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Abstract – Remotely-sensed phenological metrics (or 
phenometrics) were derived from AVHRR vegetation-index 
time-series data and to describes seasonal growth in terms of 
start, end, length of season and estimates of net primary 
production (NPP). This study analyzed vegetation 
phenometrics across South Africa (SA) in order to 
characterize phenological patterns and their inter-annual 
variability. A second objective is to distinguish biomes and 
sub-biome “bioregions” based on functional patterns. The long 
term phenometrics gave ecologically-meaningful results which 
reflect our current understanding of the spatial patterns of 
production and seasonality of vegetation growth. The results 
suggest that phenometrics capture sufficient functional 
diversity to classify and map vegetation based on function. 
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1. INTRODUCTION 
 

The dynamic phenology of terrestrial ecosystems reflects response 
of the biosphere to proximal climatic factors (e.g. temperature and 
rainfall) and these climatic drivers, as well as fire, are largely 
responsible for the geographic distribution of different vegetation 
zones, e.g. biomes. Satellite-derived phenology provides the 
opportunity for defining and mapping vegetation zones (e.g. 
biomes) based on vegetation function and dynamics.  
 
Mucina & Rutherford (2006) defines a biome as a broad 
ecological unit representing major life zones of large natural areas, 
defined mainly by vegetation structure, climate and major large 
scale disturbance factors (such as fires). A bioregion is viewed as 
a composite spatial terrestrial unit defined on the basis of similar 
biotic and physical features and processes at the regional scale. It 
is the intermediate level of vegetation organisation between that of 
vegetation type and biome (Mucina & Rutherford, 2006). Figure 1 
shows the biomes of South Africa with the Savanna biome divided 
into bioregions.  
 
The objective was to investigate the long-term spatial patterns and 
inter-annual variability in satellite-derived vegetation phenology 
in relation to the recently revised biome map of South Africa, as 
well as the savanna bioregions. Furthermore, to identify the 
phenological attributes that differentiate different biomes and 
bioregions.  
 

2. METHODOLOGY 
 

2.1 Extracting phenometrics from AVHRR data 
The 1km2 AVHRR data were previously processed and calibrated 
for sensor degradation. For details see (Wessels et al., 2006). 
Daily NDVI data were composited into 10-day maximum value 
composites. This study was limited to the period 1985-2000 in 

order to avoid changes in spectral response function of NOAA-16, 
post 2000. A data gap exists for 1994 due to the failure of NOAA-
13. 

 
 
Figure 1.  Biome map of South Africa with the Savanna biome 
divided into bioregions indicated by letters A…F (after Mucina & 
Rutherford 2006). 
 
The long-term, 1km2 NDVI data were analyzed using the 
TIMESAT program developed for the exploration and extraction 
of seasonality parameters from time-series data (Jönsson & 
Eklundh, 2004). An adaptive Savitsky-Golay filter, proved to be 
the most successful at producing a smoothed curve while 
capturing rapid phenological changes. Seasonality parameters 
(hereafter referred to as phenometrics) such as start date, end date 
and length of growing season were identified throughout the data 
set. A user-defined threshold of 20% of the seasonal amplitude (as 
measured from the left minima of a seasonal curve) is set as the 
start of growing season (SGS) date. Similarly the end of growing 
season (EGS) is defined as the date at which the right edge has 
declined to 20% as measured from the right minima.  
 
Phenometrics for each of the growing season were extracted 
(Figure 2) with a distinction between “date-related phenometrics 
(e.g. start or end of season) and “NPP-related phenometrics” (e.g. 
large integral) shown in Table 1. Long-term means, standard 
deviations (SD) or coefficients of variation (CV) were calculated 
and mapped for all phenometrics (Table 1) across the periods 
1985-1993 and 1995-2000 (data gap 1994). 
 



 
Figure 2. Phenometrics extracted from the seasonal NDVI curve, 
as defined in TIMESAT. See Table1 (after (Jönsson & Eklundh, 
2004).   
 
Table 1.  Date-related and productivity (NPP) – related 
phenometrics indicated in Figure 2. 

