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Abstract—The agile bandwidths of modern radars mean that
Electronic Support (ES) receivers require wide instantaneous
bandwidths leading to high data rates. Compressive sensing is
shown to be a promising technique for reducing data rates for a
number of representative radar waveforms. Real-time hardware
implementation of compressive sensing is shown to be achievable
with modern signal-processing technologies. Compressive sensing
thus holds tremendous potential for use in ES systems.
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I. INTRODUCTION

Electronic Support (ES) is that branch of Electronic Warfare
(EW) concerned with extracting as much information as pos-
sible from an adversary’s transmissions (both intentional and
unintentional). ES is thus based on receiver technology and
considers the interception, detection, characterisation, classi-
fication, and identification of emitters. The designation ES
is relatively modern and the term Electronic/Electromagnetic
Support Measures (ESM) was used historically [1]], [2].

Modern ES receiver systems are based on digital receivers
allowing powerful signal processing techniques to be used
[3[l, [4]]. Recent developments in sampling technology allow
wide bandwidths and high dynamic ranges to be achieved,
thereby driving performance improvements in ES systems.
For example, the CSIR is developing an ES system with a
sampling rate of 2 GS/s and a resolution of 10 bits.

However, the rapidly improving performance of digital
samplers has meant that the sheer volume of data being gener-
ated is becoming impractical. Even the fastest interconnection
technologies are pushed to their limits and the largest data
storage technologies are filled in periods far too short to be
operationally useful.

Compressive sensing is a relatively new technology that has
the potential to significantly reduce the data rates associated
with ES systems without noticeably affecting their perfor-
mance [5], [6]. This is achieved by transforming received
signals to a domain where less information is required to
represent the received signals. This transformation allows the
number of data points required to represent a signal or a
number of signals to be significantly reduced.
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Initial results that indicate the potential that compressive
sensing shows for application in ES systems are presented.
Compressive sensing is shown to allow the possibility of using
current data transfer and storage technologies to handle the
extremely high data rates of modern digital receivers without
compromising performance.

Section [[I] highlights the challenges associated with the ex-
tremely high data rates of modern digital receivers. Section
provides a brief introduction to compressive sensing, and
Section considers the application of compressive sensing
to typical radar waveforms. Two hardware implementations of
compressive sensing are considered in Section [V|showing that
real-time operation is possible. Finally, a brief conclusion and
suggestions for future research are provided in Section [VI]

II. DATA RATES OF MODERN ES SYSTEMS AND THEIR
EFFECT ON SYSTEM PERFORMANCE

The extremely high data rates of modern ES systems and
their implications for ES system performance are briefly
reviewed in this section.

The bandwidth requirement for ES systems is a result of
the wide agile bandwidths of modern radar systems. The agile
bandwidth of a radar is the range of frequencies over which the
radar can operate, and should not be confused with a radar’s
instantaneous bandwidth which is the bandwidth of the radar’s
receiver system. The agile bandwidth is largely determined by
the antenna and microwave system comprising the transmitter
and receiver, while the instantaneous bandwidth is mainly
determined by the Analog-to-Digital Converter (ADC) in the
receiver. A radar can thus operate at any frequency within its
agile bandwidth, but is only able to consider a band equal to
the instantaneous bandwidth at any instant.

The International Telecommunication Union (ITU) allocates
the band of frequencies from 8.5 to 10.5 GHz to radiolocation
(radar) as a primary service in Region 1 [7]]. This 2 GHz band
represents a bandwidth of only 21%, so it is reasonable to
assume that all modern X-Band radars will use at least this
range of frequencies as their agile bandwidth.

