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Abstract 

This research explores the potential benefits of fusing active and passive medium resolution 
satellite-borne sensor data for forest structural assessment. Image fusion was applied as a 
means of retaining disparate data features relevant to modeling and mapping of forest 
structural attributes in even-aged (4-11 years) Eucalyptus plantations, located in the southern 
Kwazulu-Natal midlands of South Africa. Remote sensing data used in this research included 

the visible and near-infrared bands of the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER), as well as a fine beam (6.25 m resolution) Radarsat-1 
image. Both data sets were collected during the spring of 2006 and fused using a modified 
discrete wavelet transformation. Spatially referenced forest inventory data were also 
collected during this time, with 122 plots enumerated in 38 plantation compartments. 
Empirical relationships (ordinary and multiple regression) were used to test whether fused 
data sources produced superior statistical models. Secondary objectives of the paper included 
exploring the roles of texture, derived from grey level co-occurrence matrices, and scale in 
terms of forest modelling at the plot and extended plot levels (Voroni diagrams). Results 

indicate that single bands from both the optical and SAR data sets were not adept at 
modeling both basal area and merchantable timber volume with adjusted R2–values < 0.3. 
An optimized multiple regression approach (adjusted R2) improved results based on mean, 
range, and standard deviation statistics when compared to single bands, but were still not 
suitable for operational forest applications (Basal Area = 0.55 & Volume = 0.59). No 
significant difference was found between fused and non-fused data sets, however optical and 
fused data sets produced superior models when compared to SAR results. Investigations into 
potential benefits of using textural indices and varied scales also returned inconclusive 
results. Findings indicate that the spatial resolutions of both sensors are inappropriate for 
plantation forest assessment. The frequency of the C-band Radarsat-1 image is for instance 

unable to penetrate the canopy and interact with the woody structures below canopy, leading 
to weak statistical models. The lack of variability in both the optical and SAR data lead to 
unconvincing results in the fused imagery, where in some cases the adjusted R2 results were 
worse than the single data set approach. It was concluded that future research should focus 
on high spatial resolution optical and LiDAR data and the development of automated and 
semi-automated forest inventory procedures. 
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1. Introduction 

 

Sustainable forest management requires data that is spatially explicit, comprehensive, and 

geometrically accurate (Franklin 2001). Forest managers are constantly measuring and mapping 

forest health and timber resources within a sustainable management framework (Baskent and Keles 
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2005) and accurate measurements allow the forest manager to describe and understand relationships 

that exist within the forest stand (Running et al. 1986). These relationships lead to an enhanced 

knowledge-base of the resources available, and place the forester in a position to make informed 

decisions regarding silviculture, harvesting, and stand rotation. The timber industry southern Africa 

is managed based on a short rotation scheme where single tree species are grown as part of a mono-

culture agricultural crop (Owen 2000). The short rotation scheme used in South Africa requires an 

inventory program that constantly updates inventory databases with relevant information that is 

primarily used for the planning of silviculture and harvesting activities (Uys 2000). Collection of 

this information constitutes a time consuming manual process that requires a large amount of 

logistical and financial support. Increasing competition from international growers and decreasing 

profit margins have highlighted the need for streamlining forest management activities, in 

particular, the assessment of forest structure through inventory procedures. Remote sensing tools 

have long been identified as a means of streamlining this process and already play an important role 

in forest management (Norris-Rogers et al. 2006). 

 

Forest stand structure characteristics are typically modelled using various statistical techniques 

(Rahman et al. 2005), whereby forest characteristics are measured during field campaigns and 

related to remotely sensed satellite data (Castro et al. 2003, Lu 2005). Relationships between the 

data and measured forest structure variables are often derived in the form of a statistical model, e.g.  
 

FS = A*dn + B      (1) 
 

where FS is the forest structure variable being analysed, A is the slope of the equation, dn is the 

digital number (either radiance or reflectance) of the satellite image, and B is the intercept. The 

objective is to derive an equation that explains most of the variance in the measured field data using 

remotely sensed imagery (Turner et al. 1999, Cohen et al. 2003, Foody et al. 2003), followed by 

extrapolation of such a relationship towards derivation of spatially explicit maps of the variable of 

interest (Lefsky et al. 1999, Zheng et al. 2004). Various authors have made use of empirical 

approaches using medium resolution satellite imagery (Aplin 2006)) with a spatial resolution of 

between 6 and 100 m for the quantification of inventory variables. The use of medium resolution 

imagery for this task relates to the synoptic scale view of these sensors with single scenes covering 

many hundreds of square kilometres and therefore resulting in the potential to inventory large 

forested areas with one scene. 
 

Inventory variables have been quantified and mapped by various authors using several different 

approaches. Stand density (number of trees per unit area) and basal area in Madagascar were 

assessed using a combination of spectral channels and vegetation indices. The authors tested both 

linear regression and artificial neural networks (ANN) and found that the ANN approach produced 

strong significant relationships between spectral reflectance and basal area (r=0.79, p<0.01), while 

NDVI was significantly correlated to stem density (r=-0.69, p<0.01) (Ingram et al. 2005). Basal 

area has also been mapped using the K-nearest neighbours (k-NN) approach where field inventory 

data were used in combination with temporal Landsat scenes (Maselli et al. 2005). Results, 

quantified using the R
2
 measure, ranged from 0.06 for single scenes to 0.68 for temporal data sets 

with the majority of R
2
 values above 0.4. The k-NN approach is a popular method for forest 

inventory analysis, but is only suitable when a large number of field / training plots are available. 

Timber volume and biomass have also been quantified using remote sensing tools; Heiskanen 

(2006) used imagery acquired by the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) to quantify above ground biomass recording good correlations between 

spectral reflectance (r > 0.69), vegetation indices (r > 0.85), and field measured biomass.  
 

Researchers recently have used a combination of Moderate Resolution Imaging Spectroradiometer 

(MODIS) and ASTER data to estimate biomass (Muukkonen and Heiskanen 2007). The authors 

were able to use the ASTER data as an intermediary between field inventory data and coarse 



resolution data by using regression equations derived from ASTER data (Muukkonen and 

Heiskanen 2005). This approach facilitated the development of a method by which inventory data 

and potentially carbon stocks could be monitored on a regular basis. Efficient empirical approaches 

to forest assessment using field measured inventory data have been developed (e.g., Rahman et al. 

