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Abstract

The paper presents the use of signal regulatory networks, a biologically-inspired model

based on gene regulatory networks. Signal regulatory networks are a way of understand-

ing a class of self-organising IT systems, signal regulated systems. The paper builds on the

theory of signal regulated systems and introduces some formalisms to clarify the discus-

sion. An exemplar signal regulated system that can be evaluated using signal regulatory

networks is presented. Finally an implementation of an adaptive and robust solution, built

on a theory of signal regulated systems and analysed as a signal regulatory network, is

shown to be plausible.

1 Introduction

Self-organising complex adaptive systems (CAS) exhibit many favourable char-
acteristics including extensive robustness, scalability and adaptability [1]. These
characteristics are desirable in many other systems such as software systems. Re-
peated themes begin to emerge as self-organising CAS are explored. One of these
themes is the existence of self-regulating signalling systems as an underlying
enabler of self-organisation [2, 3, 4, 5, 6]. Examples of self-organising signal-
regulatory systems include stigmergy, gene-regulatory systems, signal-transduction
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networks, and neural networks [7]. Of particular interest are those cases where
nature has used these signal-regulatory systems as a processor of information [8].
The paper describes research into the use of one of these information processing
signal regulatory systems, gene regulation, as a solution to the complexity chal-
lenge of information technology (IT) systems [3, 9].

A key characteristic of self-organising systems is that they exhibit a decrease
in entropy [10, 11]. Often self-organisation, as in a decrease in entropy, at the
macro level comes at the cost of an increase in entropy at the micro level [7, 12].
In addition, self-organising systems are often characterised by flows of energy.
These energy flows result in the system not stabilising at equilibrium but rather at
an attractor or steady state far from it [13, 12]. Further, self-organising systems
are dissipative in that the continuous flows of energy move entropy outside of
the system [14]. In the case of information systems the energy takes the form of
datum [7].

A further condition for self-organisation is non-linearity. Systems consisting
of a large number of autonomous components interacting in a distributed and de-
centralised manner are a characteristic of such non-linearities and are referred to
as complex adaptive systems [15, 16, 17].

Complex IT systems are increasingly common as a result of the large num-
ber of distributed and decentralised, interacting components within these systems
[18]. That engineers try to control these systems in a top down manner comes
as no surprise [19]. IT systems are built for a specific purpose and are expected
to behave within certain parameters. In order to ensure the correct functioning
of these systems, engineers try to write code that accounts for all eventualities.
The net effect of this additional code is that it adds to the original problem with
systems remaining brittle lacking both adaptability and robustness [20, 21].

In addition there is a growing realisation that complex IT systems are beyond
top down orchestration [20, 22]. Further as the complexity of the components,
their sheer quantity, and the extent of their interaction grows, both self-organising
and emergent characteristics are likely to appear [23].

Various solutions have been proposed to mitigate the inherent complexity of
a large software systems, the most prevalent of these being autonomic computing
[24]. Autonomic computing tries in part to replicate the efforts of control theory
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within the field of software engineering [25]. Adaptability is explicitly coded with
alternate paths for each eventuality [26, 22]. This results in a control that is at least
as complex as the plant that it is trying to regulate and an overall system equally
if not more complex.

An alternate solution to the complexity challenge is to use the principles of
self-organisation in the engineering of complex systems. It is theorised that using
self-organising principles will help in overcoming some of the challenges faced in
the development of complex systems[27, 28]. One self-organising solution pro-
posed by Holland is that of complex signal networks [29, 30, 31]. Holland pro-
posed the implementation of these networks through the use of Classifier Systems

and the Holland Broadcast Language [32]. The idea of Artificial Signal Networks

has been extended by Decraene [?, 33]. The work presented here builds on this
body of knowledge.

The research problem is twofold. On one hand building IT systems that ex-
hibit the properties of self-organising CAS is required. On the other hand IT sys-
tems may unintentionally exhibit emergent characteristics just by virtue of their
complexity. What is required are the tools and abstractions to explicate the self-
organising characteristics of IT systems and in so doing allow for proper analysis
and design.

In order to facilitate the creation of CAS, that are self-organising, engineers
need to realise an environment, with relevant abstractions and interactions, that
allows self-organisation to occur. These abstractions include non-linearity, at-
tractors as drivers of function rather than state variables, and explicit flows of
information [10, 34, 21]. Further, a system that is self-organising should be un-
derpinned by a signal regulatory mechanism and should be understood in terms
of its signal landscape [29, 30]. The paper explores signal regulatory networks,
as a model of signal regulated systems (SRS), that explicitly realise these self-
organising requirements.

In order to test the theory of SRS and signal regulatory networks a proto-
type system was designed and implemented. The resultant system is shown to be
both adaptive and robust whilst explicitly adhering to the characteristics of self-
organising systems.

