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Abstract 
 
This paper presents the formulation, implementation and evaluation of an enhanced matrix-
free edge-based finite volume approach to model the mechanics of solids undergoing large 
non-linear deformations. The developed technology is evaluated via application to a number 
of test-cases. As will be demonstrated, the finite volume approach exhibits distinct 
advantages over the Q4 finite element formulation. This provides an alternative approach to 
the analysis of solid mechanics and allows for the possibility of using a single discretisation 
strategy for both the fluid and structural domain and solving the resulting set of equations 
using a single solution method.  
 
 
1 Introduction 
 
Traditionally, finite element methods have been extensively used for the modelling of such 
problems. On the other hand, for the modelling of fluid flow phenomena finite volume 
methods [1] have been more dominant. Both schemes can be considered as methods of 
weighted residuals where they differ in the choice of the weighting function. The finite 
element Galerkin method uses shape functions as the weighting functions and can be easily 
extended to higher order by using higher order polynomials for the shape functions, while the 
finite volume method results by choosing the weighting function as unity. Finite element 
methods are typically formulated in a total Lagrangrian or undeformed configuration. In 
contrast, finite volume methods are based on an Eulerian or updated mesh configuration, 
which is not optimal for solid mechanics problems. Over the last two decades a number of 
authors have used finite volume methods to discretise the governing equilibrium equations of 
elastic [2-6] and non-linear materials [7-12]. 
 
A stable and robust fluid-flow solver, based on the compact edge-based finite volume 
approach [13], is available. This study was undertaken to investigate whether the same edge-
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based finite volume approach could be easily extended to accurately model the mechanics of 
solids. This is the first instance that the proposed edge-based discretisation method is applied 
to model solids. There are distinct advantages in applying an edge-based approach. It is 
applicable to arbitrary element shapes and is computationally efficient. It is also particularly 
well suited to shared memory parallel hardware architectures. An accurate finite volume 
structural solver would allow for fluid-structure interaction problems to be solved using a 
unified strongly coupled scheme. 
 
Fluid-structure-interaction (FSI) constitutes a branch of Computational Mechanics in which 
there exists an intimate coupling between fluid and structural or solid domains; the behaviour 
of the system is influenced by the interaction of a moving fluid and a deforming solid 
structure. Examples of FSI problems include flutter in aircraft, flows in elastic pipes and 
blood vessels, flow induced vibrations in flexible structures and wind response in buildings. 
Much effort has been spent over recent years in developing FSI modelling technology [14-
19]. A major aspect of FSI analysis is the coupling of the fluid and structural components. 
The use of the finite volume method to model structures is investigated and compared with 
the traditional finite element method in this work. 
 
 
2 Governing Equations 
 
The equations of equilibrium for the solid domain are first equation of 
motion: 

iiij a=bdivT        (1) 
where T is the Cauchy stress (a stress measure in the deformed configuration), b is the body 
force in the current configuration,  is the density and a is the acceleration. Note that 
lowercase subscripts are used to denote components in the deformed configuration, while 
uppercase subscripts are used to denote components in the undeformed configuration. 
 
Eq. (1) can be transformed into a total Lagrangian or undeformed formulation [20] as shown 
in Eq. (2): 

ioIiJ a=BDiv       (2) 
 
The total Lagrangian formulation becomes important when considering non-linear elasticity 
problems, as one has to distinguish between the undeformed or original and deformed or 
current configurations. The advantage of a total Lagrangrian formulation, over an Eulerian 
description, is that it eliminates the need to update the mesh and re-compute edge information 
after each iteration. This makes it simpler and less computationally intensive. Furthermore, it 
eliminates the accumulated temporal discretisation error developed when using an updated 
mesh formulation. The Lagrangian formulation is also preferable since the constitutive 
behaviour of solids is often given in terms of material or referential coordinates. 
 
Eq. (2) contains the first Piola-Kirchoff stress, iJ (a stress measure defined in the reference 
configuration), which is equal to the second Piola-Kirchoff stress, SIJ, multiplied by the 
deformation gradient, F iI, as shown in Eq. (3). The deformation gradient relates infinitesimal 
vectors in the undeformed configuration to their counterparts in the deformed configuration. 
 

IJiIiJ SF=        (3) 
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The boundary conditions for the solid mechanics problem consist of either prescribe 
tractions, , or prescribed displacements, u : 

tB on n        (4) 
  uB on uu        (5) 

where tB  and uB  are the parts of the boundary where the surface traction and 
displacements are applied respectively and n is the outward pointing unit normal vector. 
 
2.1 Constitutive Equations 
 
For a St-Venant-Kirchoff material model, Eq. (6) is the constitutive equation that relates the 
stress, S, to the Green-Lagrange strain, E (a strain measure in the reference configuration). 