Modern Digital Radio-Frequency Memory (DRFM) systems
are based on 2 GS/s, 10 bit ADCs [8]], [9], yet these extremely
capable systems only achieve analog bandwidths on the order
of 800 MHz due to inevitable filtering requirements to avoid
aliasing. This is only 40% of the 2 GHz radar bandwidth at



X Band, so systems with even wider bandwidths are required.
With this in mind, the CSIR is conducting initial work towards
the development of DRFM systems based on 5 GS/s, 10 bit
ADC:s to obtain a 2 GHz analog bandwidth. Impressive though
these systems are, ADC technology has progressed to the point
that 12.5 GS/s, 8 bit ADCs are commercially available [10].

Both DRFM and ES systems consider the same radar
systems and thus have comparable bandwidth requirements,
however the way bandwidth is viewed differs significantly.
DRFM systems should have instantaneous bandwidths wide
enough to cover a radar’s entire agile bandwidth to ensure
that every transmitted pulse is returned. On the other hand, ES
systems take a statistical approach to detecting transmissions
and are thus not required to intercept every radar pulse. For
example, a DRFM system with an 800 MHz instantaneous
bandwidth will return only 40% of the pulses from a radar
with a 2 GHz bandwidth — an unacceptably low proportion.
However, an ES system in the same scenario will have a
40% probability of intercepting any given radar pulse, the ES
system will detect one of every ten pulses transmitted by the
radar even assuming a detection probability of only 25% — a
sufficiently high proportion to be operationally useful.

This suggests that ES systems should be simpler than
DRFM systems, but the processing requirements for ES sys-
tems are significantly greater. Complex detection and estima-
tion algorithms are required in ES systems (e.g. [3[], [4]),
while DRFM systems are only required to introduce delays
and frequency shifts which may vary over time to modify a
simulated target’s range and radial velocity (e.g. [1[l, [2]]). ES
systems also require multiple channels to perform additional
functions such as Angle-of-Arrival (AoA) estimation.

The CSIR and KACST are jointly developing an ES system
based on 2 GS/s, 10 bit ADCs. As highlighted above, this
system is expected to intercept 40% of the pulses from a radar
with a 2 GHz agile bandwidth. However, this result assumes
that the data generated by the ADCs can be processed at the
same rate as it is generated without any dead time.

The first problem is getting the data transferred from the
ADC to an appropriate processor. Serial RapidIO is a widely-
used high-speed interface standard [[11] that is representative
of other data transfer standards. The lastest incarnations of
Serial RapidIO (version 2 and later) support up to 6.25 Gbaud
per lane and up to 16 parallel lanes [[12]. While this would
appear to be more than sufficient to handle the 20 Gb/s data
rate required, this is not always the case.

Serial RapidIO uses 8b/10b encoding which reduces the line
speed of a 6.25 Gbaud lane to a transfer rate of only 5 Gb/s,
and protocol overhead will lead to further reductions to 4 Gb/s
or less. Even a four-lane, 6.25 Gbaud Serial RapidIO link
is thus unable to transfer the 20 Gb/s of data generated by
a single ADC. That said, a sixteen-lane, 6.25 Gbaud Serial
RapidIO link has a bandwidth on the order of 60 to 64 Gb/s
which is sufficient to transfer the data from even a 5 GS/s,
10 bit ADC in the next generation of DRFM and ES systems.

However, implementation of the full sixteen-lane,
6.25 Gbaud Serial RapidlO capability is still relatively

rare. For example, Texas Instruments’ new TMS320C66x
range of multicore Digital Signal Processors (DSPs),
announced as recently as 9 November 2010 [13]], only has
a four-lane, 5 Gbaud Serial RapidIO interface [14f]. Texas
Instruments’ previous TMS320C647x range of DSPs only has
a two-lane, 3.125 GBaud Serial RapidIO interface [15], [16].

To make matters worse, the discussion so far has only
considered a single ADC channel while ES systems require
multiple channels. It thus appears safe to state that modern
ES systems generate data at a rate that is too high to be
transferred to modern processing systems. Given this reality,
the best approach appears to be to buffer the data at the rate at
which it is generated and then to transfer the data to processing
hardware at a lower data rate. However, this has a negative
effect on the probability of intercepting a transmission.