Section 2 describes the processes used by nature to enable cell functioning and
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how these processes can be modelled as gene regulatory networks. In section 3,
the biological inspiration taken from gene regulatory networks is presented from
a computer science and information theoretical perspective in the form of signal
regulatory networks and signal regulation machines. Section 4 formalises the no-
tion of SRS. Section 5 describes the method. Section 6 looks at an implementation
of a signal regulatory network and machine example. The paper is concluded in
section 7.

2 Gene Regulatory Networks

This section provides background to the theory presented in the paper. Firstly,
how biological systems maintain their existence through protein production is
discussed. Secondly, the mechanism of protein production is linked to gene reg-
ulation, the cell’s DNA and how these in combination provide a self-organising
system that underpins the creation and maintenance of cells.

2.1 Protein Production In The Cell

A cell consists of a number of heterogeneous proteins functioning together to
form a single cohesive entity. These proteins enable all cell function including
replication, migration, differentiation, maintaining form, messaging and reacting
to external and internal stimulus. In the simplest model, the cell’s nucleus enables
protein production through DNA transcription into RNA and from RNA transla-
tion into protein [35]. The exact form, molecular structure and chemical reactions
that enable the DNA to protein transition are not discussed here. The simplified
process is described as follows.

The DNA consists of a four coded base sequence that, once executed through
the correct cell processes, produces a specific protein. In the first instance the sub-
sequence of DNA that codes for a specific protein is transcribed, by RNA poly-
merase, base by base to the more manageable form, messenger RNA (mRNA).
The mRNA then acts as a tape that is translated together with transfer RNA
(tRNA) into proteins by the ribosomes [36, 37]. For a detailed discussion the
reader is referred to [35].
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Being able to produce proteins is not sufficient for cellular existence. What
is required is that the correct protein types are produced timeously and in the
required quantity. This orchestrated protein production is enabled by the cell’s
DNA. The DNA contains the template for the production of proteins and instruc-
tions for when, which, where, and how much of those proteins should be pro-
duced. These characteristics of DNA ultimately direct the type and function of
the cell [35].

How a cell regulates protein production involves a set of proteins known as
transcription factors (TF). TF bind to the DNA upstream from the coding sequence
and are able to promote or inhibit the transcription of further mRNA sequences
including further copies of themselves. Another place where regulation occurs
is at the point where the mRNA is translated into the protein. Regulating the
production of proteins by proteins is termed gene regulation [35]. When looking
at cell function in terms of gene regulation, it makes sense to think of proteins
as computational elements that form part of an information processing network
[8, 38]. The idea of an information processing network is further explored below.

2.2 Information Processing Networks

The ability of a protein to regulate the production of further proteins including
proteins of the same type as itself, allows for a complex network of regulatory
relationships between proteins. The resultant network forms various positive and
negative feedback loops, cascades and sequences that are modelled as a gene reg-
ulatory network (GRN) [4].

DNA is not only acted upon by proteins created within the cell but by external
entities as well. These external entities include proteins produced by other local
cells or even transported from other parts of the organism in the form of hormones.
External entities to the organism such as various chemicals, enzymes, and envir-
onmental factors, like radiation, may also act indirectly upon the cell’s DNA so as
to influence the GRN [39].

In the oversimplified view presented here it should not be misconstrued that
the DNA provides some centralised control of cell function. Rather it should
be understood that a dynamic, non-linear system, consisting of many interacting
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parts, that influences and is influenced by its environment, is being described in a
simplified model [8].

Abstracting the above system of gene regulation so that all the specific de-
tail surrounding chemical processes are removed describes a mechanism whereby
genes regulate genes. Further abstraction away from the physical phenomenon
of proteins and specifically the idea of genes, allows the process to be viewed as
one in which signals regulate signals, where a gene is seen as a message or sig-
nal. Signals regulating signals is a core idea that underpins the concept of signal
regulatory networks, expounded in later sections. How this process of signals reg-
ulating signals enables the self-organisation of cells is discussed in the following
section.

2.3 Self-organisation Creating Cells

In the case of cells, self-organisation is brought about by a reduction in entropy
at the macro level as a result of an increase in entropy in the form of signals
(proteins) at the micro level. Various feedback loops and the continuous flow of
information through the cell, allow self-organisation to occur at on of the system’s
“far from equilibrium” steady state attractors [14]. Genomics theorises that the
various states that a cell may find itself in and the various functions that a cell
undertakes can be viewed as the attractors in its gene regulatory network [36, 40,
41, 42, 43]. The function of the cell is not described in terms of a set of states and
state transitions. Rather the function is described in terms of a gene regulatory
network or gene landscape where the attractors in the landscape can be linked to
the more mechanistic view presented by cell states [43, 44].

