A Comparison Study of Design Rainfall Mapping Using

Ordinary Kriging and Kriging with External Drift

1. Introduction |

Early development of Extreme Value Theory (EVT) was motivated
by a need to quantify the probability of unusually large (or small)
events in hydrology and climatology. The current challenge in mod-
elling extremes is how to adequately account for variation of the
processes in both space and time. The statistic of interest in EVT
Is the 1-in-N year return level or design value as it is known in
hydrology. This is an important quantity as it helps to identify ar-
eas where flood protection infrastructure needs to be erected or
improved as well as identifying communities located in high flood-
risk areas. This necessitates a regional, rather than an in-situ esti-
mate of the N-year design rainfall value. In this study we focus on
estimating the N-year design rainfall surface in a case where the
number of sampled sites is small using inverse distance weight-
iIng, ordinary kriging and kriging with external drift methods. Does
iIncorporating additional explanatory information, given a spatially
sparse sample, lead to any improvement to an estimate of the de-
sign rainfall surface?

‘ 2. Materials and Methods |

The data consists of observed daily rainfall data from fifteen
weather stations in the Western Cape province of South Africa.
Seven stations had observation periods of fifty years, whilst for
other stations the periods are shorter. The sampled area is
bounded between latitudes —34.058°°S and —32.463°S and longi-
tudes 18.157°E and 26.493 °E, covering an area of approximately
132000km?. The Western Cape is classified as a winter rainfall
region. Rainfall in this area is associated with of orography and
a cold frontal system that comes in from the Southern Atlantic
ocean [4]. As our interest is Iin large rainfall events, we restricted
our study to South Africa’s winter months, June to August. The
altitude for the whole Western Cape province was obtained from
a 100m x 100m DEM, by re-sampling it to 1km x 1km pixel res-
olution. These were transformed to point data. Distances to the
coast were calculated from the point data, where points which had
altitude values smaller than 5 m were defined as the coast.
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Figure 1: Densely sampled covariate information - Altitude and
distances to the coast

Given a random sample of observations, the extreme value limit
theorem states that the distribution of the largest (or smallest)
member of that sample can be approximated by the Generalized
Extreme Value distribution [1]. To derive an estimate of N-year de-
sign values at each site, the point process approach to EVT was
followed. Temporal dependence of extremes was treated using a
variant of the runs-declustering technique where extremal indices
are obtained through applying the method of [3]. This was espe-
cially implemented for sites where the extremal index was below
0.9, which was evidence of temporal correlation of threshold ex-
ceedances at those sites. Parameter estimates at each site were
then used to obtain in-situ estimates of the 25 to 50 year design
rainfall (at 5 yearly intervals). Using these in-situ design rainfall
values, the next task was to compare different methods for ob-
taining a 50-year 24-hour design rainfall surface over the Western
Cape, given the small spatial sample constrain.

Direct estimation of the variogram model with only 15 sites leads to
unreliable parameter estimates. The technique used to increase
the sample size for estimating the variogram is implemented by
considering return level estimates for return periods 25 to 50 years
(in intervals of 5 years) as temporal replicates of the return level
surface. Design values at each site are assumed to be a sam-
ple from a random variable which forms continuous surface over
the study area. This continuous surface or spatial random field is
denoted as {Y(s,t) : s € D c R?t € T}, where D is a fixed,
continuous subset of a two-dimensional plane and t € T is an in-
dex for the temporal component. In this regionalisation method as
described in [5], are space-time observations, with space relating
to their geographical position and time represented by a sequence
of equally-spaced return periods, ¢;(1t; = 0 for i # j. To satisfy
the intrinsic stationarity requirement, the data is standardized by
a ratio of the overall average design rainfall (mg) and the average
design rainfall for that specific period (m¢,),7 = 1,2,...,p. The
standardized design value is determined as
mg

?(s,t) =Y (s, t) x (1)

m;

Standardization by the ratio of the overall average return level esti-
mate to the one for that particular return period is done to remove
the effect of different expectations for each return period. The p
standardized values at each location are extended in space, by

Khuluse S.'*, Stein A.’ and Debba P.!

ICSIR, Pretoria - South Africa
?Harvard University, Boston - USA
SUniversity of Twente, ITC - Enschede, The Netherlands

displacing the set of locations by a fixed distance c repetitively for
p — 1 instances, in this case 100km. The variogram is modelled
using this extended sample. The penta-spherical model variogram
model was chosen [2]. Estimation in this variogram model param-
eters is by weighted least squares (WLS) [2], with weights given
as the ratio of the number of point pairs for a particular distance
lag to the square of that lag distance. For predicting specifically
the 50-year 24-hour design rainfall surface, estimates of the par-
tial sill and nugget for the 50-year return period are obtained by
multiplying parameter estimates of the variogram model for the
pooled standardized data with the square of the reciprocal of the
standardization factor.