Date-related metrics NPP-related metrics 
a.  Start of growing season 
(SGS) 

d. Maximum NDVI value 
(MAX) 
 

b.  End of growing season 
(EGS) 

e. Small Integral (SI) 
 

c.  Length of growth season f. Large Integral (LI) 
d.  Mid position of growth 
season 

g. Amplitude 

 
Transformed areas such as cultivated land, plantations and built-up 
areas mapped in National Land Cover 2000 were excluded from 
further analyses which were only concerned with natural 
vegetation. A buffer of 1km around the transformed areas was also 
excluded to avoid adjacency effects. 400 pixels per biome were 
randomly selected from the remaining untransformed areas. The 
same points were used for the savanna bioregion analysis. 
 
2.2 Phenology-based regression tree analyses 
A random forest regression tree (Breiman, 2001; Prasad et al., 
2006) was run using a range of phenometrics as the input variables 
and the biomes and savanna bioregions (Mucina & Rutherford, 
2006) respectively as dependent variables. No prior probabilities 
were used. To see how much information was contributed by date-
related versus NPP-related phenometrics (Table 1), two regression 
trees were applied: (i) using all the phenometrics, (ii) using date-
related metrics only. The importance of the different phenometrics 
was assessed by comparing the results of the original model, with 
models run on random data for each input variable (Gini index) 
(Breiman, 2001). For each tree the model was re-run while 
randomly permuting a single input variable. The resulting random 
forest model was used to run a prediction which mapped the 
biomes and savanna bioregions based on the phenometric data 
which was then assessed in terms of users and producers accuracy.  
 

3.  RESULTS AND DISCUSSION 
 
3.1 Mean and Inter-annual variability of phenometrics 

The long-term mean and inter-annual variability of phenometrics 
were mapped and summarised per biome (Table 2). 

a 
b 

c
d

e

f

g 

 
Table 2.  Summary of  phenometrics per biome. 

 
 
The winter rainfall area in the south western part of South Africa 
can clearly be distinguished by having mean start dates in May. In 
contrast, the growing season in the summer rainfall region starts in 
late September and October (Figure 3).  

 
Figure 3. Mean start of the growing season (SGS).  
 
The arid Nama Karoo and Desert biomes have the highest 
variability in SD SGS (Figure 4) due to highly variable rainfall. In 
contrast the Grassland, Savanna and Indian Ocean Coastal Belt 
biomes have the lowest SD for all date-related phenometrics.  An 
area of exceptional low SD SGS can be seen in the Western Cape 
close to the Cape Peninsula (Figure 4). Although this is part of the 
Fynbos biome, this area is characterised by wheat farming with 
consistent planting and harvesting dates. This is in contrast with 
dryland agriculture in the Free State (Grassland biome) with 
approximately 80 days variability in SGS.  
 
Mean LI was the lowest for the Succulent Karoo, Nama Karoo and 
Desert biomes ranging from 0.5-5.0 (Figure 5). The Nama Karoo 
and Desert biomes had LI CV values of 35% and 40% 
respectively, while the LI CV for Succulent Karoo was much 
lower at 25%. The Forest and Indian Coastal Belt biomes showed 



the highest mean LI values reaching 15.5 and 12 respectively 
(Figure 5) indicating the highest level of seasonal growth of all the 
biomes. 

 
Figure 4.  Standard deviation in start date (SD SGS) expressed in 
number of days. 
 
Their LI CV is only 20% and show low inter-annual variability. 
Although Albany Thicket showed high productivity with mean LI 
values at 9, its inter-annual variability is high at 35%, similar to 
Nama Karoo. Fynbos exhibited lower mean LI values (5) and LI 
CV (30%) than Albany Thicket. The Grassland and Savanna 
biomes had mean LI values of 8 and 6 respectively and their LI 
CV was low at 15% and 20%. 
 

 
Figure 5.  Mean large integral (LI) with biome outlines in black. 
 
3.2 Regression tree analyses of phenometrics of the biomes  
The random forest method produced reliable predictions from the 
input sample data (Table 3). Using all the phenometrics the overall 
prediction had an R2 of 0.75, while R2 values for individual 
biomes ranged from 0.66 to 0.90. Using date-related metrics only 
(Table 3), reduced the overall explanatory power by 10%. 
 
Table 3.  Accuracy of the random forest regression tree model 
developed on 3400 sample points from nine biomes. Values 
represent proportion of the sample points which were correctly 
classified by the predictive model.  