It should be noted that the idea of gene regulatory networks and other biolo-
gical regulatory networks have been cast in terms of information theory previously
[45, 46].

3 Signal Regulated Systems, Networks And Machines

A signal regulatory network (SRN) mimics the key concepts that underpin a GRN.
Like a GRN, a SRN allows us to model a class of systems, signal regulated sys-
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tems (SRS), that exhibit self-organising characteristics. The network abstraction
is as a result of the regulatory relationships between signals. This regulatory re-
lationship is best described by stating: signals may in combination with other
signals regulate the rate of production of further signals including themselves.

Definition 1. A signal is any temporal- and, possibly, spatial-varying quantity that
carries information.

Signals can exhibit both temporal and spatial variation, examples of these be-
ing dissipation and dispersion. In the context of information systems the spatial
aspect of a signal can be used to identify the container of the signal or some virtual
cell where the signal is located. The spatial variation of the signal describes how
the signal changes spatially, e.g. the inverse law in a field. The temporal variation
of a signal describes how the signal changes with time e.g. duplication into adja-
cent signal containers or decreasing and disappearing with time. The properties
of SRS that can be modelled as a SRN are:

1. There exists a process that produces signals of various types.

2. The dynamics of the system stem from the fact that the signals produced
into the environment at time t are able to regulate the signals produced at
time t +∆t. Regulating includes both promoting and inhibiting the rate of
signal production along with other spatial and temporal properties of the
signal.

3. A signal may directly or indirectly promote or inhibit the production of
further signals of its own type (cyclic relationships between signals) and
thus produce positive and negative feedback loops.

4. The relationship between the signals produced at time t +∆t and those at
time t may not be just trivial one to one or linear mappings. For example
it may hold that signal S1 promotes a linear increase in the production of
signal S3. Signal S2 promotes a exponential increase in the production of
S3. However combing both signal S1 and signal S2 completely stops the
production of signal S3.
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5. SRS are self-organising systems resulting from the dynamic interplay of
signals. A signal regulated system’s behaviour is characterised by moving
between steady states which represent attractors in the signal space.

Rich signal interactions, together with positive and negative feedback, allow for
additional properties including multi-stability, oscillations, state-dependent re-
sponses, echoes, randomness, and signal cascades in which a relatively small sig-
nal can elicit a large response through signal amplification in various signalling
pathways or chains [47]. The continuous flow of signals in their various complex
networks of interaction form a signal landscape or space that is characterised by
various attractors. Attractors may be fixed points, bi-stabilities, multi-stabilities,
cyclic, and limit cycles[16].

Definition 2. A signal regulation machine (SRM) is a process that is able to per-
form the function “signal in signal out” as required by SRS. All SRS consist of
one or more interacting signal regulation machines.

3.1 From State Based To Attractor Based Systems

Typical views of IT systems and the abstractions used in their design, are modelled
around their states and the transitions between these states. Many self-organising
and multi-agent systems are also viewed as state based machines. The state based
view is amplified in the models used to understand these systems where tools such
as Markov models, Bayesian Networks, and Cellular Automate are examples.

A departure from state as the primary abstraction in IT systems is presented
in signal based systems. Here the primary abstraction driving function is not state
variables but rather attractors. In a state based system a change in the system’s
variables indicate a change in the system’s state. In an attractor based system
the system’s variables should be continuously changing so that the system can
be in an attractor. If the variables dynamics should stop this would indicate that
the flow of energy has ceased and as such the far from equilibrium steady state
indicative of an attractor would cease. In order for a attractor based system to
change attractors a large enough perturbation is required to move the system from
its current attractor into another. The view presented here is consistent with the
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“Being versus Becoming” view presented by Priogogine and others in which it
is theorised that systems need to be understood in terms of process and not state
[21, 34].

SRS not only allow for the explicit creation of an entropy sink in self-organising
systems but also allows for a more grounded view of self-organising systems. The
functionality of the system is a by-product of the signal landscape as with cells
and gene regulation. Further to this there are a number of tools that can be used
to analyse SRS include Boolean Networks, Probabilistic Boolean Networks, Rate
Differential Equations, and Stochastic Models [48]. The tools also allow us to
assess the existence and stability of various attractors within the signal landscape.
Whether those attractors are by design or a by product of complexity is not im-
portant. Other tools such as graph theory include the ability to assess robustness
of the network, or potentially sensitive nodes, using toplogy analysis [49, 50, 51].
Further, modelling as a graph allows for a topological analysis of the attractors
and a qualitative assessment of their stability amongst other mathematical ana-
lysis [52, 53].