 
IJKKIJIJ EE=S 2      (6) 

where  and  are called the Lamè constants and are related to the elasticity modulus and 
P  
 
The Green-Lagrange strain, E, is expressed in terms of displacement gradients as 
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3 Discretisation 
 
In this work we propose the use of a compact vertex-centered edge-based finite volume 
algorithm [13] for the purposes of spatial discretisation. The advantages of this approach have 
been discussed above. Neglecting body forces and casting Eq. (2) in integral or weak form by 
integrating over an arbitrary spatial subdomain, Vm, gives: 
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where v represents the velocity. Noting that the control volume, Vm, is fixed in time, 
differentiation and integration of the temporal term are interchangeable. In addition, the 
density in the undeformed configuration, o 
Theorem to express the spatial derivatives in terms of fluxes. Eq. (8) simplifies to: 
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The surface integral consists of the sum over all edges, mn, of the control volume.  
 

m
B

mnmmnm
V mnjiJV mnjiJV io BCdVv

t ::             (10) 

where Cmn is the edge coefficients connecting arbitrary internal nodes m and n and Bmn is the 
edge coefficient for an edge that lies along the volume boundary. 
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Discretising and integrating the temporal term on the left gives: 
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Finally, the velocity v is given by the time rate of change of displacement u: 
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which in discretised form is 
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The set of equations are solved via a single-step Jacobi iterative scheme [21] which is 
implemented such as to ensure a matrix-free and robust solution. 
 
 
4 Application and Evaluation 
 
The accuracy of the proposed finite volume method is evaluated via application to a number 
of geometrically non-linear test problems. The results are compared against linear and non-
linear finite element formulations. The plane strain assumption is used in all these 2D 
problems. 
 
4.1 Uniaxial tension 
 
The first test problem considered was that of a 2D body in uniaxial tension. The 11 stress 
from the finite volume as well as the linear and non-linear finite element formulations are 
plotted against tip displacement in Figure 1. The finite volume and finite element non-linear 
formulations show good agreement. The stress is approximately linear for small 
displacements, but deviates from the linear elasticity behaviour at larger displacements. This 
is expected since at large displacements there is a geometric decrease in cross-section that 
results in an increase in stress. 

 
F igure 1: Comparison of stress prediction for uniaxial tension. 

c 

c 
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4.2 Simple shear 
 
A 2D body in simple shear was considered next. Both the 11 and 12 stress components are 
plotted against tip displacement in Figure 2. Again, the finite volume and finite element non-
linear elasticity formulations give exactly the same results. All the stress terms are non-zero, 
compared to the linear theory that only predicts a non-zero shear stress. The reason for non-
zero stress terms is because the structure wants to contract in the x-direction due to the shear 

in the y-direction, E22, and because of the Poisson effect this strain results in normal stress 
components, 11 and 12.  
 

 
F igure 2: Comparison of stress predictions for simple shear. 

 
 

4.3 Pure bending 
 
The next problem considered was that of a thin beam in pure bending. This problem produced 
interesting results, as shown in Figure 3. The nodal-based formulation exhibits the 
undesirable characteristic of sensitivity to element aspect ratio similar to the Q4 finite 
element formulation. The aspect ratio is the . As the 
aspect ratio is increased, i.e. the elements become long and thin, the structure becomes stiffer. 
This characteristic is known as locking.  
 
To address this, an enhanced finite volume approach which uses both nodal- and elemental-
strains [19] and referred to as a hybrid finite volume approach [22], was implemented. 
Elemental-based strains, where area integrals are evaluated at element integration points and 
not vertices, were used for the shear components of stress. The hybrid approach is shown to 
be insensitive to element aspect ratio, as can be seen in Figure 3. Furthermore, the hybrid 
finite volume and Q8 finite element formulations were able to predict the exact tip 
displacement for this problem. 
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F igure 3: Displacement as a function of aspect ratio for a thin beam in pure bending. 

 
 

4.4 Rate of convergence 
 
The rates of convergence of displacements of the nodal and hybrid finite volume 
formulations were investigated on the problem of a thin cantilever beam subjected to a 
concentrated tip load. As shown in Figure 4, both formulations have a convergence rate of 
less than one, with the hybrid formulation being better than the nodal approach. The reason 
for this convergence rate was investigated analytically, by making use of Taylor series 
expansions and considering only the small strain case. It was found that the leading error 
terms are second-order accurate at internal nodes, but only first-order and zero-order accurate 
at boundary and corner nodes, respectively. 

 

 
F igure 4: Convergence of displacements for the finite volume formulations. 
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5 Conclusion 
 
An edge-based vertex-centered matrix-free finite volume method to model structures was 
investigated and compared with the traditional finite element method in this work. The finite 
volume method was successfully formulated and implemented in the total Lagrangian 
formulation. It is demonstrated that the developed technology provides exactly the same 
results for a simple tensile and simple shear test-case, compared with the finite element 
solutions. For a pure bending test-case, the standard finite volume and Q4 finite-element 
formulations exhibit the undesirable characteristic of sensitivity to aspect ratio. The structure 
becomes stiffer as the aspect ratio is increased, a characteristic known as locking. To address 
this, an enhanced hybrid finite volume approach which uses both nodal- and elemental-strains 
was implemented. The hybrid approach is shown to be insensitive to element aspect ratio, 
while retaining the accuracy of the nodal-strain approach. Both finite volume formulations, 
however, are shown to have overall displacement convergence rates of less than one. 
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