2005) and implemented in several studies with what appears to be suitable statistical accuracy. 

Turner et al. (1999) reported an adjusted R
2
 of 0.74 for the modelling of leaf area index, while 

Foody et al. (2001) reported an adjusted R
2
 value of 0.8 for assessment of above ground biomass. 

However, short rotation forestry of the type practiced in southern Africa, requires particularly 

accurate estimates of forest variables.  

 

While the research presented seems to provide operational solutions to the industry there are, 

however, documented problems associated with the use of both passive and active medium 

resolution sensors. For instance, it has been shown that empirical models developed using optical 

data are site (Foody et al. 2003) and species (Zheng et al. 2004) specific. Empirical relationships, 

on the other hand, are stronger in successional forests (R
2
 > 0.7) (Lu 2005) as opposed to mature 

forests (R
2
 < 0.5), where saturation causes weak empirical models (Castro et al. 2003). Saturation 

has also been identified as a problem when using radar data, with radar frequency identified as 

being a primary contributing factor (P-band: 200 t/ha
-1

; L-band 40 t/ha
-1

; C-band 40 t/ha
-1

) (Imhoff 

1995, Ramsey 1999, Castel et al. 2002) along with the age and biomass of the forest in question 

(Austin et al. 2003). Recently it has been suggested that the fusion of multiple sensor systems may 

negate the impact of saturation and provide analysts and forest managers with accuracies suitable 

for operational planning and forest management (Holmgren and Thuresson 1998). Image fusion has 

been used operationally for military applications and has distinct potential benefits in forestry and 

sensor-web technology (Pohl and van Genderen 1998). 
 

Optical systems use passive sensors that measure reflected radiance at different wavelengths of the 

electromagnetic magnetic spectrum (EM). Typically these data are collected in the visible, near- 

and shortwave infrared portions of the EM. Scientists are able to discern land cover features based 

on their spectral properties by combining these channels using a suitable color model (Hunt 1980). 

SAR sensors, on the other hand, illuminate off-nadir surfaces using short pulses of electromagnetic 

energy, part of which is reflected back to the sensor as backscatter (Bergen and Dobson 1999, 

Balzter 2001, Dobson 2000). The light energy used by radar sensors falls within the microwave 

portion of the EM with wavelengths ranging from 0.001-1 m (Bergen and Dobson 1999, Campbell 

2002). It has been postulated that application-relevant details from each sensor can be combined 

into one data set which will result in the value of the combined data being more than the sum of the 

individual images (Ehlers 2005). This argument is based on the fact that both systems collect 

different types of information.  

 

Tanaka et al. (1998) showed that by using optical and radar data, they were able to predict both 

species type and structural parameters with a high degree of accuracy. Moghaddam and Duncan 

(2001) and Moghaddam et al. (2002) have also reported positive results from the combined use of 

radar and optical sensors, particularly for the estimation of foliage mass and LAI. Furthermore, 

models developed were able to predict foliage biomass at levels that would not be possible if only 

one sensor was used (TM RMSE = 4.13 t/ha
-1

, TM+SAR RMSE = 2.28 t/ha
-1

). Magnusson and 

Fransson (2004) reported similar outcomes when assessing the accuracy of combined optical and 

radar data sets for stem volume estimates in Sweden. The authors reported that Root Mean Square 

Errors (RMSE) improved by up to 15% using regression techniques when compared to results 

derived from single sensor analysis. A study using an alternative method (K-NN; Nearest 

Neighbours) in the same area also reported significant improvements in the estimation of forest 

variables (Optical RMSE = 50 m
3
/ha

-1
, Optical+SAR = 37 m

3
/ha

-1
) (Holmstrom and Fransson 

2003). They also found that optical data provided more robust estimates at lower stem volumes 

while the inverse was true for SAR, which lead to the result where the combination of both sensors 



provided robust estimates throughout the age range (Optical RMSE = 66 m
3
/ha

-1
, SAR RMSE = 

51.9 m
3
/ha

-1
, Optical+SAR = 38 m

3
/ha

-1
). The combined use of SAR and optical data has thus 

shown potential for forest inventory applications. However, it is not known whether image fusion 

will have the same impact in the southern African forestry industry where largely homogenous 

stands of mono-culture timber species are grown on relatively short rotation schedules. 
 

This study investigated the use of optical remote sensing and synthetic aperture radar (SAR) 

systems for forest structural assessment in managed, even-aged, short rotation plantations. It also 

explored the potential benefits of using a combined optical / SAR data set for forest structural 

assessment. Empirical models were computed between remote sensing data and field enumerated 

inventory data to determine the applicability of both active and passive remote sensing tools. The 

enumerated data included basal area (ba) and merchantable volume (mvl). Independent variables 

included the individual SAR and optical bands as well as several fused data sets. A sub-theme of 

the paper sought to explore the influence of SAR texture (Haralick 1979, van der Sanden and 

Hoekman, 2005), particularly in the fused data sets. Mean and contrast gray-level co-occurrence 

matrices, derived from the SAR image, were also fused with the optical bands using a wavelet-

based image transformation and fusion procedure. A second sub-theme of the paper explored the 

scale at which modeling was most successful. Typically, remote sensing data are extracted from the 

images based on the size of the plots. The argument is that this reflectance data should characterize 

the inventory data sampled in the field. Our research extended this concept through the use of 

Voroni diagrams derived from the centre of each field plot and the boundaries of each 

compartment. The above analysis was stratified into young (4-6 yrs) and mature (7-11 yrs) plots. 

The potential use of medium resolution satellite data for forest assessment holds many advantages 

for operational applications, given the synoptic scale view of the sensor. This characteristic 

provides a wide field of view and enables rapid assessment of large areas, thereby reducing both 

time and cost of management and inventory activities, while the standardized approaches could lead 

to more accurate structural information.  
 

2. Materials and Methods 

2.1 Study Area 

The study was conducted in the Kwazulu-Natal province located in eastern South Africa. The 

sampled plantation stands are located approximately 50 km south of the town of Pietermaritzburg 

(figure 1). The area is known locally as the southern Natal midlands. Rainfall falls predominantly in 

the summer months with cold dry winters and warm wet summers. Mean annual rainfall ranges 

from 746-1100 mm (Schulze 1997) and is associated with either frontal systems originating from 

the south or from thunderstorms generated from convection activity. Temperatures range from high 

20°C values in summer to below 10°C in the winter. Extreme temperature changes are a function of 

altitude and proximity to the warm Indian Ocean. Soils in the area are characterized by fine sandy 

clay and humic topsoils that are underlain by yellow or red apedal subsoils. The topography of the 

study area is flat with undulating hills and is classified by Schulze (1997) as being low mountains. 