4 Formalisation Of Signal Regulatory Networks

A SRN can be formalised as follows. N signals are denoted by:

(σ1,σ2, . . .σN) i = 1,2, . . . ,N

where
σi→ gi (x̄, t) i = 1,2, . . . ,N

The function gi takes this form since signals are temporal and spatial varying
quantities where x̄ is a n-dimensional spatial vector and t is a temporal scalar. In
the simplest case ġi = 0 I.e. doesn’t change with respect to time. Here gi takes
on one of two constant values {0,1} and has no spatial varying attributes, this is
the same as the case modelled by a Boolean Network. The regulation of a signal
is time dependant such that the value of σi at the following time step is regulated
by K regulatory signals σi1,σi2, . . . ,σik where the discrete temporal evolution is
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Fig. 1: A basic SRN showing three signals, where the signal s1 is regulated by
three signals including itself.

determined by:
σi (t +1) = fi (σi1 (t) ,σi2 (t) , . . . ,σik (t)) (1)

The function fi may be stochastic in nature as is often the case in self-organising
systems. Further it is noted that one of the K regulatory signals may be σi itself.
A set R of J equations of the form given by equation (1) model a discrete SRS:

R =


σ1 (t +1) = f1

(
σ11 (t) ,σ12 (t) , . . . ,σ1k (t)

)
σ2 (t +1) = f2

(
σ21 (t) ,σ22 (t) , . . . ,σ2k (t)

)
...

σJ (t +1) = fJ (σJ1 (t) ,σJ2 (t) , . . . ,σJk (t))

(2)

Different signal regulation machines may have different functions modelling the
time evolution of the same signal σi in this case a SRN across these signal regula-
tion machines would provide a superposition of the regulatory effect of the various
machines.

A signal regulatory network can be modelled as a directed graph:

G = {V,E}

The directed graph consists of V ∈ {Σ,R} where Σ is the set of signals, and R is
the set of regulatory functions, and E ∈ {V ×V} is the set of ordered pairs rep-
resenting the directed regulatory relationships. Where regulatory edges enters a
signal vertex some function from R of those regulatory signals defines the regulat-
ory effect. Figure 1 shows a basic SRN where two input signals s2 and s3 regulate
a self regulating signal s1.



5 Method 11

5 Method

In order to evaluate the effectiveness of systems that are underpinned by a signal
regulatory mechanism an experiment is constructed. The experiment consists of
first designing and understanding the attractors and characteristics of the signal
landscape that underpin the intended system. A system is then built that uses the
defined signal landscape as a basis for self-organisation. The system is allowed to
run and data is collected as to the functioning of the system. During runtime the
system is exposed to disruptions and stresses to assess its robustness, scalability
and adaptability.

The data collected takes the form of the number of work items that each agent
within the system is able to perform along with how many work items fail and are
completed successfully. In addition the total CPU usage over the interval is also
recorded. The data is then averaged over one minute intervals to remove excess
noise. The data will be analysed to see how the system degrades as a result of
disruptions, noise in the form of false signals and purposefully removed and added
agents. The system will also be evaluated as to how well it is able to recover when
those stresses are removed. Additionally the system will be run using different
size communities to evaluate its scalability.

6 Implementation And Evaluation

The experiment is well suited to the distributed blackboard architecture of Cou-
gaar 1. There exist two observation source agents that face the web. The obser-
vation sources are named Observation Source 1 (OS1) and Observation Source 2
(OS2). Each observation source agent uses one or more observation processing
agents to generate its observations. In the case of OS1 there are two possible ob-
servation processing agents to choose from, those being Observation Processor 1
(OP1) and Observation Processor 2 (OP2). OS2 has a single observation pro-
cessing agent, Observation Processor 3 (OP3). Every observation processing
agent uses various sensor resources as input. Sensor resources provide raw data
about the environment. In our case OP1 uses a Sensor Resource 1 (SR1), and

1 http://www.cougaar.org/
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Fig. 2: Describes the dependencies between the components encapsulated by
each of the agents. The bold horizontal line indicates that OS1 can use
either OP1 or OP2.

Sensor Resource 2 (SR2). OP2 uses SR2 and Sensor Resource 3 (SR3). OP3 uses
Sensor Resource 4 (SR4). The dependencies between agents described here is
made clearer in figure 2.

The agents described here exist on the computing platforms, Platform-(1-5),
and duplicates of each agent can exist on each platform.

In order to further restrict our prototype some constraints are made. Firstly the
platforms are fully connected, that is every platform is connected to every other
platform. Secondly Platform-1 and Platform-2 are outward facing, i.e. Internet
facing, and thus deployments of OS1 and OS2 are constrained to these. Platform-
3 and Platform-4 have the sensor resources connected to them such that sensor
resources are constrained to these platforms. The above constraints leave deploy-
ments of OP1, OP2, and OP3 free to exist on any one of Platform-1 to Platform-5.
Figure 3 shows a deployment diagram to clarify where the various agent types
may exist.