For example, a four-channel, 2 GS/s, 10 bit ES system will
generate data at a rate of 80 Gb/s which is 25% more than
the optimistic assumption of 64 Gb/s for the fastest Serial
RapidIO line. This means that data will take 25% longer to
read from memory than it took to write into memory, so
the above example will only be sampling 44.4% of the time.
Assuming an 800 MHz analog bandwidth, this means that the
probability of intercepting a radar pulse in the ITU-allocated
radar X-Band is reduced to 17.8%, and the fact that not every
pulse can be detected will further reduce this value.

While a 17.8% intercept probability is likely to be accept-
able, it should be recalled that these values are based on the
maximum bandwidth achievable by the latest version of the
Serial RapidIO protocol, and as highlighted above, implemen-
tation of this maximum case is by no means universal. For
example, the data generated by a four-channel, 2 GS/s, 10 bit
ES system will lead to a intercept probability of less than
6% if the Serial RapidlO interface of Texas Instruments’ new
TMS320C66x range of DSPs is used.

It is thus clear that some means of dramatically reducing
the data rates generated by modern ES systems is required.

III. COMPRESSIVE SENSING

Compressive sensing is a relatively new concept that is
able to use data rates significantly lower than the Nyquist
rate while still allowing accurate reconstruction of the original
signals [5[], [6], [17], [18]. Compressive sensing is based on
the representation of signals using basis functions, and exploits
incoherence and sparsity to reduce the number of symbols
required to represent a signal.

The well-known ES process of reducing a signal to its
underlying characteristics including frequency, pulse width,
and Pulse Repetition Frequency or Interval (PRF or PRI) is
similar to the concept of compressive sensing. In both cases,
the original, Nyquist-sampled signal is analysed and only that
information required to reconstruct the signal is retained. The
main difference is that the typical ES parameters listed above
are only valid for a very specific class of signals whereas
compressive sensing is valid for any compressible signals.

Representing a signal as an N-element column vector x



allows the signal to be written as
x = WPc (D

where W is an N x N orthonormal matrix, and c is an N-
element column vector of the coefficients of the signal in the
domain defined by ¥. Examples of bases include the Fourier,
discrete cosine, wavelet and Gabor bases (e.g. [19]-[22]).

The first step to applying compressive sensing is finding a
domain where the representation is sparse. Sparsity implies
that the number of coefficients with significant magnitude in
the coefficient vector ¢ for a given transform W is much
smaller than the number of elements in the original repre-
sentation x. A signal with S significant coefficients is said to
be S-sparse. This requirement makes the reconstruction of the
original signal possible and will be considered further below.

Compressive sensing works by applying a transformation to
the original samples of a signal

y = ®x 2

where y is the M element compressed version of the signal
x associated with the M x N measurement ensemble ®. The
ratio M /N is known as the compression ratio and indicates
the data reduction that is achieved. Expanding the signal using
allows (2)) to be rewritten as

y =®W¥c 3)
= Oc ()

where © is a constant M x N matrix known as the holographic
basis [[17]. The role of the holographic basis is to project
an N-dimensional space onto a M-dimensional space — the
foundation of compressive sensing.

The form of (3) and (@) means that only M samples are
available in y to reconstruct N > M samples in c, so
compressive sensing considers an under-determined system.
If @ and W are coherent or even nearly coherent, y will only
contain information about a small proportion of the samples in
c. In the extreme case of perfect coherence, the elements of y
become identical to some elements of ¢ and reconstruction of
the remainder of the elements in ¢ becomes impossible. The
measurement ensemble ® and transformation matrix ¥ must
thus be incoherent for signal reconstruction to be possible.
Mathematically, mutual coherence is given by [S]], [23]]

(2, ®) = VN x (k)| (5)

max
1<k<M,1<j<N
where (¢, 1);) denotes the inner product of the & row of
® and the j" column of W. Equation (3) effectively states
that mutual coherence is the largest inner product of any
measurement ensemble of ® and any basis of ¥. Lower values
of p indicate lower coherence, indicating that ® and ¥ are
suitable for compressive sensing. When ® and ¥ are both
orthonormal bases, the mutual coherence is limited to values
in the range 1 < g < +/N. (This range is not valid for
compressive sensing because the requirement that both ® and
W be orthonormal bases would mean that both must be N x N
matrices.)