Altitude ranges from 362 m amsl to over 1500 m amsl with an average altitude of approximately 

874 m amsl. 
 
Insert figure 1 here 
 



2.2 Data sets 

2.2.1 Inventory Data 

 

Sampled plantation compartments were identified using a Geographical Information System 

maintained by a local timber company. These data are deemed to be highly accurate (1:15,000), is 

routinely updated and contains the attributes which were used to select compartments for 

enumeration. Attributes included the location of compartments, compartment size (>1ha), planting 

and felling dates (> 4 years old; not due for harvesting), and coppice status. The compartment 

selection was also restricted to three species, namely Eucalyptus grandis, Eucalyptus nitens and a 

clone, Eucalyptus grandis x nitens. These species were selected following consultation with 

industry partners, based on their economic importance to the industry. Only compartments between 

the ages of 4 and 11 years were selected, since it is assumed that 4 year old compartments had 

reached maturity and required no additional silvicultural activities. A maximum age of 11 was used 

as most stands have been felled at this age. Wherever possible, the selection of compartments was 

also influenced by the compartment site quality. A gradient of good, medium and poor site 

qualities, based on total available soil water content, were defined, resulting in a total of  38 

compartments being sampled. 
 

Recent aerial photographs were used in conjunction with commercial timber stock maps to identify 

potential sample plot locations prior to field enumeration. Plot locations were located in the field 

using a hand held Global Positioning System (GPS). Canopy entry points into the compartments 

were recorded with distance and bearing measurements collected for the plot centres relative to the 

entry points, thereby negating poor and inaccurate GPS reception under canopies. Distance and 

bearing measurements were digitised in a GIS and used to locate the centre of each sample plot. 

The number of plots per compartment was determined based on the size of the compartment; the 

total area of the sample plots was more than 5% of the total surface area of the compartment 

wherever possible, with at least two plots sampled regardless of compartment size. Fifteen meter 

fixed-radius plots were established once the plot centres had been identified. Inventory 

measurements collected during the field campaign included diameter at breast height (dbh), tree 

height (tht), and stems per hectare (spha). All trees with a dbh ≥ 5cm were measured within each 

plot while heights were measured for only a sub-sample of trees. Tree height was measured using a 

Vertex III hypsometer; trees were selected for height measurement based on their dbh with the full 

range of dbh values sampled. The number of stems per plot was used to determine spha. A total of 

122 plots were sampled in 38 compartments. Dbh and tht were used to derive statistical 

relationships between tree diameter and height. Logarithmic regression was used to predict the 

heights of unsampled trees. The regression equations used returned statistically significant R
2
 

values > 0.8 at the plot and compartment levels. Tree height was modelled using these equations for 

each tree and measured dbh. Derived inventory variables were calculated using established methods 

and equations. Basal area was calculated for all trees within the plot using the following equation 

(Avery and Burkhart 1994). 
 

2rBAi        (1) 

 

Where BAi is the basal area and r is the radius calculated from dbh. It was possible to calculate ba 

per plot and hectare, since spha is known, which in turn was used to calculate merchantable tree 

volume using the following equation. 
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Where Vt is the volume of a single tree, and β0 and β1 are volume coefficients specific to plantation 

species used in this study. DBH and HT are the tree height and diameter at breast height, 

respectively. Table 1 shows the summary statistics of measured and derived variables.  
 
Insert table 1 here 
 

The plot level inventory data were digitised and stored in a GIS created using the GPS and distance 

and bearing measurements collected in the field. GPS data were accurate to ± 3 m with an 

acceptable error (± 5 m) associated with the distance and bearing measurements. The data stored in 

the GIS were then overlaid on the pre-processed remote sensing data and used for collocation and 

data extraction. 
 

2.2.2 Remote Sensing Data 
 

Passive (optical) data used in this study were captured by the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) flying onboard the TERRA spacecraft. The sensor 

images the earth in a sun-synchronous orbit approximately 705 km above the surface of the earth. 

The sensor images in the visible, near-infrared, and shortwave infrared using three separate cameras 

with a temporal resolution of approximately 16 days, provided weather conditions allow for repeat 

measurements (Yamaguchi et al. 1998). RadarSAT-1 captured the synthetic aperture radar (SAR) 

scene. The imagery was collected on the 17
th

 of October 2006 approximately one month before the 

ASTER scene (20
th

 November 2006). RadarSAT-1 is a C-band synthetic aperture radar collecting 

data at various spatial resolutions and incidence angles. The data used in this study were fine-beam 

data (± 6.25 m) collected at an incidence angle of 47.703°. The C-Band sensor has a wavelength of 

5.6 cm with a single polarization in the horizontal plane. 
 

Pre-processing of the ASTER data began with the geometric correction of the level 1B data. Level 

1B data are delivered as radiometrically calibrated and geometrically coregistered bands for all 

channels. Geometric correction was only applied to the three VNIR bands of interest. 

Orthorectification was undertaken using the ORTHOENGINE module of PCI Geomatica (Version 

10.1). Ground control points (GCPs) were digitized from a 1:50 000 topographical map using water 

bodies and road intersections as points of interest (suitability of GCPs was determined using the 

root mean square error of the orthorectification). A 20 m digital elevation model (DEM), produced 

by the Chief Directorate of Surveys and Mapping (CDSM), was used to correct for terrain-induced 

error. GCP root mean square error (RMSE) was 3.85 m with the final accuracy of the 

orthorectification well within the accepted half pixel tolerance. The level 1B data were converted to 

atmospherically corrected reflectance following orthorectification. Atmospheric correction was 

undertaken using the Fast Line of Sight Analysis of Spectral Hypercubes (FLAASH) algorithm 

(Felde et al. 2003); no atmospheric data were available for the acquisition day so a standard mid-

latitude summer atmospheric model was used in conjunction with a rural aerosol model. 
 