For our purposes both OP1 and OP2 provide observation processing of the
same quality. However OP1 is a CPU intensive algorithm and OP2 is a memory
intensive algorithm.

The SRM present in each agent is tailored to the functionality that the agent
encapsulates, is stochastic in nature and is called a Probabilistic-SRM (P-SRM).
The P-SRM evaluates the signals in the agent’s signal space and stochastically
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Fig. 3: Deployment diagram for agent types. Agents are represented as UML act-
ors so as to indicate their autonomy and to differentiate them from com-
ponents.
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produces appropriate signals according to probabalistic rules. The produced sig-
nals may then be relayed to other agents’ signal spaces according to the signals’
spatial functions.

The signal regulatory system is composed of the following signal-types:

1. Aos1, Aos2, Aop1, Aop2, Aop3, Asr1, Asr2, Asr3, Asr4: The “available signal”
indicates that an agent is free to provide its components service.

2. Wos1, Wos2, Wop1, Wop2, Wop3, Wsr1, Wsr2, Wsr3, Wsr4: The “work-request
signal” is used by an agent to request work from another agent.

3. Kos1, Kos2, Kop1, Kop2, Kop3, Ksr1, Ksr2, Ksr3, Ksr4: The “keep-alive signal” is
used to indicate that an agent is still busy with work that has been requested.

4. Tos1, Tos2, Top1, Top2, Top3, Tsr1, Tsr2, Tsr3, Tsr4: The “time-out signal” indic-
ates that a certain time has expired.

5. Cos1, Cos2, Cop1, Cop2, Cop3, Csr1, Csr2, Csr3, Csr4: The “complete signal” is
produced when a work request completes.

6. Fos1, Fos2, Fop1, Fop2, Fop3, Fsr1, Fsr2, Fsr3, Fsr4: The “failed signal” is pro-
duced when a work request fails.

If a signal-type is a regulator of another signal-type then given our P-SRM the
signal-type either increases or decreases the probability that the signal-type will
be produced in the following time step. The symbol “+” is used to indicate that the
existence of signals of signal-type σ increase the probability and the symbol “−”
to indicate that the existence of signals of signal-type σ decrease the probability.
Here is given for each signal-type the set of regulatory signal-types used by agents
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of type OP3:

Aop3 :
{
−Kop3

}
Wop3 :

{
+Aop3;+Wop3;+Kop3;+Fop3

}
Kop3 :

{
+Aop3;+Wop3;+Kop3;−Cop3

}
Cop3 :

{
+Wop3;+Kop3;+Cop3

}
Top3 :

{
+Wop3;+Top3;−Fop3

}
Fop3 :

{
+Wop3;+Top3;+Fop3

}
Figure 4 presents as a directed graph showing the signal regulatory networks mod-
elled by the above functions and uses the same symbols, i.e. “+” to indicate in-
creases probability and “−” to indicate decreases probability. Note that the edges
do not indicate the details of regulatory function used but just the fact that the
probability of producing a signal of the given type in the next time step is either
decreased or increased by the presence of signals of the given signal-type.

In most cases many signal of a given type will need to be present, as a result of
the probabilities involved, in order to ensure the production of signals of another
given type in the following time step. In addition given that all signals dissipate
with time it is essential that a signal of a given type be continuously produced if
it is to effect the production of other signal-types. The probabilistic transitions
increases the robustness of the SRM. In order for a set of signals to move the net-
work from one attractor to another it is required that the signals be produced in
sufficient quantity and for sufficient time so as to sustain the perturbation, other-
wise the network will quickly fall back into its current attractor.

The stochastic nature of SRS and the requirement that many signals of a given
type are needed parallels the situation found in GRN, where many proteins of a
given type are needed to effect DNA production of further proteins.

The probabilistic functions of the P-SRM are an extension of the Holland
Broadcast Language (HBL) [32]. HBL consists of a set of condition-action rules.
A condition-action rule is a pair in which if the condition holds then the signal
represented by the action is produced into the agent’s signal container. In the P-
SRM the condition is given by a function that matches a set of signals related by
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{A} Available

{W} Working

+

{K} KeepAlive

+ +

+

{C} Complete

+ {T} TimeOut

+

{F} Fail

+

-

+

+

+ -

+

+

+

+

-

+

Fig. 4: Observation Process 3 regulatory relationships between signals.

probabilistic boolean operators. If the condition is satisfied the signal represented
by the signal-type of the action is produced into the signal container with a given
probability. A typical P-SRM rule would take the following form:

C (Σ1,Σ2, . . .ΣN) → A(σi)

The probability is calculated based on the probabilistic condition function C (Σ1,Σ2, . . .ΣN)

and the signal represented by σi is produced with that probability in the next time
step. The events Σ1,Σ2, . . .ΣN = Σ1 (σ1) ,Σ2 (σ2) , . . .ΣN (σN) of the condition are
joined by probabilistic boolean operators for example:

C (¬(Σ1∪Σ2)∩Σ2) → A(σ1)

Here ∩,∪, and ¬ have there boolean meanings of “and”, “or” and “not” respect-
ively. The events ΣN (σN) are representative of the probability that the given signal
σN would be matched2345.