TABLE I
MAXIMAL-LENGTH SEQUENCE BANDWIDTHS AND PULSE LENGTHS USED
IN SIMULATIONS.

Bandwidth (MHz) | Pulse length (us) Sequence length
10 12.60 26 -1 = 63
100 10.22 29 -1 = 511
500 8.19 211 _1 = 2047

Basis pursuit reconstruction of a signal starts from (@) and
solves the convex problem [J5], [24]]

min ||&ls, subjectto y = O¢& (6)
ceRN
where [|€[l¢, = >, |¢|” is the £, norm. The fact that € is
sparse is a prerequisite for signal reconstruction in (6) because
minimisation of the ¢; norm in () is only possible when the
number of nonzero elements in ¢ is less than or equal to the
number of elements in y. Equation (6) can be solved using
the well-known interior-point methods (e.g. [25]). However,
(6) is not the only way to perform signal reconstruction and
that other options exist, notably matching pursuit [26].

The development now naturally moves to consider whether
suitable measurement ensembles can be found. The most
general requirement for reconstruction to be possible is that the
Restricted Isometry Property (RIP) hold for the holographic
basis (or equivalently, that a Uniform Uncertainty Principle
(UUP) is obeyed). Mathematically, the RIP requires [5]

(1=0) [lellZ, < ©ell?, < (1+9)lel?, 7

to be valid for all S-sparse vectors ¢ when § < 1. Equation (7)
implies that a solution will always exist because the energy in
the compressed signal is related to the energy in the original
signal. When

M > CSlog (N) 8)

where C is a small constant, the RIP has been shown to hold
for a large variety of matrices. Equation (8) effectively states
that reconstruction is only possible if the number of elements
in y is sufficiently larger than the number of nonzero elements
in € to allow (6) to be solved. An example of a matrix for
which the RIP holds is the Bernoulli ensemble where each
element is set to to 41/v/M with equal probability.

IV. COMPRESSIVE SENSING OF TYPICAL RADAR
WAVEFORMS

The application of compressive sensing to ES will be
investigated using the following waveforms:

Unmodulated pulse: This signal is typical of older radars.

Linear frequency chirp: Used in many pulse compression and
Low Probability of Intercept (LPI) radars.

Binary phase coding: Phase coding is also used in pulse
compression, and Maximal-Length (ML) sequences are
used here as representative examples.

The signals are filtered with a 100-element FIR filter to ensure

that they satisfy the specified bandwidths.

The bandwidths for the frequency chirp and phase-coded
signals were varied from 10 MHz to 500 MHz in the steps



TABLE II
RMS ERROR FOR AN UNMODULATED SINUSOID.

Number of Compression ratio
samples 0.5 0.4 0.3 0.2 0.1
100 0.0724  0.0913  0.1113  0.1354  0.3486
200 0.0507  0.0589 0.0737  0.1257  0.3030
500 0.0290 0.0343  0.0450 0.0663  0.1345
1000 0.0208 0.0273  0.0362  0.0440 0.0778
2000 0.0143  0.0190 0.0255 0.0342  0.0620

shown in Table [l The pulse lengths were set equal to 10 us
for the unmodulated and swept-frequency cases. However, the
phase-coded case is limited by the relatively small number of
ML sequences and the pulse lengths listed in Table [] were
thus used to ensure that the bandwidth is correct.