RadarSAT-1 pre-processing was also undertaken using the ORTHOENGINE module of PCI 

Geomatica. The SAR data were delivered in Hierarchical Data Format (HDF), Georeferenced Fine 

Resolution (SGF) imagery (path orientated). GCPs used in the ASTER geometric correction were 

also employed to correct the SAR image. Twenty one GCPs were used, most of which were located 

at or near the corners of small lakes and farm dams, as these features were readily identifiable in the 

SAR image. The data were corrected and projected to a common coordinate system (Gauss 

Conformal, central meridian 31° East, WGS 84) using the CDSM DEM and the 21 SAR GCPs. The 

projection is known locally as LO31. Orthorecitifed accuracy of the SAR image was also within the 

half pixel accepted tolerance (RMSE = 2.8 m). The SAR image required substantial radiometric 

processing following orthorectification; terrain error was corrected by using a built in SAR model 



with speckle suppression and a 7x7 Kuan filter (Zhenghao and Ko, 1994). The final image was 

converted to radar backscatter (sigma nought) and rescaled to 8 bit grayscale (0 – 255). Two grey-

level co-occurrence measures were also computed (Mean and Contrast) to investigate the textural 

elements in SAR imagery, with both data sets included in the final analysis. 
 

2.3 Image Fusion 

 

It was found that no image-to-image registration was required following the pre-processing of both 

the ASTER and RadarSAT-1 imagery, since the corrected data sets were both within one pixel of 

each other. The selected image fusion procedure was a modified discrete wavelet transformation 

(dwt). The approach modifies the standard dwt approach through the combined use of the Intensity-

Hue-Saturation transformation and the dwt approach. A hybrid image fusion procedure that 

incorporates the IHS transformation into a dwt fusion procedure was recently described by Amolins 

et al. (2007) and has been used in this study. The approach is as follows: (i) The RGB optical data 

set is converted to IHS colour space; (ii) the SAR image is stretched to match the Intensity image; 

(iii) a dwt is then performed on the SAR and Intensity images; (iv) following decomposition, the 

detail and approximation coefficients from the SAR and Intensity image are combined using a 

substitution approach; (v) once combined, an inverse IHS-to-RGB transformation is performed 

using the modified Intensity band with the result being the fused optical and SAR channel. A 

similar method for the integration of SAR and optical data, using a modified Brovey transformation 

in conjunction with the „á trous‟ wavelet decomposition scheme has been used by Chibani (2007). 

The author reported promising results using both qualitative and quantitative assessment 

procedures. A modified wavelet fusion procedure has also been used by (Alparone et al. 2004). In 

that study, however, the authors modified the IHS transformation by using a generalized intensity 

modulation (GI) approach. The GI approach extends to the use of an arbitrary number of input 

multispectral bands and applies similar procedures to those mentioned above.  

 

All authors cited here reported improved results when using a modified approach. Results from 

qualitative and quantitative test runs on the SAR and optical imagery fusion using a variety of 

procedures is reported elsewhere. The present analysis used the Amolins et al. (2007) approach. 

Each optical band was fused individually to each of the SAR images. This resulted in one 

backscatter scene and two GLCM textural scenes, after which the resulting bands, were stacked to 

create pseudo optical bands.  
 

2.4 Analysis Methodology 

 

Plot level inventory data, described above, were joined to the plot centres, after which plot area was 

calculated based on the slope of the plot (also recorded in field). These data formed the base data set 

used in the empirical modelling of forest structural attributes. The measured and derived field data 

constituted dependent variables, while remote sensing data used as explanatory or independent 

variables. Plot level remote sensing data were extracted for each plot within the GIS. Three 

distributional measures were extracted for each plot, namely mean, range, and standard deviation. 

These values were extracted from the remote sensing data on a band-by-band procedure for areas 

coincident with the field plot locations. The area covered by each plot varied due to slope 

differences and in some cases only 5 or 6 pixels were extracted. The scale of the study therefore 

was increased, with the goal of ensuring viable statistical variability and subsequent increased 

variable ranges for the independent variables. Voroni diagrams were constructed using plot centres, 

after which inventory data were assigned to the larger Voroni plots based on spatial association. 

Remote sensing data were subsequently extracted based on the area of the Voroni diagrams with the 



mean, range, and standard deviation extracted for each Voroni plot. Figure 2 provides an overview 

of the different scales used to extract pixel values from the remote sensing data. 
 

2.4.1 Model development and variable selection 
 

Unfused and fused data sets were compared using regression-based statistical models. Plot- and 

Voroni plot level variable mean, range, and standard deviation were used in multiple regression 

models, while only the mean values were used in the simple linear regression models. Output 

statistics used to compare the models included R
2
, adjusted R

2
, and Root Mean Square Error 

(RMSE). Two important inventory variables were modeled, namely basal area and merchantable 

timber volume. Five data sets were used to predict both basal area and merchantable volume at 

varying scales for 98 plots and Voroni-plots, where each of these data sets consisted of three bands 

consisting of either optical, radar, or pseudo-optical bands (fused data sets). The individual bands 

were initially used to predict the inventory variables using OLS; however, it was evident that 

several plots / Voroni- plots represented significant outliers and compromised the OLS results. 

Cook‟s distance was used to identify and remove outliers (Cook 1977).  

 

All input bands plus their distributional measures (range and standard deviation) were used to 

predict inventory measures using a multiple regression approach. Cook‟s distance once again was 

used to identify and remove outliers. Statistical procedures were implemented using the SAS 9.1 

(SAS Institute Inc) statistical software package. The adjusted R
2
 approach was selected above 

regular stepwise approaches as the procedure assess each and every combination of input variables 

and selects the best combination based on a measure (adjusted R
2
), which penalizes models with a 

large number of input variables. It was argued that optimization of models based on a measure that 

produces the smallest number of variables with the highest adjusted R
2
, would facilitate an accurate 

comparison of the goodness of fit for each approach. The influence of texture and age were also 

assessed by incorporating these as independent variables.  
 
Insert figure 2 here 
 

3. Results 

 

3.1 Basal Area: Plot level 

Table 2 provides an overview of the results from the plot level analyses. Individual optical bands 

exhibited little or no relationship with field enumerated ba, this is especially evident when all field 

plots were employed. Relationships improved when the data were stratified into age groups (4 -6 

years old and 7-11 years old), although improvement was not distinct. Established understanding of 

the relationship between tree canopies and spectra was observed with the near-IR bands returning 

considerably higher R
2
 and adjusted R

2
 values. The multiple regression results shown in figure 3A 

indicated that while the individual bands are not that adept at modelling field enumerated ba, they 

returned improved results when combined (including range and standard deviation statistics). 