One approach to building an P-SRM would be given a signal container at time

2 The probability of an event: P(A) ∈ [0,1]
3 The “not” of an event: ¬P(A) = 1−P(A)
4 The “and” of two independent events: P(A∩B) = P(A)P(B)
5 The “or” of two non exclusively mutual events: P(A∪B) = P(A)+P(B)−P(A)P(B)
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step t run each signal rule of the P-SRM against every combination of signal in
the signal container that match the condition. If the condition holds based on the
probabilities of each event produce the signal represented by the action into the
signal container at later time step t +∆t. Each rule should only fire once per a
time step so it is necessary to perform the above operation until at least one signal
is produced or there are no more signals to match the condition.

In order to reduce the computational overhead to O
(
N2) of the above P-SRM,

a modified version that relies on the binomial probability is used. The general
equation for binomial probability for getting exactly k successes in n trials is given
by:

Qn (k) =
(n

k

)
pk(1− p)n−k (3)

The P-SRM is concerned with the case where there is at least 1 success of match-
ing the signals in the predicate in n trials for a given rule r. Where the n trial are
performed on the signals in the signal container. That is the same as the case for
not getting exactly 0 successes in n trial occurs, given by:

Pr (n) = 1−Qn (0)

= 1− (1− p)n

In the implementation presented here all signals dissipate with a half life of one
second, thus even dissipation is stochastic. An example of a rule for producing an
available signal, where k is the number of Kop3 signals in the signal container and
p = 0.3, is given by:

C
(
¬Σ
(
Kop3∩Kop3

))
→ A

(
Aop3

)
∴ ¬P(n)∪¬Pr (n) → A

(
Aop3

)
∴ 2(0.7n)−0.72n → A

(
Aop3

)
Similar probabilistic rules exist for each of the signal types.
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6.1 Signal Regulatory Network Boolean Networks

Analysis

Boolean networks originally introduced by Kaufman provide a simple but effect-
ive mechanism for modelling gene regulatory networks [54]. They allow the ex-
pression of a protein by a specific gene to be in one of two states, either 1 or 0,
akin to on and off respectively. The expression state of a gene gi, either 1 or 0, at
time t+1 is determined by a boolean function fi that takes as input the expression
state of K regulatory genes at time t. The regulatory genes may include gi itself.
Formula 4 shows a regulatory function for gene gi. Given N such functions it is
possible to construct a network G = {V,E} where the vertices are the set of genes
and the edges indicate the boolean regulatory relationship between them [7, 55].

gi (t +1) = fi (g1i (t) ,g2i (t) , . . .gki (t)) (4)

Boolean networks are useful as a tool to attain some qualitative information for
a SRN. It is possible to ascertain what the various attractors are, how deep the
basins are and how difficult it is to move from one basin to another.

To gain a better sense of the SRS presented above, the stochastic transitions of
the P-SRM are removed and the set of equations are modelled as a boolean signal
regulatory network as presented by these equations:

Aop3 (t +1) = ¬Kop3 (t)

Wop3 (t +1) = Wop3 (t)∧
(
Top3 (t)∨Kop3 (t)∨Fop3 (t)

)
Kop3 (t +1) =

(
Aop3 (t)∧Wop3 (t)

)
∨
(
Kop3 (t)∧

(
¬Cop3 (t)∨Wop3 (t)

))
Cop3 (t +1) = Wop3 (t)∧Kop3 (t)∧Cop3 (t)

Top3 (t +1) = Wop3 (t)∧Top3 (t)∧¬Fop3 (t)

Fop3 (t +1) = Wop3 (t)∧
(
Top3 (t)∨Fop3 (t)

)
Figure 5 shows the boolean network for the above set of equations. What is im-
mediately apparent in figure 5 is the existence of six attractors labelled 1 to 6.
Attractor 1: [011100] has all signals off except for Wop3, Kop3, Cop3 which are
on. The attractor 1 is representative of a steady state indicating the agent has
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completed its task.
Note that the activation of the available signal, bit position one, immediately

pulls the system back into attractor 1. However the introduction of either a failed
or time out signal pushes the system into the failed and complete attractor as
presented by 4: [011101]. Attractor 4 represents a decision point in the system as
the agent must choose to accept or reject the completed work. If the agent rejects
the work a transition into the failed attractor represented by Attractor 3: [011001]
takes place. Attractor 2: [100000] representative of a steady state in which the
agent is awaiting work and is a deep attractor and the only perturbations out of it
are as a result of a work signal. Attractor 5 is the working attractor and requires
both a work signal and a keep alive signal to maintain.