The ES system used in the analysis is based on a 2 GS/s,
10 bit ADC. A baseband centre frequency of 500 MHz was
used in all cases to place the signal at the centre of the ADC’s
band to prevent aliasing at wide bandwidths. The signals are
normalized to half the full-scale range of the ADC and a
Signal-to-Noise Ratio (SNR) of 10 dB was used.

A Discrete Cosine Transform (DCT) was used as the basis
W because the signals considered are sparse in that domain
unless their bandwidths are extremely wide.

A 10 ps pulse will have 20,000 samples when sampled at
2 GS/s, but the number of samples processed simultaneously
will be significantly lower than this value. This potential
difficulty was overcome by processing N samples at a time
after padding the pulse with zeros to ensure that the total
number of samples is a multiple of N.

The reconstruction error will be expressed as a Root Mean-
Square (RMS) error computed from

P

1
E= |52 (@ —an)’ ©)

p=1

where x,, and x,, are the P elements of the original and
reconstructed signals respectively normalized so that the peak-
to-peak amplitude of the original signal is equal to 1.

The results of reconstructing an unmodulated sinusoid are
given in Table [} The RMS error is good when both the num-
ber of samples and the compression ratio are high but becomes
poor when this is not the case. This is perhaps surprising
given that an unmodulated sinusoid is extremely sparse in the
DCT domain. However, the reconstruction process is unable to
uniquely identify the small number of significant coefficients
when the number of available samples is small. The situation
might be improved by using an alternative transform W or
another reconstruction technique.

The RMS errors obtained when reconstructing the 10 MHz
frequency chirp and phase modulated signals are summarized
in Tables [ITI] and The results are seen to be extremely
good unless both the number of samples and the compression
ratio are small. The results are better than for the unmodulated
sinusoid because the number of significant coefficients is
larger. In addition, the RMS error is lower for the frequency
chirp than for the phase-modulated signal, suggesting that the

TABLE III
RMS ERROR FOR A 10 MHZ LINEAR FREQUENCY CHIRP.

Number of Compression ratio
samples 0.5 0.4 0.3 0.2 0.1
100 0.0675 0.0999 0.1260 0.1311  0.2774
200 0.0530  0.0668 0.0841 0.1291  0.2090
500 0.0309 0.0380 0.0522 0.0684  0.1247
1000 0.0207  0.0263  0.0338  0.0457  0.0775
2000 0.0156  0.0188 0.0256 0.0344  0.0572
TABLE IV

RMS ERROR FOR A 10 MHZ PHASE-CODED PULSE.

Number of Compression ratio
samples 0.5 0.4 0.3 0.2 0.1
100 0.0715 0.0920 0.1150  0.1434  0.3309
200 0.0504 0.0623 0.0795 0.1221 0.3071
500 0.0300 0.0381 0.0519 0.0754  0.1550
1000 0.0220  0.0280 0.0384  0.0510  0.1052
2000 0.0158 0.0196 0.0268 0.0383  0.0812

chirp is more compressible.

The 100 MHz frequency chirp and phase modulated signal
reconstructions are considered in Tables |V] and As before,
the RMS errors are low in the majority of cases and the
chirp signal has lower reconstruction errors than the phase-
modulated signal. The main difference is that the error for
the phase-modulated signal increases rapidly when compres-
sion ratios of 0.2 or less are encountered. This behaviour is
anticipated in light of the threshold implied by (8).

Reconstruction of signals with a 500 MHz bandwidth is
evaluated in Tables and for the frequency chirp and
phase-modulated cases respectively. The phase-modulated case
follows a similar trend to the previous cases except that the
errors are significantly higher due to the larger number of
significant coefficients in the DCT domain.