Results from the 4-6 (solid line) and 7-11 (stippled line) age groups did not differ based on adjusted 

R
2
 values. The second unfused data set included the SAR bands which incorporated the backscatter 

image (Kuan) and the two textural indices (GLCM_M & GLCM_C). Mirroring the optical data, 

individual bands returned weak linear relationships which resulted in only a slight improvement in 

the 4-6 age groups. Multiple regression results using the SAR bands and their distributional 

measures once again returned improved R
2
 and adjusted R

2
 values. It is noteworthy that the 7-11 

year old group returned the highest indicator values when compared with both the 4-6 and “all-



ages” data sets. Multiple regressions also revealed that optical data lead to improved results over the 

SAR data in the younger stands (4-6 years), with the inverse being true in the older stands (7-11 

years). The two textural indices derived from grey level co-occurrence matrices (Mean and 

Contrast) presented no improvement for modelling basal area than the original backscatter image. 

The fused data sets (Kuan, GLCM_M, and GLCM_C) returned similar patterns with no appreciable 

improvement in either R
2
 or adjusted R

2
 values. Once again individual bands from all three data sets 

returned weak to limited relationships with field enumerated ba. However, all fused data sets in the 

7-11 age range resulted in notably higher R
2
 or adjusted R

2
 values than the younger stands. 

 

3.2 Basal Area: Voroni level 

Table 2 shows the results for the ba analyses using remote sensing data collected from the Voroni-

plots. Individual bands returned poor results, with the near-IR band in the 7-11 year old age group 

returning the highest R
2
 and adjusted R

2
 of 0.32 and 0.30, respectively. Individual bands exhibited 

no discernable difference between the age groups, while the multiple regression models returned 

similar results to the plot level analyses, i.e., both multiple regression models returned statistically 

significant models (see figure 3B). The individual SAR bands also resulted in weak relationships, 

while the multiple regression models showed a minor improvement. A significant difference exists 

between the 4-6 and 7-11 year old age group when comparing the multiple regression results, with 

the latter returning improved statistics. The SAR data set exhibited similar results, although the 

goodness of fit statistics were distinctly lower than the optical data, implying that at this scale the 

optical data provide improved models when compared to SAR data. The fused data sets (Kuan, 

GLCM_M, GLCM_C) followed the pattern of superior models in the 7-11 year age groups with all 

three data sets returning multiple R
2
 and adjusted R

2
 results that were higher than those for 4-6 year 

old data sets. Multiple regression models were also inferior to their unfused counterparts, with only 

the Kuan Fusion data set returning results comparable to the optical imagery. The Voroni-plot 

results were generally similar to the plot level results, save for marginally higher RMSE values, 

which indicated that modelling based on Voroni-plots were less precise than those developed at the 

plot level.  
 

Insert table 2 and figure 3 here 
 

3.3 Volume: Plot level 

Results for the statistical analyses of volume at the plot level are shown in table 3. Statistics shown 

for all age groups indicate that models derived from individual and multiple optical bands were not 

adept at modelling plot level timber volume. Results improve when the data set was subdivided into 

young (4-6 years old) and older (7-11 years old) plots. Individual bands were still not capable of 

modelling structural timber resources with multiple regression models returning statistically weak 

models (see figure 4A). Results for the age groups differed, with the model for the 4-6 year old data 

marginally better than the 7-11 year old data set. The individual SAR bands also failed to accurately 

explain field enumerated variance, with the two age groups once again resulting in slightly 

improved models. While the younger stands produced superior models when using optical data, the 

inverse was true for SAR imagery. R
2
 and adjusted R

2
 values were higher in the 7-11 year old plots 

than they were in the 4-6 year old plots. The relationships were positive and weak, although 

statistically significant. Results for the fused data sets (Figure 4) were only marginally superior to 

those already mentioned. Multiple regression models produced slightly better results, but were still 

deemed inaccurate. Data from the 4-6 and 7-11 age groups displayed similar characteristics, with 

individual bands returning improved goodness of fit statistics. Models in the older age group 

generally explained more ground level variance; this was especially true for the two textural data 

sets where recorded R
2
 and adjusted R

2
 values were well over 0.5. RMSE results shown in figure 



4C and D reflect the goodness of fit statistics mentioned above - an interesting result was that while 

the models developed with the 7-11 year old data set return higher R
2
 and adjusted R

2
 values, the 

RMSE results in the 4-6 year old data set were in some cases lower than those reported for the 7-11 

data sets. This indicated that while modelling plot level volume in the older stands produced 

superior models, they may not be that precise when compared to the younger stands. 
 

3.4 Volume: Voroni level 

Table 3 details the regression results from the Voroni level analysis. The optical data displayed 

similar trends to the plot level results. Individual bands, regardless of age, failed to produce models 

with R
2
 and adjusted R

2
 larger than 0.3. Their multiple regression models, graphed in figure 4, 

exhibited slightly improved models following optimization using the adjusted R
2
 technique. A 

similar pattern emerged when comparing age groups, namely that multiple regression models 

produced using the 4-6 year old data set exhibited higher R
2
 and adjusted R

2
 values than the 7-11 

year stands. The inverse was once again true for the SAR data; older plots produced significantly 

better models than the younger plots. The goodness of fit statistics for the 7-11 year old SAR model 

was not as high as the optical data. However, combining the two data sets through fusion 

procedures and using these data to model plot level volume returned interesting results. The fusion 

had a negative effect on the results in the younger age group (4-6 years old) where the Kuan, 

GLCM_M and GLCM_C all resulted in inferior models. Improvements following fusion were 

observed in the older stand data set, where R
2
 and adjusted R

2
 values increased from below 0.5 to 

above 0.6. The highest goodness of fit statistics resulted from the GLCM_M model, with R
2
 and 

adjusted R
2
 values of 0.62 and 0.54, respectively. Another pattern that re-emerged was that of the 

inverse relationship between R
2
 and adjusted R

2
 and Root Mean Square Error (figure 4 C&D). The 

pattern first observed in the plot level volume results also seemed prevalent in the Voroni level data, 

again calling into question the precision of the models using the fused data.  
 