Attractor 6:[001000] is of some concern as it represents an attractor that can
only be escaped from if a completed signal is produced. It immediately indicates
that it is possible for our SRS to enter a steady state from which it cannot escape
and for which the agent has no behaviour that would allow it to escape. For
this reason it becomes apparent that some alternative is required to mitigate this
situation. The solution is a timeout signal. Without the explicit realisation of the
SRN and its evaluation this possible point of failure would not easily be detected.

Even though the boolean network based analysis of the system gives some
qualitative information about the system it should be noted that due to the com-
plex dynamics of the system as represented by interacting random functions and
parallel threads it may exhibit other “anomalies” not modelled in the simplified
abstraction.

6.2 Evaluation

Similar probabilistic signal regulation machines, to the Observation Process 3 P-
SRM described here, were constructed for each of the agents in the system. In our
test runs five of each agent type were deployed to the appropriate platform as in-
dicated in figure 3 earlier. The system was both adaptive and robust. It is possible
to remove nodes (platforms) and the system re-organises so as to compensate and
continues to function.

The system was evaluated for robustness, adaptability, and scalability at vari-
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Fig. 5: Attractor landscape resulting from the interaction of the signals between
Observation Source 2 and Observation Process 3. Where the bit position
of the signals is given by [Aop3, Wop3, Kop3, Cop3, Top3, Fop3].
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Fig. 6: Robustness to failure and adaptability. The y-axis shows the number of
connections handled per minute. The x-axis shows the number of minutes
that have passed.

ous levels. Firstly the system is evaluated at the platform level to assess how the
system responds to an entire group of agents being removed. Figure 6 shows the
system’s robustness to failure and adaptability when a platform with agents is re-
moved. At label 1 in figure 6 one of the platforms is purposefully failed. The
system performance begins to degrade however note that there is not an instant
crash but instead a gradual degradation in performance over a minute, as the sys-
tem re-organises, before the system begins to oscillate within its new range. At
label 2 a new platform is brought on line the system self-organises and increases
the number of connections a minute that it can handle.

Although removing and adding platforms gives some rudimentary analysis of
robustness a more in-depth evaluation is required at a finer scale. In order to
gain this deeper insight the system is evaluated at the agent community level of
a single platform. In the agent community level experiment individual agents
are randomly selected and temporarily suspended from or reanimated to the com-
munity. The probability that an agent will be temporarily suspended or reanimated
is referred to as the volatility of the system. Here the volatility, is the probability
for any agent that it will be suspended or reanimated every 100 micro-seconds. In
the experiment the volatility is increased every ten minutes by 0.01. By time step
ten every agent is almost guaranteed to be suspended or reanimated at least once
every second. The experiment is repeated five times and the averages of the total
completes and failures across all five runs are recorded. Figure 7 shows the results
of this experiment. Notice how the performance in terms of total completes is im-
pacted by the random agent suspensions. However there is no significant change
in the number fails in the ninety minute time period. The experiment shows the
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Fig. 7: Chart showing the result of increasing the volatility of the agents and the
resultant response in the number of completed versus failed responses.

Fig. 8: Number of removed agents before system is driven to complete failure.

systems robustness and gracefull degradation at the community level.
The experiment in which random agents are temporarily suspended is exten-

ded by permanently suspending agents to evaluate how many agents can be re-
moved from the system before the entire systems collapses. The experiment is
repeated five times and the results averaged across all five runs. Figure 8 shows
a chart with the results of the experiment. Total system failure occurs on average
after forty minutes when approximately ninety percent of the agents have been
removed.

Although the community level gives some indication of overall robustness and
adaptability of the system, there is also robustness and adaptability at the indi-
vidual agent level within its SRS. In the individual agent level experiment noise is
introduced in the form of random false signals. In order to gain some perspective
the experiment is run using the P-SRM and without the P-SRM. A good ninety
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Fig. 9: Chart shows total system responses in relationship to the signal to noise
ratio of the system when a non probabilistic SRM is being used.

Fig. 10: Chart shows total system responses in relationship to the signal to noise
ratio of the system when a P-SRM is being used.

percent of the signals introduced, as there are no rules that they trigger, have no
effect on the agent’s SRM. However approximately ten percent of the signals do
affect the agent’s SRM. The signal to noise ratio takes into account only the ten
percent of signals that can affect the SRM, although the signal to noise ratio in
truth would be much higher. The experiment is run five times and the average
across all five runs is taken. Figure 9 shows the results without the probabilistic
rules. Note how as the signal to noise ratio decreases the number of failures in-
creases. In figure 10 the same experiment is performed using the P-SRM. Here it
can be seen that as the signal to noise ratio decreases the number of failures re-
mains constant within a range. What is intresting is that the additional robustness
of the P-SRM comes at a performance cost as can be seen in the total complete
system responses when comparing the two experiments. However the total system
responses that are fails is much lower using the P-SRM.

