accuracy depends on
whether the analytical, linear or quadratic expressions are employed. In this work we
solve each resulting system accurately via a fourth order Runge-Kutta method, where
fourth order Lagrange polynomials are employed to calculate Q at the second and third
steps.

5 FSI SOLUTION AND DYNAMIC MESH MOVEMENT

At the fluid-solid interface, the following equations for traction, displacement and velocity
are prescribed:

(pf )nj = − (ps)nj

uf = vs (33)

xf = xs

where the subscripts f and s respectively denote fluid and solid and nj is the related
outward pointing normal unit vector. The above are prescribed as part of the pseudo-
stepping iterative procedure.

8



For the purpose of mesh movement, we employ a simple and efficient interpolation scheme
which is well suited to parallel computing. Here, an internal node is moved as a function
of the displacement of the closest two boundary points (identified at the start of the
simulation) as follows:

δx = rδx1 + (1 − r)δx2

where δx1 and δx2 are respectively the displacements of the closest internal and external
boundary points, and r, which varies between zero and one, is computed as

r =
Dp

2

Dp
1 +Dp

2

with p = 3/2

Here D1 and D2 are the distances to the identified boundary points. Since the closest
points and the values of r are calculated only once at the beginning of the analysis, the
application of the mesh movement function is essentially instantaneous, and the mesh
does not deteriorate due to repeated oscillations.

6 EVALUATION

6.1 Transonic Forced Oscillation

Prior to applying the developed technology to an FSI problem, we evaluate its efficiency
to predict time-dependent loads. The benchmark problem selected for this purpose is the
AGARD test case No. 5 [42], which involves a NACA0012 undergoing forced sinusoidal
pitching in flow at a Mach number of M∞ = 0.755. The angle of attack of the airfoil is
varied as a function of non-dimensional time t as

α = α0 + αmaxsin(2kct) (34)

where kc = 0.0814 denotes the reduced frequency, and the mean and maximum angles of
attack are respectively α0 = 0.016◦ and αmax = 2.51◦.

The three upwinding schemes were evaluated via a grid convergence study. For this
purpose three unstructured meshes were employed consisting of 5,000; 15,000 and 40,000
vertexes (sample mesh shown in Figure 3). The predicted time varying lift and moment
coefficients are depicted in Figures 4. As shown, the calculated unsteady loads compare
well with experimental data as well as that of others [23, 24, 26, 43] thus verifying the
transonic load calculation aspect of the developed solver.

With regards to scheme comparison, the grid converges indexes (GCIs) [44] for the three
upwind schemes on the three meshes are given in Table 1.

Upwind Scheme GCI
Roe scheme 1.09 %

HLLC scheme 0.93 %
AUSM+ –up scheme 0.38 %

Table 1: Table GCIs for the upwind schemes

The rate of convergence for the three upwind schemes was calculated using the Richardson
Extrapolation. Figure 5 shows that the three schemes are between 1st and 2nd order
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(a)
(b)

Figure 3: (a) Mesh employed for the transonic forced oscillation of a NACA0012 airfoil, the mesh consists
of 15,000 vertexes. (b) Pressure contours around the NACA0012 airfoil
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Figure 4: Graph of (a) CL versus α and (b) CM versus α for the forced oscillation of the NACA0012
airfoil

accuracy. This is to be expected as the upwind schemes are reduced to 1st order in the
region of the shock. Though AUSM+–up offers superior GCI performance, HLLC shows
consistent asymptotic behaviour while being the least costly to compute. As a result, the
latter method was employed for the FSI test–cases.
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Figure 5: Graph of the difference between the predicted CL and the Richardson Extrapolation CL versus
mesh size
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6.2 Subsonic Flutter

The first FSI test-case consists of the subsonic flutter problem for a NACA64A010 airfoil
at M = 0.3. The test case is based on the classical incompressible two degree–of–free
example of Rodden [45]. In this problem damping has been included into the structural
governing equations with the employed structural parameters being

xα r2
α

ωh

ωα
β a

0.1 0.25 0.4 20 −0.2

where β denotes the airfoil mass ratio and a denotes the non-dimensionalised position
along the chord of the elastic centre. The reduced frequency, kc, corresponds to the linear
flutter speed. We use an unstructured mesh consisting of around 5, 000 vortexes. The
airfoil is given one forced pitching oscillation where αmax = 1.0◦ and the mean angle of
attack is zero after which it is allowed to interact freely with the fluid. The flutter response
calculated via the linear and quadratic ROMs is compared to the analytical method in
6. It is noteworthy that the quadratic ROM offers not only an accurate solution, but a
significant improvement over the linear ROM.
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Figure 6: Graph of the (a) Plunge Displacement and the (b) Pitch Angle versus time for the NACA64A010
airfoil, M∞ = 0.3

6.3 Transonic Flutter

The last FSI benchmark problem considers the transonic flow over a two-dimensional
representation of a swept-wing (similar to that proposed by Isogai [46]). We however
employ the FFAST airfoil (see Acknowledgements), with the following parameters:

xα r2
α

ωh

ωα
β a

1.8 3.48 1.0 60 −2.0

Here we non-dimensionalise a with the semichord, thus the the elastic centre is positioned
half a chord length in front of the leading edge for this problem. The airfoil is given the
same forced oscillation as the subsonic case. As previously, the quadratic ROM offers an
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accurate solution, while the linear ROM exhibits non-physical decaying amplitudes. The
mesh consisting of circa 5, 000 vortexes and is shown in Figure 7.

The results of the analytical, linear ROM and quadratic ROM methods of moving the
airfoil are compared in Figure 8. In this problem it is noted that the linear ROM approx-
imation is not as inaccurate as the subsonic case, this is due to smaller rotation of the
airfoil.

(a)
(b)

Figure 7: (a) Mesh employed for the transonic swept-wing model of a FFAST airfoil, the mesh consists
of 5000 vertexes. (b) Pressure contours around the FFAST airfoil
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Figure 8: Graph of the (a) Plunge Displacement and the (b) Pitch Angle versus time for the FFAST
airfoil, M∞ = 0.8

7 CONCLUSION

A fully-coupled partitioned FSI scheme was developed for sub- and transonic aeroelastic
structures undergoing non-linear displacements. The Euler equations, written in an ALE
coordinate frame, described the fluid domain while the structure was represented by a
quadratic modal ROM. A Runge-Kutta dual-timestepping method was employed for the
fluid solver, and three upwind schemes considered viz. AUSM+ -up, HLLC and Roe
schemes. HLLC and AUSM+ -up were shown to be notionally second-order accurate, but
the HLLC implementation was found to offer the superior balance between efficiency and
robustness. The developed FSI technology was applied to modelling non-linear flutter,
and the quadratic modal ROM demonstrated to offer dramatic improvements in accuracy
over the more conventional linear modal method.
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