Insert table 3 and figure 4 here 
 

3.5 Texture and Scale 

A sub-theme of the study sought to explore the influence of SAR texture, particularly in the fused 

data sets. SAR backscatter imagery is sensitive to textural changes in the forest canopy and can be 

used as a surrogate for forest structure (Wulder et al. 1998). The derivation of two established 

textural indices, namely mean and contrast grey-level co-occurrence matrices (GLCM_M; 

GLCM_C) potentially could highlight textural features not already evident in the backscatter image 

(Podest and Saatchi, 2002). It was hypothesized that the additional textural information would 

enhance the predictive capability of the models. Figures 3 and 4 show that textural indices produced 

superior models only when plot level data were used as independent variables. The differences 

between the model statistics were small, with adjusted R
2
 values of 0.29 to 0.54. An Analysis of 

Variance (ANOVA) procedure was used to determine if there was a statistically significant 

difference between predicted inventory variables using different textural “treatments”. Tables 4 and 

5 and figures 5 and 6 report the results of the ANOVA analysis. It is clear that there was no 

significant difference between the three textural “treatments”. 
 

The scale analysis was aimed at determining if the inclusion of additional remote sensing 

information, extracted from the Voroni diagram area, produced improved models when compared 

to plot level data. Modelling thus occurred at two different scales with the hypothesis being that the 

larger Voroni diagrams would include more variability than the plot level data and thus produce 

more robust empirical models. Results from the multiple regression analysis were used to compare 

the plot and Voroni level data (Figures 3 and 4). While differences in model accuracy and precision 



were evident when comparing age groups, this did not extend to the plot and Voroni data sets. 

Adjusted R
2
 and RMSE values were similar for both scales, which indicated that the inclusion of 

potentially increased variability by extending the plot size did not improve model accuracy or 

precision. For example, the optical data set (age 4 – 6) returned an adjusted R
2
 of 0.41 at the plot 

level and 0.35 at the Voroni level, showing a decrease in model fitness. Root mean square error 

results were also inconclusive with no apparent trends towards either the plot or Voroni level. 

RMSE values for basal area modelling ranged from 1.6 m
2
/ha to over 6 m

2
/ha (Figure 3 C and D), 

but this variability was related more to the data set used than the scale of the analyses. Goodness of 

fit statistics for volume modelling were similar to those returned in the basal area analyses, with 

adjusted R
2
 values ranging from 0.2 to just under 0.6. Once again this variability was related to the 

data set used as opposed to the scale of the study.  
 
Insert table 4 and figure 5 here 
Insert table 5 and figure 6 here 

4. Discussion 

 

4.1 Modelling of forest parameters 

 

The modelling of forest inventory parameters (basal area and merchantable volume) was carried out 

using both optical and microwave (SAR) data. Spectral reflectance from the VNIR bands of the 

ASTER scene used in this study was not able to explain significant amounts of field enumerated 

variance. In most cases the near-IR bands provided marginally better results than the green and red 

bands. This is in contrast to results published by Muukkonen and Heiskanen (2005), who found that 

individual bands returned correlation coefficients well over 0.5 (the present study resulted in R
2
 

values < 0.3). The authors also found that the green band was most sensitive to volume, while this 

study contradicted these results with only the near-IR band returning satisfactory results. 

Contradictory results could be due to several factors; firstly, the Muukkonen and Heiskanen (2005) 

study was conducted in boreal forests where different species of different ages were studied while 

the present study investigated even-aged mono-cultures. The different crown morphologies and 

varying levels of canopy closure would contribute to differing results. Secondly, the present study 

only used ordinary and multiple least squares regression while the Finnish study made use of non-

linear approaches, which may be more appropriate in managed plantation environments.  

 

Results improved significantly when range and standard deviation statistics were added to the mean 

reflectance. Optimised multiple regression models returned somewhat improved results with 

adjusted R
2
 values > 0.3, thereby explaining more variance in the field enumerated data. Even 

though multiple regression models returned improved results, they were disappointing when 

compared to those in the published literature. Foody et al. (2001) used artificial neural networks and 

multiple independent variables to model above ground biomass, explaining 80% variance in field 

enumerated data. Zheng et al. (2004) used multiple regressions and achieved an R
2
 of 0.67 for both 

pine and hardwood species. Lu (2005) found significant differences between mature and 

successional forests reporting R
2
 values of 0.50 and 0.76, respectively. The major difference 

between the present study and those cited above is that the present study occurs in plantation 

forests, while research in the case of Foody et al. (2001), Zheng et al. (2004), and Lu (2005) were 

conducted in natural forests where forest canopies display significantly more spectral variability, 

associated with structural variability. In contrast, plantation forests do not display as much canopy 

spectral variability, thereby making it more difficult to use reflectance from these canopies to 

explain below-canopy structural variability. The very same problem is evident when investigating 

the SAR results. 



Individual backscatter and textural indices resulted in weak relationships with field enumerated 

data. However, when optimised multiple regression models were used, the data explained 

increasingly more variance than the individual bands. As expected the older data set (7-11) returned 

improved results when compared to the younger plots. Basal area adjusted R
2
 improved from 0.21 

to 0.52 when comparing models developed using 4-6 and 7-11 year old plots, respectively, with the 

same  being evident at the Voroni scale. Volume models derived using the same independent 

variables displayed similar properties at both the plot and Voroni levels, which returned improved 

adjusted R
2
 values when older plots were used (table 8). However, for volume estimations the 

RMSE (m
3
/ha

-1
) exhibited inverse properties, where values were smaller in the young plots. This 

indicated that goodness of fit statistics were not necessarily an indication of model precision.  

 

Past studies have shown that saturation of the relationship between SAR backscatter is common 

with asymptotes, usually determined by the wavelength (Dobson et al. 1992, Rauste et al. 1994, 

Imhoff, 1995, Ramsey 1999, Fransson and Israelsson, 1999) and to some extent the polarisation 

(Van de Griend and Seyhan 1999, Santos et al. 2003). It proved impossible to determine when and 

if saturation occurred in this study - older plots (7-11 years old) returned higher adjusted R
2
 values 

than the younger plots (4-6 years old), which is counter-intuitive to established relationships. On the 

other hand, one could argue that previous studies have been conducted in natural forests where 

canopy morphological variation reflects below-canopy structural variation and thereby facilitates 

increased explanation of variability by SAR backscatter. The SAR sensor data were possibly also 

unable to properly explain the plantation canopy variation, for reasons similar to those for the 

optical data. Low R
2
 and adjusted R

2
 values are also a function of wavelength (Paloscia et al. 1999); 

the RadarSAT-1 system uses a C-band HH sensor with a wavelength of approximately 5.6 cm. This 

relatively short wavelength, when compared to L- and P-band sensors (Dobson et al. 1992), rarely 

penetrates the canopy with most of the backscatter originating from the top of the canopy. This 

characteristic severely restricts the modelling of basal area and timber volume in plantation forests.  
 