Biome NPP-related 
phenometrics 

Date-specific 
phenometrics 

All 
phenometrics 

Desert 0.83 0.72 0.89 

Succulent 
Karoo 

0.50 0.58 0.69 

Nama Karoo 0.39 0.49 0.67 
Fynbos 0.43 0.43 0.66 
Albany 
Thicket 

0.47 0.56 0.70 

Grassland 0.71 0.67 0.76 
Savanna 0.15 0.62 0.71 
Forests 0.80 0.68 0.79 
Indian Ocean 
Coastal Belt 

0.65 0.77 0.90 

Total 0.54 0.61 0.75 
 
The importance of different phenometrics in predicting biome 
class was analysed by calculating the Gini index. This indicated 
that the mean LI, mean SI, mean MAX and SGS were the most 
important phenometrics for distinguishing between biomes (Figure 
6).  

 
Figure 6.  The importance of different phenological variables in 
predicting biome class, measured as the decrease in node impurity 
that occurs when the variable is randomly permuted. 
 
The predicted biomes calculated from phenometrics are shown in 
Figure 7. It is clear that areas of confusion are associated with 
boundaries between biomes e.g. Desert and Nama Karoo and the 
Grassland and Savanna biomes, where the transition is gradual 
rather than abrupt. The extent of Desert was overestimated to 
include very dry areas of the Nama and Succulent Karoo. 
 
3.3 Regression tree analysis of phenometrics of the Savanna 
bioregions  
Using all the phenometrics the overall prediction had an R2 of 
0.87, while R2 values for individual biomes ranged from 0.56 
(Mopane) to 0.93 (Eastern Kalahari Bushveld)(Table 4). Using 
date-metrics only (Table 4) in random forests reduced the overall 
explanatory power by 8%.   
 
The mean SI was the most important factor in firstly separating 
the arid Kalahari Bushveld and Duneveld from the wetter eastern 
savanna bioregions. The NPP-related mean SI, mean AMP and 
mean MAX were the most important phenometrics for 
distinguishing between bioregions (Figure 8). 



 
Figure 7.  Biomes of South Africa predicted by the phenology-
based regression tree. Transformed areas shown in white. 
Compare to Fig. 1. 
 
Table 4.  Accuracy of the random forest regression tree model 
developed on 399 sample points from six bioregions of the 
Savanna biome. Values represent proportion of the sample points 
which were correctly classified by the predictive model.  

Savanna 
bioregion 

NPP-related 
phenometrics 

Date-specific 
phenometrics 

All 
phenometrics 

Kalahari 
Duneveld 

0.87 0.89 0.93 

Eastern 
Kalahari 
Bushveld 

0.87 0.88 0.92 

Central 
Bushveld 

0.89 0.84 0.92 

Mopane 0.59 0.38 0.56 
Lowveld 0.83 0.56 0.78 
Sub-
escarpment 
savanna 

0.37 0.47 0.67 

Total 0.81 0.79 0.87 
 

 
Figure 8.  The importance of different phenological variables in 
predicting biome class.  

The most important date-related phenometrics for distinguishing 
the bioregions were SD of SGS which split the arid Kalahari 
bioregions from the rest, followed by mean SGS and SD of LGS. 
The mean EGS was used to differentiate the deciduous Mopane 
bioregions from the Bushveld and Lowveld bioregions in both the 
date-related and NPP-related trees.  
 

4. CONCLUSION 
 
The phenometrics derived from remote sensing data gave 
ecologically-meaningful results which reflect the current 
understanding of the spatial patterns of production and seasonality 
of vegetation growth. The phenometrics captured functional 
processes that were not readily predictable from the combination 
of floristic data and climate variables alone. 
 
Despite the fact that the biomes are internally very diverse in 
function, the phenology-based decision tree analysis was just as 
successful at distinguishing the biomes as the climate-based 
regression tree (Rutherford et al., 2006). At sub-biome level, the 
phenology-based regression tree performed even better and was 
able to distinguish the savanna bioregions with a reliability of 
87%. The split conditions derived from the phenometrics matched 
our understanding of the differences in functional dynamics of the 
biomes and bioregions. This ultimately suggests a convergence of 
composition, structure and function at a biome and sub-biome 
level.  
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