However, the RMS error for the 500 MHz frequency chip
first decreases as the number of compressed samples increases
as before, but the reaches a minimum and increases thereafter.
This rather surprising characteristic is a result of the unique
nature of a frequency chirp and can be explained by consider-
ing Figure[I] As the number of points N increases, the number
of significant coefficients increases because the signal sweeps
across a wider band in the time associated with N thereby
reducing the signal’s sparsity.

The results in Tables [M] to show that increasing the
number of processed and compressed samples (N and M
respectively) decreases the RMS error. However, multiplying
an M x N matrix by an N-element column vector in (2)
requires M N multiplications and M (N — 1) additions. The
required number of Multiply-Accumulate Cycles per Second
(MACS) is given by

_fs
MACS = 2 MN (10)
= fM (1n

where fs is the sampling rate because the data are considered
in blocks of IV samples and each compression computation
requires M N multiplications. Table gives the computa-
tional requirements for the measurement ensembles used in
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Fig. 1.

The normalized DCT coefficient magnitudes of a linear frequency chirp with a 500 MHz bandwidth sorted from smallest to largest for different

values of N. The number of coefficients with significant magnitudes increases with N. The dotted lines are the last group of points padded with zeros to

have N points.

TABLE V
RMS ERROR FOR A 100 MHZ LINEAR FREQUENCY CHIRP.

TABLE VII
RMS ERROR FOR A 500 MHZ LINEAR FREQUENCY CHIRP.

Number of Compression ratio
samples 0.5 0.4 0.3 0.2 0.1
100 0.0764 0.1062 0.1228 0.1684  0.2974
200 0.0552  0.0694 0.0897 0.1339  0.2269
500 0.0343  0.0442 0.0602 0.0753 0.1378
1000 0.0257 0.0335 0.0464 0.0684 0.1215
2000 0.0174  0.0245 0.0375 0.0542  0.1089
TABLE VI

RMS ERROR FOR A 100 MHZ PHASE-CODED PULSE.

Number of Compression ratio
samples 0.5 0.4 0.3 0.2 0.1
100 0.1097  0.1325 0.1590 0.2052  0.3144
200 0.0904 0.1100 0.1346  0.1683  0.2549
500 0.0799  0.0948 0.1121  0.1420  0.2195
1000 0.0771  0.0923 0.1107 0.1525 0.2778
2000 0.0762  0.0988 0.1293  0.2140  0.3416
TABLE VIII

RMS ERROR FOR A 500 MHZ PHASE-CODED PULSE.

Number of Compression ratio
samples 0.5 0.4 0.3 0.2 0.1
100 0.0745  0.1092 0.1546 02538  0.3317
200 0.0528 0.0773  0.1191 0.2104  0.3270
500 0.0364 0.0532 0.0926 0.1766  0.3116
1000 0.0250  0.0364 0.0737 0.1674  0.3010
2000 0.0175 0.0282  0.0600 0.1626  0.2879

Number of Compression ratio
samples 0.5 0.4 0.3 0.2 0.1
100 0.2180 0.2710 0.3117  0.3467  0.3707
200 0.2124 02549 0.2994 0.3484  0.3723
500 0.2101 02572 0.3017 0.3414  0.3763
1000 0.2000 0.2519 0.2984 0.3360  0.3733
2000 0.2017  0.2452 0.2924 0.3334  0.3598

Tables [ to There is thus a compromise between the
desire to more accurately reconstruct signals by using larger
compression ratios and numbers of samples, and the need to
perform the necessary computations.

The results considered above only use Bernoulli measure-
ment ensembles and basis pursuit reconstruction. As outlined
in Section[[TI} other options are available for both the measure-
ment ensemble and reconstruction, so it is possible that better
results could be achieved. Despite this observation, the results
presented here demonstrate that successful reconstruction of
typical radar waveforms is possible. The natural next question
is whether compressive sensing implementations can be fast
enough to be useful.