In ordinary kriging (OK), design values at unsampled locations
will be predicted by the predictor

p p
= Ay, with Y A =1
1=1 1=1

If there is evidence of a global spatial trend, then kriging weights
A; are a linear function of explanatory variables, which in the case
of KED include both geographical coordinates and other densely
sampled external variables, such as Altitude and distances to the
coast in our case. We compare the results of IDW, ordinary and
KED kriging in the next section.

3. Results and Discussion |

n the first step of our two-tiered modelling approach an extreme
value distribution is fitted to threshold exceedances at each site to
obtain a return level estimates corresponding to that site. For 9
of the 15 sites, the dispersion index is below 0.9 indicating weak
temporal dependence of high rainfall values. This clustering ef-
fect violates distributional assumptions. To circumvent this prob-
lem the declustering technique [3] is employed at each of the 9
sites. (Goodness-of-model-fit at each site is evaluated through
guantile-quantile and return level plots. Model fits at each site
seem adequate, however the level of uncertainty is large for sites
which had few large excesses which deviate substantially from
the rest of the observations. Removal of these large observa-
tions can lead to improved precision, however this strategy is
avoided here to avoid obtaining overly conservative return level
estimates. 25-year 24-hour design rainfall estimates are shown
in Fig 2. These show variation in space, with higher values ob-
served as one proceeds eastward of the bounding box. This war-
rants our next step to model this observed spatial dependence.
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Figure 2: Estimates of 25-yr 24-hr design rainfall at sampled sites

We model spatial autocorrelation in pooled values through the

penta-spherical model. Prior to this, global trends were explored.
No statistically significant relationship was found between pooled
design rainfall values and the individual feature space variable - al-
titude and distances to the coast. However, trend models where ei-
ther one of these covariates was included with second order terms
of the geographical coordinates yielded relatively stronger correla-
tion coefficients as shown in Table 1. The two covariates cannot be
included in the same surface trend model in the same global trend
model as they are highly correlated (p = 0.76). In looking at re-
gional trend five cases are explored: no trend, 15 and ond grder lin-
ear trend in geographic space only, as well as 15 order linear trend
In geographic space including altitude (KED Alt) or distance to the
coast (KED Coast). Reduction in sills for empirical variograms of
residuals compared to that of pooled design values indicate that
20% of variation in design values can be accounted for by a re-
gional trend. The lowest empirical variogram sill corresponds to
KED Alt. Penta-spherical variogram parameter estimates for each
of the five cases explored are obtained through a WLS procedure
as discussed in the methodology section.
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Figure 3: A comparison of variogram models

Once the variogram parameter estimates are obtained these
are re-scaled for use as input in prediction at unsampled
sites, i.e. resulting in a kriging map of an estimated 50-
year 24-hour design rainfall surface. Prediction performance
for each of the five cases is evaluated through a leave-
one-out-cross-validation procedure, obtaining the root mean
squared prediction error (RMSPE) for comparison. Low RM-
SPE values were obtained for OK and KED Alt (Tab 1).

Table 1: Range parameter (in km) for the variogram models and LOCCV RM-

SPE
OK UK 1t UK 2™ KED Coast KED Alt
R? 0.28 0.019 0.36 0.27 0.29
Range 37 27 27 14 25
RMSE 36.17 33.99 60.42 38.42 35.40

The range of prediction differences shows that the trend sur-
face model with distance to the coast as an external covari-
ate tends to predict lower values than the model with altitude
as a covariate as well as OK values. This bias can clearly be
seen close to sampled locations (Fig 4). Differences in pre-
dicted values for the distance to the coast trend surface and OK
are nearly 3 times those of the altitude trend surface and OK.
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Figure 4: Differences between ordinary and external drift kriging
predictions of 50-yr 24-hr design rainfall values

‘ 4. Conclusion |

Extending the sample pseudo-temporally and spatially (Stein and
Sterk, 1999) to estimate the variogram model parameters provided
a way to implement kriging despite the sparseness of the data,
rather than taking an average over an area as large as the West-
ern Cape. KED is useful when the sample is sparse, as strength in
prediction is gained by using a more densely sampled covariates
to model the regional trend. However, it is important that a highly
correlated covariate be used to seethe gains of this approach. In
this study elevation was poorly correlated to the design rainfall val-
ues, but better than the measure of distance to the coast. Due to
poor correlations and sparseness of the sample, KED error vari-
ances were much larger than OK variances. The trend surface
with distances to the coast shows bias for lower predicted values
than those obtained by OK kriging. Given more sampled locations
KED with altitude as an external covariate maybe useful to capture
the effect of topography of design rainfall surface estimation in the
Western Cape.
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