4.2 Original versus Fused data sets 

 

The fusion of optical and SAR data is based on the premise that both data sets contain valuable 

information that, when combined, produce a model that is more robust than the sum of the input 

data sets. Results discussed above indicate that the individual data sets could not explain more than 

50% of the ground level variance. Established understanding indicates that optical sensors should 

model lower biomass levels with more accuracy than the SAR data and that the inverse be true at 

higher biomass levels (Magnusson and Fransson 2004). As such the combined data sets should in 

theory predict forest structural attributes with a higher degree of accuracy throughout the age-

biomass-volume range. Results presented above indicate that models developed using the fused data 

were not necessarily better than the optical data (figures 3 and 4). However, in most cases the fused 

data sets produced models that were comparable to the optical data and were consistently better 

than the SAR models. The only exception to this was the plot level basal area modelling, where the 

SAR data explained in excess of 50% of dependent variable variance. This result confirmed that the 

C-band data are not suitable for assessing forest structure and that it would be more appropriate to 

employ either an airborne or satellite platform collecting data in the L- or P-band frequency. Such 

data would provide more information regarding the variability of trunk size as opposed to the 

variability of the canopy structure.  

 

The spatial resolutions of both sensors were also not adequate in terms of quantifying locational 

scale variability. Nugroho et al. (2002) used high resolution intensity, coherence, and 

interferometric images, as well as high resolution Ikonos imagery to develop a forest management 

system for quantifying the spatial structure of forest canopies in Indonesia. The authors were able to 

identify different hierarchy levels within the canopy using hierarchical classification techniques. 



Classifications revealed that mature trees tend to clump together and that tree-crowns had a unique 

spatial structure. It is this unique spatial structure, identified using high resolution SAR and optical 

imagery that allowed the researchers to classify the canopy structure. Several studies have reported 

positive results when combining data from different sensors. For example Moghaddam et al. (2002) 

returned superior results when combining an interferometric model and Landsat TM data 

(developed using an airborne C-band sensor). Overall RMSE improved by a factor of two from 4.13 

tons/ha (optical alone) to 2.28 tons/ha (both SAR and optical). Unfortunately, present results did not 

improve the RMSE, with fused data sets consistently returning similar results to that of the optical 

data.  
 

4.3 Role of texture and scale 

 

The textural sub-theme of this research sought to explore the question; “Is there a statistically 

significant difference between predictions of inventory variables based on different textural 

treatments?” The treatments described were in fact a backscatter image and two textural indices 

(Mean and Contrast), derived from grey level co-occurrence matrices (Kuplich et al. 2003). The 

results from the ANOVA analysis showed that the differences between different textural 

“treatments” were insignificant, with little difference within age groups and between scales. This is 

not surprising, given that it has already been established that C-band data are not suitable for 

modelling plantation forest variables. Podest and Saatchi (2002) enhanced a multi-scale 

classification using textural measures, while Kuplich et al. (2005), working in the Brazilian 

Amazon, found that the addition of GLCM contrast texture increased adjusted R
2
 values from 0.74 

to 0.82. Present research was not able to replicate the results of the above mentioned research, with 

predictions of both basal area and volume not achieving the desired increase in accuracy.  
 

The second sub-theme of the paper explored the impact of the scale at which remote sensing data 

are extracted from imagery. The approach also attempted to mitigate any additional errors 

associated with the location of field plots. Several papers have indicated that errors in the location 

of plots due to mapping inaccuracies have led to lower overall model fitness. Patterson and 

Williams (2003) investigated the potential registration errors as they effect forest cover 

classification. The authors found that registration errors increased the variance of the estimator by 

between 4 and 434%. Halme and Tomppo (2001) also investigated errors associated with plot 

location error and found that using a multicriteria approach reduced pixel RMSE of total volume 

per hectare by up to 36%. Results presented in table 2 and 3 and figures 3 and 4 show that 

regardless of the scale at which data were extracted, no improvement in model accuracy was 

observed.  
 

5. Conclusion 

 

Management of forests in the 21
st
 century will increasingly require the utilisation of either airborne 

or spaceborne remote sensing platforms. The cost and time associated with conducting a manual 

inventory of timber resources is fast becoming a challenge to sustainable forest management. 

Remote sensing approaches have been identified as potential tools that, if implemented correctly, 

could provide substantial benefits to the industry. This study explored the use of medium resolution 

satellite data for forest structural assessment. A brief literature review indicated that while single 

sensors may be appropriate for forest assessment, these sensors suffer under high biomass 

conditions with most established relationships saturating above a certain age and/or biomass. 

Further, image fusion was identified as a potential image processing tool that could mitigate 

problems associated with saturation and poor model performance. This paper explored, based on 



previous research, the potential benefits of using several fused data sets to determine if forest 

inventory models improved when fused data sets were used. The paper also explored the potential 

impacts of texture and scale at which remote sensing data are extracted.  
 

Principle findings indicated that medium resolution data (6-100 m spatial resolution) are able to 

explain a limited amount of the variance in enumerated inventory variables. However, this was only 

achievable with an optimised multiple regression model. Single bands and channels were not able to 

predict inventory variables and should be omitted from future efforts. Fused and unfused data sets 

exhibited no significant difference when comparing goodness of fit statistics. Given that the 

individual bands struggled to attain coefficient of determinations above 0.5, it is not surprising that 

fused data sets return similar results. A lack of spatial resolution, coupled to a microwave sensor 

frequency not suited to canopy penetration, are some of the reasons for the weak statistical models. 

It could be argued that errors in plot location could have contributed to the results. However, the 

scale analysis showed that results remained unsatisfactory even when a larger representative area 

was used. Textural analysis showed that texture, derived from a backscatter RadarSAT-1 image, 

contained limited additional information related to forest structure.  
 