V. HARDWARE IMPLEMENTATIONS AND THEIR
IMPLICATIONS FOR ES SYSTEMS

A Bernoulli measurement ensemble was implemented on
both a Field Programmable Gate Array (FPGA) and a DSP to
evaluate the practical implications of implementing compres-
sive sensing.

A Xilinx Virtex-5 SX95T FPGA in the -2 speed grade [27]
was used to implement a Bernoulli ensemble with M = 32
and N 160 for a compression ratio of 0.2 which was

simulated using Xilinx’s System Generator 10.1.1 software.
The size of the measurement ensemble was determined by the
requirement to compress data from a 2 GS/s, 10 bit ADC data
in real time — that is the processing happens at least as fast
as the data is generated. Each of the 640 Xilinx “DSP48E
Slices” in the Virtex-5 SX95T is capable of performing 500
million multiply-accumulate operations per second, giving a
theoretical processing capability of 320 GMACs.

For the DSP implementation, a Bernoulli ensemble with
M =400 and N = 1152 for a compression ratio of 0.35 was
implemented on a Texas Instruments TMS3206474 DSP run-
ning at 1.0 GHz. The measurement ensemble size was limited
by the requirement that it be hosted in L2 cache to avoid
performance penalties due to cache misses. The necessary
computations take 578 us, so this is far too slow to compress
data from a 2 GS/s, 10 bit ADC in real time. However, only
one of the three available processing cores was used, four
compression calculations are preformed simultaneously and
the clock speed can be increased to 1.2 GHz, so an im-
provement of over fourteen times is possible. Furthermore, the
new TMS320C6678 has a theoretical processing capability of
320 GMACS for integer computations versus only 23 GMACS
for the TMS3206474 running at 1 GHz.



TABLE IX
COMPUTATIONAL COST IN GMACS OF APPLYING COMPRESSIVE SENSING
TO THE DATA GENERATED BY A 2 GS/s ADC.

Number of Compression ratio
samples 0.5 0.4 03 02 0.1
100 100 80 60 40 20
200 200 160 120 80 40
500 500 400 300 200 100
1000 1000 800 600 400 200
2000 2000 1600 1200 800 400

In both the FPGA and DSP cases, the bold computational
load values in Table should be achievable assuming that
50% of the theoretical maximum processing capability of
320 GMACS is achieved. Real-time compression of data
using compressive sensing approaches is thus achievable with
modern high-speed FPGAs and DSP processors.

VI. CONCLUSION

This paper started by highlighting the extremely high data
rates generated by modern ES systems. These data rates arise
naturally from the agile bandwidths of modern radars, so a
reduction in sampling rates will lead to unacceptable system
performance degradation. Even an operation as simple as
merely transferring data from one system to another was
shown to be extremely challenging even with the fastest
available systems. The need to reduce data rates without
compromising the instantaneous bandwidth or dynamic range
of ES receivers is thus apparent.

Compressive sensing was introduced as an option to reduce
data rates while still allowing accurate reconstruction of the
original signals. Compressive sensing was then simulated
on representative radar waveforms, and the results are en-
couraging. Narrowband signals are shown to be accurately
reconstructed with reasonable measurement ensemble sizes,
though ultra-wideband signals remain a challenge.

Real-time hardware implementation of data compression
using compressive sensing approaches was considered and
shown to be achievable with modern FPGA and DSP systems.

The successful implementation of compressive sensing in
ES systems has thus been shown to be both necessary given
radar agile bandwidths and possible in light of existing signal-
processing technology.

However, this work only presents initial results and the
computationally efficient reconstruction of signals has not been
addressed. The significance of this limitation is somewhat
diminished by the fact that reconstruction does not need to
take place in real time and can be accomplished far from
the ES system generating the data. These observations mean
that high-performance computing technology can be leveraged
for reconstruction. Furthermore, the fact that the power in the
compressed signal is related to the power in the original signal
by the RIP opens the possibility of performing detection
on compressed signals without requiring signal reconstruction
(e.g. [28], [29]).
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