Although the above results are promising with respect to the adaptability and
robustness of the system, the scalability of the approach is of some concern. In
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Fig. 11: Chart showing the relationship between the number of agents on a plat-
form the total CPU usage and how the system is able to scale.

order to evaluate the scalability, the number of agents in the community on a plat-
form is incremented in steps of nine starting from nine to up until eighty one. The
amount of CPU being consumed is also recorded along with the total number of
system responses. For each of the agent community sizes the experiment is re-
peated five time and the average number of completes and fails in a ten minute
run is taken. Figure 11 shows the relationship between the community size and
total system responses. It is clear from the chart that although the system scales
well on a dual core CPU up until a certain threshold beyond that point the addi-
tional load incurred as a result of the large number of signals produce result in a
performance penalty. How these effects will be mitigated on larger clusters and
what the negative effects of the network I/O bottleneck will be between nodes
requires further investigation.

To gain some deeper insight into the works of the system a typical individual
run of the system is evaluated. Here it can be seen that the system exhibits load
balancing properties. By placing the system under load it is possible to see which
agents are being utilised. The system compensated for scenarios where different
observation sources OS1 or OS2 were placed under load and also balanced the
usage of observation process OP1 and OP2 which are CPU and memory intensive
process respectively as can be seen in figure 12. Notice how in figure 12 at ten
minutes the load is changed from being higher on OS1 to being higher on OS2. At
this point you can see the sudden increase in failures and decrease in completions.
However by twelve minutes the system is performing within range again. One
anomaly which can be seen is that there is a local maximum for completions and
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local minimum for failures at three minutes. The locals at this point indicate that
although the system is continuously self-optimising it is not obtaining the optimal.
It is likely that this would be the case as, in order to maintain plasticity, some
amount of inefficiency must be built into the system.

What is significant is that it is not necessary to retrieve resource availability
indicators from the operating systems in order to obtain this adaptability. Instead
the adaptation emerges as a result of the self-organising properties of the signal
regulated agent based system. The system is built using just transitions from one
attractor to another and the agents are able to effect each other and communicate
only by manipulating the signal landscape.

By using the signal space, the self-organising properties that occur as a result
of the micro-macro interplay of entropy between the agents and the signals is
explicit. Rather than thinking about a state space the discussion centres on a
signal space that represents the dynamics of information as it flows through the
SRS. The various “states” are represented by the attractors in the signal space
generated by the SRS. Using a signal regulatory network as a model enables both
qualitative and quantitative assessment of the stability of various steady states and
the explicit creation of a self-organising system.

One limitation of such systems is that is difficult to deduce failure. The system
may continuously self-organise, searching through and repeatedly visiting various
configurations without realising that there is no feasible solution. Although many
of these may exist as multi-stabilities, in which case it is possible to identify them
and prevent the cycle from re-occurring, others may be limit cycles that never
repeat in precisely the same way.

7 Conclusion

In conclusion, it has been shown that it is possible to build self-organising sys-
tems upon the theory of SRS. Solutions that exhibit various properties such as
self-healing and self-optimisation naturally emerge out of systems built upon the
principles of SRS. Further due to the grounded nature of such systems, with expli-
cit entropy sinks and the ability to model them using signal regulatory networks,
they present a good foundation for building self-organising systems. By extending
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Fig. 12: System under an abnormal load. The load forces the system to start fail-
ing certain requests. The upper chart shows the usage of agents of each
type within the system. The lower chart shows the number of requests be-
ing made to OS1 and OS2 along with number of request being completed
and failed. In both charts the x-axis shows the number of minutes that
have passed.
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the simple examples presented here into more complex real world scenarios it is
conceivable that ever more functional emergent systems will be built.

Of some concern is the scalability of the approach. However this constraint on
scalability may be due to the current serial processing capabilities found in many
computing systems. Nature tends to perform in a much more parallel environment
than our current ones. In the future as a result of the trend in multi-cored, parallel
processing capabilities it is envisioned by the authors that SRS across these multi-
cored machines may have much to offer, especially given the inherently parallel
nature of SRS.

Given that all of Nature, from the functioning of gene regulatory networks,
to pheromone trails built by insects, to the neural firing in the brain can all be
modelled as natural signal regulatory networks, software systems underpinned by
the same theory should exhibit many of the same properties. A well grounded
understanding of how SRS are able to self-organise and exhibit emergent prop-
erties will enable computer science to understand and model ever more complex
systems. Software engineering will be enabled to build on this solid foundation
and produce systems that can be qualitatively and quantitatively evaluated and
analysed.
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