Results reported here were disappointing when compared to those in the published literature. R
2
 and 

adjusted R
2
 values were distinctly poorer than that of published papers in many cases. However, the 

type of forest being studied plays a central role in this outcome: The homogenous nature of the 

plantation canopy in this case did not contain sufficient variability, as related to below-canopy 

structural variability, for modelling purposes. Explanation of such variability requires a sensor with 

a higher spatial resolution than the 6.25 m (RadarSAT-1) and 15 m (ASTER) data sets used in this 

study. These sensors are thus not suitable for operational assessment of even–aged, homogenous, 

mono-culture plantation forests. Further research is required to test and assess various other  data 

sources and approaches, which are cognisant of the inherent homogeneity of plantation forests. 

Possible alternative sensors include high resolution satellite imagery or aerial photography with a 

spatial resolution < 4 m. P- and L-band SAR sensors, combined with polarimetric data, also are 

recommended for these conditions.  

 

Image fusion of LiDAR and high resolution optical sensors has shown promising results (Hudak et 

al. 2002, McCombs et al. 2003, Coops et al. 2004) and it is suggested that such an approach should 

be assessed in plantation forest conditions. However, LiDAR data have been criticised for being too 

expensive, thus future research also needs to develop cost effective, application-driven solutions 

towards producing accurate, precise, and spatially explicit maps of forest variables of interest. 
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Figure 1 Location of study area 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
Figure 2 Plot (left) and Voroni (right) level data extraction 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3 Results from ba optimized multiple regression models (A. Plot level Adj-R
2
, B. Voroni level Adj-R

2
, C. Plot 

level RMSE, D. Voroni level RMSE) – solid line: 4-6 yrs, stippled line 7-11 yrs. 
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Figure 4 Results from mvl optimized multiple regression models (A. Plot level Adj-R
2
, B. Voroni level Adj-R

2
, C. Plot 

level RMSE, D. Voroni level RMSE) – solid line: 4-6 yrs, stippled line 7-11 yrs. 
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Figure 5 Predicted Basal Area Means for Textural indices (stratified according to scale and age) 
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Figure 6 Predicted Volume Means for Textural indices (stratified according to scale and age) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



Table 1 Summary statistics from enumerated inventory data: Basal Area and Merchantable Volume 

 

Parameter    Basal area of individual 

trees (m
2
) 

Plot level basal area per 

hectare (m
2
) 

Compartment level 

basal area per hectare 

(m
2
) 

Minimum  

Maximum  

Mean  

Standard deviation 

%CV 

0.00196- 0.0132 

0.02546-0.14528 

0.0124-0.07087 

0.00514-0.03771 

27.9-74.3 

14.5 

48.1 

26.6 

6.9 

25.9 

16.6 

38.3 

26.9 

6.4 

23.6 

Parameter  Volume of individual trees 

(m
3
) 

Volume per hectare (m
3
) Compartment level 

volume per hectare 

(m
3
) 

Minimum  

Maximum  

Mean 

Standard deviation 

0.01-0.11 

0.19-2.63 

0.08-1.16 

0.04-0.70 

98.33 

746.73 

259.95 

119.40 

108.38 

584.25 

268.38 

117.34 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 



Table 2 Summary statistics for single band OLS regression – Basal Area (only optical and SAR reported) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 3 Summary statistics for single band OLS regression – Merchantable Volume (only optical and SAR reported) 

Data set  
 4-6 years 7-11 years All Ages 

Band R
2
 Adj R

2
 R

2
 Adj R

2
 R

2
 Adj R

2
 

Optical 

(plot) 

Green .0572 .0372 .0328 .0092 .0640 .0531 

Red .1522 .1334 .0670 .0458 .0861 .0760 

NIR .1605 .1423 .2080 .1900 .0006 -.0102 

SAR 

(plot) 

Kuan .2014 .1298 .0003 -.0235 .0529 .0425 

GLCM_M .1783 .1596 .0007 -.0231 .0474 .0369 

GLCM_C .1792 .1606 .0198 -.0030 .0119 .0012 

Optical 

(voroni) 

Green .10060 .08110 .03040 .00780 .01920 .00840 

Red .03690 .01960 .07490 .05340 .06480 .05440 

NIR .10570 .08530 .28260 .26630 .01800 .00750 

SAR 

(voroni) 

Kuan .02380 .00260 .01040 -.01210 .00030 -.01040 

GLCM_M .01130 -.01020 .00930 -.01320 .00120 -.00950 

GLCM_C .04050 .01920 .04490 .02270 .00370 -.00700 



 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Table 4 Anova Results for Basal Area 

Data set  
 4-6 years 7-11 years All Ages 

Band R
2
 Adj R

2
 R

2
 Adj R

2
 R

2
 Adj R

2
 

Optical 

(plot) 

Green .07500 .05530 .06440 .04160 .05110 .03990 

Red .03100 .00950 .15370 .13360 .06640 .05590 

NIR .27050 .25460 .24370 .22610 .00080 -.01050 

SAR  

(plot) 

Kuan .16040 .14170 .01390 -.00900 .06040 .05010 

GLCM_M .15620 .13750 .03010 .00810 .03800 .02740 

GLCM_C .00560 -.01510 .00910 -.01390 .01910 .00830 

Optical 

(voroni) 

Green .10710 .08770 .03240 .00940 .00030 -.01400 

Red .01930 -.00110 .13910 .11950 .02630 .01560 

NIR .09830 .07780 .31570 .30010 .01990 .00920 

SAR 

(voroni) 

Kuan .09200 .07180 .06270 .04090 .00000 -.01070 

GLCM_M .09450 .07440 .06320 .04140 .01360 .00290 

GLCM_C .02600 .00440 .10150 .08110 .01780 .00710 



Data F-test p value 

Plot BA 4-6 0.36 0.69820 

Plot BA 7-11 0.06 0.91390 

Voroni BA 4-6 0.43 0.65150 

Voroni BA 7-11 0.2 0.81630 

 
Table 5 Anova results for Volume 

 

 

 

 

 

 

 

 

 

Data F-test p value 

Plot Vol 4-6 0.360573 0.69790 

Plot Vol 7-11 0.19 0.82760 

Voroni Vol 4-6 0.65 0.52290 

Voroni Vol 7-11 0.067541 0.93470 


